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Abstract 

A grid is a wide-area computing environment for cross-domain resource sharing and 
service integration. Software agents are one of mainstream technologies for management of 
geographically distributed grid resources. In this work, self-organization mechanisms are 
investigated for multiple agents to cooperate with each other so that an overall grid load 
balancing and resource scheduling can be achieved. In particular, an ant-like self-organizing 
mechanism is introduced and proved to be powerful to achieve overall grid load balancing 
through a collection of very simple local interactions. A performance modeling and evaluation 
environment is developed to enable performance of the ant algorithm to be investigated 
quantitatively. Simulation results included in this work illustrate the impact of different 
performance optimization strategies on the overall system load balancing level, speed and 
efficiency. 
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1. Introduction 

The grid is proposed to be a new computing infrastructure that provides uniform access to 
wide-area distributed resources within virtual organizations [6]. Resource management and 
scheduling are important services of grid middleware, which must efficiently map grid-
submitted jobs to available grid resources. 

An agent-based methodology was developed for building large-scale distributed software 
systems with highly dynamic behaviors [3]. This has been utilized in the implementation of 
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an agent-based resource management system (ARMS) for grid computing [4]. While an 
ARMS system can achieve grid load balancing as a result of trying to meet QoS requirements 
specified explicitly by users [5], self-organization is investigated in this work for agents to 
perform load balancing automatically for batch queuing jobs that are not explicitly associated 
with execution deadlines. 

As summarized in [13], social insect paradigm is one of the major self-organizing 
mechanisms used in nowadays applications. In this work, self-organization among ARMS 
agents is implemented using ant-like [14] local interactions so that load balancing can be 
achieved as an emergent collective behavior of the system. A modeling and simulation 
environment is developed to enable the performance of the ant algorithm to be investigated 
quantitatively. Several possible performance optimization strategies are discussed. Simulation 
results show that the choice of different strategies can have different impact on the overall 
system load balancing level, speed and efficiency. These information can be provided to 
improve performance of an actual running grid resource management system. 

There are some existing work that focus on the use of self-organization for distributed 
system management [8, 9, 11, 15]. Motivations of these work and corresponding approaches 
used are quite different from each other. The following two are most related to the work 
described in this chapter. 

• Condor. Condor [10] is motivated by improving system thoughput via cycle stealing. 
Condor-G [7] is a centralized agent for users to access multiple Condor pools via Globus. 
A recent work described in [2] focuses on resource sharing across Condor pools using a 
peer-to-peer flocking technique that is self-organizing. Compared with Condor-G, ARMS 
utilizes a decentralized agent-based approach. The grid-level self-organizing mechanism 
used in our work is also different. 

• Messor. Messor [12] is a grid computing system aimed at supporting the concurrent 
execution of large-scale parallel computations. Messor is implemented on top of the 
Anthill [1] framework that is based on ideas such as multi-agent systems and 
evolutionary programming. The ant algorithm used in our work is very similar with that 
in the kernel of Messor. We carried out more quantitative investigation of the algorithm 
performance against different optimization strategies. 

The chapter is organized as follows: Section 2 introduces the agent-based approach for 
grid resource management; in Section 3, self-organizing mechanisms for load balancing and 
related performance issues are discussed; simulation results are included in Section 4 and the 
work concludes in Section 5. 

2. Agent-Based Resource Management 

Grid resource management is usually implemented at two layers. Traditional job 
schedulers for clusters and supercomputers can be used for local grid management. 
Management of grid resources at a higher level provides the capability of deliver grid-
submitted jobs to local schedulers. This is illustrated below using the ARMS system structure 
[4]. 

ARMS utilizes an agent-based methodology for distributed resource management.  As 
shown in Figure 1, ARMS agents can be integrated with local grid job schedulers to perform 
global grid management.  
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Figure 1. Grid Resource Management with ARMS 

Each ARMS agent is a representative of one or multiple resources in a higher-level grid 
environment. All of agents can receive job requests from grid users. ARMS agents are 
organized into a hierarchy and can cooperate with each other for resource advertisement and 
discovery. Each local job scheduler is responsible for providing local grid resource 
information to its corresponding agent. Agents can advertise these information along the 
hierarchy to neighboring agents in periodic or event-driven ways. When a job request arrives, 
an agent usually looks up its own resource information first. If there are no local resources 
available, an agent will make decisions to dispatch requests that can not be satisfied locally to 
neighboring agents. 

Key challenges addressed in ARMS are scalability and adaptability. The agent hierarchy 
can represent an open and dynamic system. New agents can join the hierarchy or existing 
agents can leave the hierarchy as appropriate. The hierarchy exists only logically and each 
agent can contact others as long as it has their identities. When the number of agents increases, 
the hierarchy may lead to many system activities being processed in a local domain. In this 
way the system may scale well and does not need to rely on one or a few central agents, 
which may otherwise become system bottlenecks. 

Load balancing in ARMS is previously driven by QoS requirements of job requests. 
Users have to specify an explicit job execution deadline so that the discovery process among 
ARMS agents can result that a relatively free grid resource is finally allocated. In this user-
centric scenario, as long as user’ requirements can be met, load balancing may not be 
achieved if system workload is not heavy or there are batch job requests that are submitted 
without QoS specifications. Experimental results included in [5] show that when system 
workload is very heavy, load balancing can be achieved even in a user-centric scenario. 

In this work, a resource-centric scenario is considered. ARMS agents are required to 
provide an additional mechanism for automatic load balancing of batch queuing jobs across 
multiple local job schedulers to improve overall utilization of grid resources. This can lead to 
an improved average response time to batch queuing jobs, though there are no explicit 
deadlines associated with these jobs. The required mechanism has to conform to original 
motivations of ARMS to provide scalability and adaptability. This is why self-organization is 
considered to be a good choice. 
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3. Self-Organizing Load Balancing  

The additional self-organizing mechanism for automatic grid load balancing in ARMS 
does not allow a centralized control. It must introduce very limit additional workload and 
achieve reasonable performance. The social insect paradigm is believed to be the right choice 
to meet these requirements. In particular, the ant algorithm is described below. 

3.1 Ant-like Self-Organization 

Consider an ant colony, several species of ants are known to group objects in their 
environment (e.g., dead corpses) into piles so as to clean up their nests. An artificial ant 
colony exhibiting this very same behavior is described in [14] using a simulation environment. 
The artificial ant follows three simple rules: (i) wander around randomly, until it encounters 
an object; (ii) if it was carrying an object, it drops the object and continues to wander 
randomly; and (iii) if it was not carrying an object, it picks the object up and continues to 
wander. Despite their simplicity, a colony of these “unintelligent” ants is able to group 
objects into large clusters, independent of their initial distribution. The algorithm used in 
ARMS (and also the one used in Messor) is inspired by the idea that converse rules may form 
the basis of a completely decentralized load balancing algorithm. The iterative algorithm used 
in ARMS can be described as: 

• An ant wanders from one agent to another randomly and tries to remember the identity of 
an agent that is most overloaded; 

• After a certain number of steps (m), the ant changes the mode to search a most 
underloaded agent, though still wandering randomly. 

• After the same m steps, the ant stops for one step to suggest the current two remembered 
agents (considered to be most overloaded and underloaded, respectively) to balance their 
workload. 

• After load balancing is performed, the ant is initialized again and starts a new loop from 
the beginning. 

It is obvious that the pair of agents an ant can find in steps of one loop can only have 
relatively large difference in workload so that only relatively good balancing effect can be 
obtained. However, these local interactions indeed lead to global load balancing as an 
emergent collective behavior given an enough loop number. This is illustrated in Figure 2 
using a simple case study. 

There are 100 agents involved in this case and visualized in a 10x10 grid in Figure 2. A 
random selection of agents is initialized with a very high workload and the rest with 0 (see the 
first picture in Figure 2). Only one ant is involved in the load balancing process and 
configured with m=10. Thus each of loops includes 21 steps with 20 steps’ wondering and 1 
step load balancing. During wandering steps, the ant selects the next stop randomly from 8 
neighboring agents of its current position (5 if currently at the edge of the agent grid and 3 if 
currently at a corner). Each agent is assumed to have the same amount of resources so that a 
load balancing process can be simplified to equalizing workload between two agents. The 
load balancing is processed step-by-step. The last picture in Figure 2 is the visualization of 
workload distribution after 1400 steps’ simulation. 



Performance Evaluation of Self-Organizing Agents for Grid Computing 5 

 
step=1                     step=100                     step=200                     step=300                     step=400 

 
step=500                    step=600                      step=700                     step=800                     step=900 

 
step=1000                   step=1100                   step=1200                  step=1300                   step=1400 

Figure 2. Self-Organizing Load Balancing: a Simple Case Study 

It is obvious that after 1400 steps (~66 loops) the load balancing level of the system is 
significantly improved, though further balancing can still be processed given more loops. For 
example, the ant does not get a chance within 1400 steps to reach the agent at the upper left 
corner and distribute its workload to other relatively underloaded agents. There are a couple 
of factors that can have impact on the performance of load balancing process, e.g. the number 
of ants (n) and wandering steps (m). These are discussed in Section 3.4 and investigated in 
Section 4 using an integrated simulation environment. 

3.2. System Implementation 

The ant algorithm described above can be integrated into the ARMS implementation 
introduced in Section 2. Each ARMS agent implemented in Java is a meta-scheduler of 
multiple local job schedulers. When an agent receives a job request with no explicit QoS 
requirements, it will queue the job to one of its own resources that can finish the job 
execution earliest. An agent is updated with the current queue situation of all its job 
schedulers. The workload of an agent (w) is represented using the average queue length of all 
its job schedulers. An ant exists as an XML document in the system implementation that 
contains all necessary data. An example can be found below: 

 
<agentgrid type=”ant”> 

<mode>max</mode> 
<step>8</setp> 
<maxagent>192.168.7.82:7070</maxagent> 
<maxload>660</maxload> 
<minagent>195.37.154.45:7070</minagent> 
<minload>30</minload> 

</agentgrid> 
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All corresponding operations required by the algorithm described in the last section are 

actually performed by the ARMS agent in which an ant currently residents. An ant is 
initialized by an agent (mode=max and step=m). Once an ant document is received by an 
agent, the agent will act according to the ant’s current status. If the ant is searching for an 
overloaded agent (mode=max and step>0), the agent will check its own workload, compare it 
with the current value maxload of the ant, and update the maxload value accordingly. The 
agent then sends the updated ant document to a randomly selected neighboring agent. The ant 
mode is switched to min and the step number updated to m when an ant finishes its searching 
for overloaded agents (mode=max and step=0). Then the ant begins steps searching for 
underloaded agents (mode=min and step>0). When an agent finds an ant has finished all of 
wandering steps (mode=min and step=0), it is responsible to send a message with information 
on minagent to suggest maxagent to start the load balancing process. The ant document is 
again initialized to start a new loop. During the load balancing process, maxagent dispatches 
some of its job requests to minagent until they almost equalize the average queue length of 
their local job schedulers. 

The ARMS agent is extended with the above self-organizing load balancing 
functionalities. What is most concerned is how to improve performance of the self-organizing 
load balancing mechanism. Several performance metrics are considered below. 

3.3. Performance Metrics 

There are a number of performance criteria that can be used to describe grid resource 
management and scheduling systems. In this work several common statistics are investigated 
and used to characterize the effect of grid load balancing. 

Let P be the number of agents of an ARMS system and wpk (p=1,2,……,P) be the 
workload of the agent p at the step k. The average workload of all P agents is: 
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The mean square deviation of wpk that describes the load balancing level of the system is 
defined as: 
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Apart from the load balancing level, how fast workload in the system can be balanced is 
also concerned by system developers. For example, in the case study described in Figure 2, 
since only one ant is involved, load balancing is processed very slowly, though it is possible 
that a better balancing level can be achieved given more loops. The load balancing speed (s) 
is represented using an average improvement of load balancing level per step during the latest 
loop: 
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It is obvious that load balancing can not be achieved for free. The process costs additional 
network connections among agents. System load balancing efficiency (e) is another metrics 
that takes consideration of system costs for load balancing. Let ck be the total number of agent 
connections that have been made to achieve a load balancing level lk. The system efficiency ek 
is represented using the average contribution of an agent connection to load balancing level 
improvement during the latest loop and calculated as follows: 
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The most effective load balancing is achieved if more improvement of l is achieved at a 
cost of fewer network connections c. Most of the time, these metrics described above are 
conflictive, that is not all metrics can be high at the same time. For example, a high load 
balancing level does not mean high efficiency, as sometimes good load balancing may be 
achieved through too many load balancing operations, leading to low system efficiency. 
Some common strategies are described in the section below that can be used for performance 
improvement. 

3.4. Performance Optimization 

The load balancing level and speed can be improved by increasing the number of 
involved ants. As indicated in the case study illustrated in Figure 2, the wandering scope of 
one ant is limit. If multiple ants are active simultaneously, the load balancing can be 
processed much faster. This of course costs more agent communications. In an actual running 
system, system load balancing level and efficiency can be tuned by choosing a reasonable 
number of ants (n). 

Another ant configuration that may have impacts on system performance is the step 
number m. If a loop includes a very small number of steps, an ant will initial load balancing 
processes very frequently. If an ant is initialized with a larger m, it will wander for a longer 
time to find agents between which a more effective load balancing can be processed. 
Different system load distribution may lead to different load balancing performance. In the 
previous case study (see Figure 2), it may be more effective to trigger more load balancing 
processes at the beginning when system workload is seriously unbalanced at any area of the 
agent grid. But it may be more effective to have a larger m later, since the ant then is able to 
wander in a larger scope so that more overloaded agents can be reached. 

There are some other ways to improve system performance for load balancing. For 
example, in the Messor ant algorithm, instead of wandering randomly, additional load 
storages are used so that smarter ants can move faster towards regions that are believed to be 
more overloaded or underloaded. In this work, another performance optimization strategy is 
considered. When an ant wants to make decisions on where to move next, its residence agent 
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will contact all its neighboring agents for latest workload information. An ant always chooses 
the most overloaded neighboring agent as the next stop in a max mode and most underloaded 
one in a min mode. This strategy is believed to be useful for ants to move fast towards 
interesting agents, though of course at cost of additional agent communications. 

Due to an absence of a large system deployment, the above performance optimization 
strategies cannot be evaluated in an actual working environment. A modeling and simulation 
environment becomes necessary to enable these performance issues to be investigated 
quantitatively. Several experiments are carried out and described in the following section. 

4. Performance Evaluation 

In performance evaluation described in this section, agent systems can be modeled using 
several aspects of parameters and simulation results are displayed in different views. 

4.1. System Modeling 

Behaviors of an actual running ARMS system can be very complicated. However, the 
motivation of developing an integrated environment is not to accurately simulate system 
behaviors, but to enable the impacts of performance optimization strategies described in 
Section 3.4 to be investigated. In this work, agent systems and the ant algorithm are modeled 
in a simplified way using several aspects of parameters enough to outline system 
characteristics statistically. 

• Agents. The number of agents is defined as a square number so that agents can be 
mapped and visualized in a square grid as shown in Figure 2. Each agent normally has 8 
neighboring agents. All of experiments described later include 2500 agents. 

• Workload. A workload value and corresponding distribution are used to characterize 
system workload. Each of system models used in Section 4.2 is configured with a 
workload value 25500, which is initialized to a randomly selection of 10% of agents at 
the beginning of simulation. This static workload model represents the situation of a short 
period of time in a dynamic process and is considered to be enough for performance 
evaluation. 

• Resources. Resources in a system model are defined in the same way as workload. Each 
of system models used in Section 4.2 is also configured with a resource capability value 
100, which is initialized to all (100%) of agents. The resource model is also static. 

• Ants. A user can specify the number of ants (n) and wandering steps (m). Ants are 
initialized randomly in the agent grid when simulation starts. Ants can also be configured 
with different wandering styles: random or optimal, as introduced in Section 3.4.  

Once all of above information is input in a system model, it is ready to start a simulation. 
There are two views in which simulation results are displayed. During each step, the 
workload of an agent is actually calculated by its current workload value divided by its 
resource capability value. Workload of all agents is mapped to a gray value between 0 and 
255 so that a visualization view can be generated as shown Figure 2. The simulation 
environment provides another statistical view to display trends of statistics defined in Section 
3.3. For example, during each step, the simulation counts the number of agent 
communications made for load balancing, which is increased by 1 if an ant moves from one 
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agent to another and 2 if a load balancing is processed. Multiple models can be simulated 
simultaneously and statistical results can be compared in the same window. 

4.2. Simulation Results 

In the first experiment, the impact of the number of ants on load balancing performance is 
investigated. Totally 7 system models are defined with identical information on agents, 
workload and resources, as described in the last section. The ant number is configured with 
20, 50, 100, 200, 500, 1000, and 2000, respectively. Ants are configured to wander randomly 
with m=10. The simulation is processed for 300 steps and simulation results on all of 
performance metrics are illustrated in Figure 3. 

 

Figure 3. Performance Impact of the Number of Ants on Load Balancing: a Statistical View 

In Figure 3, curves for ant numbers 20, 200 and 2000 are identified in black. Other in-
between situations are gray. It is obvious that with the number of ants increased, both load 
balancing level and speed are improved. Especially during the early steps of the simulation, 
system performance is dramatically improved with more ants involved. While extremely 
good load balancing level and speed can be achieved with 2000 ants involved, system cost on 
agent communications is proved to be also extremely high, leading to very low system 
efficiency. It seems that with 200 ants involved, high system efficiency can be achieved as 
well as reasonable load balancing level and speed. The choice of 200 ants is a good tradeoff 
in this case study. The same result is also visualized in Figure 4. 
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Figure 4. Performance Impact of the Number of Ants on Load Balancing: a Visualization View 

The first picture in Figure 4 visualizes the initial workload distribution among agents 
during the simulation of the first system model in which n=20. 10% of agents are initialized 
as overloaded. The rest pictures show agent workload distributions of all 7 system models 
after the simulation of 300 steps. Initial situations of the rest 6 simulations are not included 
since they are quite similar to that shown in the first picture. Extremely good load balancing 
effects are achieved in the last three situations where so many ants are involved in load 
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balancing processes. A reasonable load balancing is already achieved when only 200 ants are 
involved after 300 steps. 

The second experiment is motivated to study impact of the number of ant wandering 
steps (m) on load balancing performance. The system model with 200 ants involved in the 
first experiment is chosen. 4 additional models are desinged with various numbers of ant 
wandering steps: 1, 5, 20, and 50, respectively. Ants are still wandering randomly in these 
system models. The statistical view for the second experiment is given in Figure 5. 

 

Figure 5. Performance Impact of the Number of Ant Wandering Steps on Load Balancing: a Statistical 
View 

Only 3 situations where m=1, 10, and 50 are identified in black in Figure 5. Curves for 
m= 5 and 20 are gray. An interesting result is observed when comparing load balancing 
levels of m=1 and 5. During early steps of the simulation when workload is seriously 
unbalanced among agents, more load balancing processes help improve performance instead 
of wandering a lot. However, during later steps of the simulation when the system has 
achieved a reasonable load balancing level, it seems wandering more to look for more 
overloaded or underloaded agents in a larger scope becomes more important than processing 
load balancing locally and frequently. Within the simulation of 300 steps, further increases of 
the number of ant wandering steps to m=10, 20, and 50 do not show any benefit. While it is 
possible that a better load balancing level can be achieved given further steps in these 
situations, the load balancing speeds are low. 
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Simulation results of the second experiment show that a better performance can be 
achieved if ants wander for 5 steps in each mode, that is, 11 steps per loop. Since each ant 
wanders randomly, the scope an ant can reach is actually very limit. In system models of this 
experiment, 2500 agents and 200 ants are involved. This means averagely an ant is 
responsible for load balancing among 12.5 agents. In general, a good load balancing effect 
can be achieved in a system model if the number of ant wandering steps in a loop equals to 
the average number of agents an ant is responsible for load balancing. This leads to an 
empirical equation for choosing m: 

 
n

P
m

2
≈  (5) 

A third experiment is carried out to optimize ant wandering processes to improve load 
balancing performance. Simulation results are illustrated in Figures 6 and 7, respectively. 

 

Figure 6. Performance Impact of the Ant Wandering Style on Load Balancing: a Statistical View 

The system model in the second experiment in which n=200 and m=5 is used again and 
identified in Figure 6 in black. The curve associated with the optimal solution is dark gray. 
The optimization obviously does not work as well as expected. As shown in the left picture of 
Figure 7, the optimization guides all of the ants in one direction and a very good load 
balancing is only achieved in a local area of the agent grid. 
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Figure 7. Performance Impact of the Ant Wandering Style on Load Balancing: a Visualization View 

In this experiment, an additional mechanism is introduced to enable ants “jumping” 
randomly once a while (20 steps in this case) before stuck in a local area. The result is 
identified in Figure 6 in gray and proved to work well as illustrated in the right picture of 
Figure 7. It is also shown in Figure 6 that the optimal solutions, whether with or without the 
jumping mechanism, costs much more than the previous random wandering and leads to low 
system efficiency. 

It is suggested that in a grid environment where workload is distributed randomly across 
all areas, ants can already result in very good load balancing by wandering randomly. Further 
optimal solutions can be considered to improve performance if system efficiency is not the 
main issue for system engineering. These experiences learned from simulation-based 
performance evaluation can become important references when engineering an actual 
working system for grid resource management and load balancing. 

5. Conclusions 

This work addresses grid load balancing issues using a multi-agent approach coupled 
with self-organizing mechanisms. The work is implemented using an existing agent-based 
resource management system for grid computing, ARMS. Due to the absence of a large-scale 
deployment of the ARMS system, a modeling and simulation approach is used to enable the 
performance of an ant algorithm to be investigated quantitatively. Simulation results included 
in this work illustrate the impact of different performance optimization strategies on the 
overall system load balancing level, speed and efficiency. 

Performance modeling and evaluation is a powerful method for distributed system study. 
A grid is supposed to be a large-scale decentralized and dynamic system, which brings new 
challenges compared with traditional centralized parallel and distributed systems. Approaches 
from theoretical modeling to practical measurement are required in order to achieve a wider 
understanding of the issues involved in grid performability. This work is one of initial 
attempts to make joint consideration of grid performance and corresponding overheads using 
a quantitative performance modeling and simulation approach. 
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