

PERFORMANCE EVALUATION OF SELF-ORGANIZING
AGENTS FOR GRID COMPUTING

Junwei Cao*
Center for Space Research, Massachusetts Institute of Technology,

Cambridge, MA 02139 USA

Abstract

A grid is a wide-area computing environment for cross-domain resource sharing and
service integration. Software agents are one of mainstream technologies for management of
geographically distributed grid resources. In this work, self-organization mechanisms are
investigated for multiple agents to cooperate with each other so that an overall grid load
balancing and resource scheduling can be achieved. In particular, an ant-like self-organizing
mechanism is introduced and proved to be powerful to achieve overall grid load balancing
through a collection of very simple local interactions. A performance modeling and evaluation
environment is developed to enable performance of the ant algorithm to be investigated
quantitatively. Simulation results included in this work illustrate the impact of different
performance optimization strategies on the overall system load balancing level, speed and
efficiency.

Key Words—Grid computing, performance evaluation, multi-agent systems, load balancing, self
organization, and ant algorithms.

1. Introduction

The grid is proposed to be a new computing infrastructure that provides uniform access to
wide-area distributed resources within virtual organizations [6]. Resource management and
scheduling are important services of grid middleware, which must efficiently map grid-
submitted jobs to available grid resources.

An agent-based methodology was developed for building large-scale distributed software
systems with highly dynamic behaviors [3]. This has been utilized in the implementation of

* E-mail: caoj@mit.edu. This work was carried out when the author was a research staff member of C&C Research

Laboratories, NEC Europe Ltd., D-53757 Sankt Augustin, Germany.

Junwei Cao 2

an agent-based resource management system (ARMS) for grid computing [4]. While an
ARMS system can achieve grid load balancing as a result of trying to meet QoS requirements
specified explicitly by users [5], self-organization is investigated in this work for agents to
perform load balancing automatically for batch queuing jobs that are not explicitly associated
with execution deadlines.

As summarized in [13], social insect paradigm is one of the major self-organizing
mechanisms used in nowadays applications. In this work, self-organization among ARMS
agents is implemented using ant-like [14] local interactions so that load balancing can be
achieved as an emergent collective behavior of the system. A modeling and simulation
environment is developed to enable the performance of the ant algorithm to be investigated
quantitatively. Several possible performance optimization strategies are discussed. Simulation
results show that the choice of different strategies can have different impact on the overall
system load balancing level, speed and efficiency. These information can be provided to
improve performance of an actual running grid resource management system.

There are some existing work that focus on the use of self-organization for distributed
system management [8, 9, 11, 15]. Motivations of these work and corresponding approaches
used are quite different from each other. The following two are most related to the work
described in this chapter.

• Condor. Condor [10] is motivated by improving system thoughput via cycle stealing.
Condor-G [7] is a centralized agent for users to access multiple Condor pools via Globus.
A recent work described in [2] focuses on resource sharing across Condor pools using a
peer-to-peer flocking technique that is self-organizing. Compared with Condor-G, ARMS
utilizes a decentralized agent-based approach. The grid-level self-organizing mechanism
used in our work is also different.

• Messor. Messor [12] is a grid computing system aimed at supporting the concurrent
execution of large-scale parallel computations. Messor is implemented on top of the
Anthill [1] framework that is based on ideas such as multi-agent systems and
evolutionary programming. The ant algorithm used in our work is very similar with that
in the kernel of Messor. We carried out more quantitative investigation of the algorithm
performance against different optimization strategies.

The chapter is organized as follows: Section 2 introduces the agent-based approach for
grid resource management; in Section 3, self-organizing mechanisms for load balancing and
related performance issues are discussed; simulation results are included in Section 4 and the
work concludes in Section 5.

2. Agent-Based Resource Management

Grid resource management is usually implemented at two layers. Traditional job
schedulers for clusters and supercomputers can be used for local grid management.
Management of grid resources at a higher level provides the capability of deliver grid-
submitted jobs to local schedulers. This is illustrated below using the ARMS system structure
[4].

ARMS utilizes an agent-based methodology for distributed resource management. As
shown in Figure 1, ARMS agents can be integrated with local grid job schedulers to perform
global grid management.

Performance Evaluation of Self-Organizing Agents for Grid Computing 3

Figure 1. Grid Resource Management with ARMS

Each ARMS agent is a representative of one or multiple resources in a higher-level grid
environment. All of agents can receive job requests from grid users. ARMS agents are
organized into a hierarchy and can cooperate with each other for resource advertisement and
discovery. Each local job scheduler is responsible for providing local grid resource
information to its corresponding agent. Agents can advertise these information along the
hierarchy to neighboring agents in periodic or event-driven ways. When a job request arrives,
an agent usually looks up its own resource information first. If there are no local resources
available, an agent will make decisions to dispatch requests that can not be satisfied locally to
neighboring agents.

Key challenges addressed in ARMS are scalability and adaptability. The agent hierarchy
can represent an open and dynamic system. New agents can join the hierarchy or existing
agents can leave the hierarchy as appropriate. The hierarchy exists only logically and each
agent can contact others as long as it has their identities. When the number of agents increases,
the hierarchy may lead to many system activities being processed in a local domain. In this
way the system may scale well and does not need to rely on one or a few central agents,
which may otherwise become system bottlenecks.

Load balancing in ARMS is previously driven by QoS requirements of job requests.
Users have to specify an explicit job execution deadline so that the discovery process among
ARMS agents can result that a relatively free grid resource is finally allocated. In this user-
centric scenario, as long as user’ requirements can be met, load balancing may not be
achieved if system workload is not heavy or there are batch job requests that are submitted
without QoS specifications. Experimental results included in [5] show that when system
workload is very heavy, load balancing can be achieved even in a user-centric scenario.

In this work, a resource-centric scenario is considered. ARMS agents are required to
provide an additional mechanism for automatic load balancing of batch queuing jobs across
multiple local job schedulers to improve overall utilization of grid resources. This can lead to
an improved average response time to batch queuing jobs, though there are no explicit
deadlines associated with these jobs. The required mechanism has to conform to original
motivations of ARMS to provide scalability and adaptability. This is why self-organization is
considered to be a good choice.

ARMS
Agent

ARMS
Agent

ARMS
Agent

ARMS
Agent

ARMS
Agent

Local
Scheduler Local

Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Grid User

Local
Scheduler

Grid User

Junwei Cao 4

3. Self-Organizing Load Balancing

The additional self-organizing mechanism for automatic grid load balancing in ARMS
does not allow a centralized control. It must introduce very limit additional workload and
achieve reasonable performance. The social insect paradigm is believed to be the right choice
to meet these requirements. In particular, the ant algorithm is described below.

3.1 Ant-like Self-Organization

Consider an ant colony, several species of ants are known to group objects in their
environment (e.g., dead corpses) into piles so as to clean up their nests. An artificial ant
colony exhibiting this very same behavior is described in [14] using a simulation environment.
The artificial ant follows three simple rules: (i) wander around randomly, until it encounters
an object; (ii) if it was carrying an object, it drops the object and continues to wander
randomly; and (iii) if it was not carrying an object, it picks the object up and continues to
wander. Despite their simplicity, a colony of these “unintelligent” ants is able to group
objects into large clusters, independent of their initial distribution. The algorithm used in
ARMS (and also the one used in Messor) is inspired by the idea that converse rules may form
the basis of a completely decentralized load balancing algorithm. The iterative algorithm used
in ARMS can be described as:

• An ant wanders from one agent to another randomly and tries to remember the identity of
an agent that is most overloaded;

• After a certain number of steps (m), the ant changes the mode to search a most
underloaded agent, though still wandering randomly.

• After the same m steps, the ant stops for one step to suggest the current two remembered
agents (considered to be most overloaded and underloaded, respectively) to balance their
workload.

• After load balancing is performed, the ant is initialized again and starts a new loop from
the beginning.

It is obvious that the pair of agents an ant can find in steps of one loop can only have
relatively large difference in workload so that only relatively good balancing effect can be
obtained. However, these local interactions indeed lead to global load balancing as an
emergent collective behavior given an enough loop number. This is illustrated in Figure 2
using a simple case study.

There are 100 agents involved in this case and visualized in a 10x10 grid in Figure 2. A
random selection of agents is initialized with a very high workload and the rest with 0 (see the
first picture in Figure 2). Only one ant is involved in the load balancing process and
configured with m=10. Thus each of loops includes 21 steps with 20 steps’ wondering and 1
step load balancing. During wandering steps, the ant selects the next stop randomly from 8
neighboring agents of its current position (5 if currently at the edge of the agent grid and 3 if
currently at a corner). Each agent is assumed to have the same amount of resources so that a
load balancing process can be simplified to equalizing workload between two agents. The
load balancing is processed step-by-step. The last picture in Figure 2 is the visualization of
workload distribution after 1400 steps’ simulation.

Performance Evaluation of Self-Organizing Agents for Grid Computing 5

step=1 step=100 step=200 step=300 step=400

step=500 step=600 step=700 step=800 step=900

step=1000 step=1100 step=1200 step=1300 step=1400

Figure 2. Self-Organizing Load Balancing: a Simple Case Study

It is obvious that after 1400 steps (~66 loops) the load balancing level of the system is
significantly improved, though further balancing can still be processed given more loops. For
example, the ant does not get a chance within 1400 steps to reach the agent at the upper left
corner and distribute its workload to other relatively underloaded agents. There are a couple
of factors that can have impact on the performance of load balancing process, e.g. the number
of ants (n) and wandering steps (m). These are discussed in Section 3.4 and investigated in
Section 4 using an integrated simulation environment.

3.2. System Implementation

The ant algorithm described above can be integrated into the ARMS implementation
introduced in Section 2. Each ARMS agent implemented in Java is a meta-scheduler of
multiple local job schedulers. When an agent receives a job request with no explicit QoS
requirements, it will queue the job to one of its own resources that can finish the job
execution earliest. An agent is updated with the current queue situation of all its job
schedulers. The workload of an agent (w) is represented using the average queue length of all
its job schedulers. An ant exists as an XML document in the system implementation that
contains all necessary data. An example can be found below:

<agentgrid type=”ant”>

<mode>max</mode>
<step>8</setp>
<maxagent>192.168.7.82:7070</maxagent>
<maxload>660</maxload>
<minagent>195.37.154.45:7070</minagent>
<minload>30</minload>

</agentgrid>

Junwei Cao 6

All corresponding operations required by the algorithm described in the last section are

actually performed by the ARMS agent in which an ant currently residents. An ant is
initialized by an agent (mode=max and step=m). Once an ant document is received by an
agent, the agent will act according to the ant’s current status. If the ant is searching for an
overloaded agent (mode=max and step>0), the agent will check its own workload, compare it
with the current value maxload of the ant, and update the maxload value accordingly. The
agent then sends the updated ant document to a randomly selected neighboring agent. The ant
mode is switched to min and the step number updated to m when an ant finishes its searching
for overloaded agents (mode=max and step=0). Then the ant begins steps searching for
underloaded agents (mode=min and step>0). When an agent finds an ant has finished all of
wandering steps (mode=min and step=0), it is responsible to send a message with information
on minagent to suggest maxagent to start the load balancing process. The ant document is
again initialized to start a new loop. During the load balancing process, maxagent dispatches
some of its job requests to minagent until they almost equalize the average queue length of
their local job schedulers.

The ARMS agent is extended with the above self-organizing load balancing
functionalities. What is most concerned is how to improve performance of the self-organizing
load balancing mechanism. Several performance metrics are considered below.

3.3. Performance Metrics

There are a number of performance criteria that can be used to describe grid resource
management and scheduling systems. In this work several common statistics are investigated
and used to characterize the effect of grid load balancing.

Let P be the number of agents of an ARMS system and wpk (p=1,2,……,P) be the
workload of the agent p at the step k. The average workload of all P agents is:

P

w
w

P

p
pk

k

�
== 1 . (1)

The mean square deviation of wpk that describes the load balancing level of the system is
defined as:

P

ww

l

P

p
pkk

k

�
=

−
= 1

2)(
. (2)

Apart from the load balancing level, how fast workload in the system can be balanced is
also concerned by system developers. For example, in the case study described in Figure 2,
since only one ant is involved, load balancing is processed very slowly, though it is possible
that a better balancing level can be achieved given more loops. The load balancing speed (s)
is represented using an average improvement of load balancing level per step during the latest
loop:

Performance Evaluation of Self-Organizing Agents for Grid Computing 7

 ��
��
�

+>
+
−

+≤
−

=
−− 12,

12

12,

12

0

mk
m

ll

mk
k

ll

s
kmk

k

k . (3)

It is obvious that load balancing can not be achieved for free. The process costs additional
network connections among agents. System load balancing efficiency (e) is another metrics
that takes consideration of system costs for load balancing. Let ck be the total number of agent
connections that have been made to achieve a load balancing level lk. The system efficiency ek
is represented using the average contribution of an agent connection to load balancing level
improvement during the latest loop and calculated as follows:

 ��
�

��
�

	

+>
−

−

+≤
−

=

−−

−− 12,

12,

12

12

0

mk
cc

ll

mk
c

ll

e

mkk

kmk

k

k

k (4)

The most effective load balancing is achieved if more improvement of l is achieved at a
cost of fewer network connections c. Most of the time, these metrics described above are
conflictive, that is not all metrics can be high at the same time. For example, a high load
balancing level does not mean high efficiency, as sometimes good load balancing may be
achieved through too many load balancing operations, leading to low system efficiency.
Some common strategies are described in the section below that can be used for performance
improvement.

3.4. Performance Optimization

The load balancing level and speed can be improved by increasing the number of
involved ants. As indicated in the case study illustrated in Figure 2, the wandering scope of
one ant is limit. If multiple ants are active simultaneously, the load balancing can be
processed much faster. This of course costs more agent communications. In an actual running
system, system load balancing level and efficiency can be tuned by choosing a reasonable
number of ants (n).

Another ant configuration that may have impacts on system performance is the step
number m. If a loop includes a very small number of steps, an ant will initial load balancing
processes very frequently. If an ant is initialized with a larger m, it will wander for a longer
time to find agents between which a more effective load balancing can be processed.
Different system load distribution may lead to different load balancing performance. In the
previous case study (see Figure 2), it may be more effective to trigger more load balancing
processes at the beginning when system workload is seriously unbalanced at any area of the
agent grid. But it may be more effective to have a larger m later, since the ant then is able to
wander in a larger scope so that more overloaded agents can be reached.

There are some other ways to improve system performance for load balancing. For
example, in the Messor ant algorithm, instead of wandering randomly, additional load
storages are used so that smarter ants can move faster towards regions that are believed to be
more overloaded or underloaded. In this work, another performance optimization strategy is
considered. When an ant wants to make decisions on where to move next, its residence agent

Junwei Cao 8

will contact all its neighboring agents for latest workload information. An ant always chooses
the most overloaded neighboring agent as the next stop in a max mode and most underloaded
one in a min mode. This strategy is believed to be useful for ants to move fast towards
interesting agents, though of course at cost of additional agent communications.

Due to an absence of a large system deployment, the above performance optimization
strategies cannot be evaluated in an actual working environment. A modeling and simulation
environment becomes necessary to enable these performance issues to be investigated
quantitatively. Several experiments are carried out and described in the following section.

4. Performance Evaluation

In performance evaluation described in this section, agent systems can be modeled using
several aspects of parameters and simulation results are displayed in different views.

4.1. System Modeling

Behaviors of an actual running ARMS system can be very complicated. However, the
motivation of developing an integrated environment is not to accurately simulate system
behaviors, but to enable the impacts of performance optimization strategies described in
Section 3.4 to be investigated. In this work, agent systems and the ant algorithm are modeled
in a simplified way using several aspects of parameters enough to outline system
characteristics statistically.

• Agents. The number of agents is defined as a square number so that agents can be
mapped and visualized in a square grid as shown in Figure 2. Each agent normally has 8
neighboring agents. All of experiments described later include 2500 agents.

• Workload. A workload value and corresponding distribution are used to characterize
system workload. Each of system models used in Section 4.2 is configured with a
workload value 25500, which is initialized to a randomly selection of 10% of agents at
the beginning of simulation. This static workload model represents the situation of a short
period of time in a dynamic process and is considered to be enough for performance
evaluation.

• Resources. Resources in a system model are defined in the same way as workload. Each
of system models used in Section 4.2 is also configured with a resource capability value
100, which is initialized to all (100%) of agents. The resource model is also static.

• Ants. A user can specify the number of ants (n) and wandering steps (m). Ants are
initialized randomly in the agent grid when simulation starts. Ants can also be configured
with different wandering styles: random or optimal, as introduced in Section 3.4.

Once all of above information is input in a system model, it is ready to start a simulation.
There are two views in which simulation results are displayed. During each step, the
workload of an agent is actually calculated by its current workload value divided by its
resource capability value. Workload of all agents is mapped to a gray value between 0 and
255 so that a visualization view can be generated as shown Figure 2. The simulation
environment provides another statistical view to display trends of statistics defined in Section
3.3. For example, during each step, the simulation counts the number of agent
communications made for load balancing, which is increased by 1 if an ant moves from one

Performance Evaluation of Self-Organizing Agents for Grid Computing 9

agent to another and 2 if a load balancing is processed. Multiple models can be simulated
simultaneously and statistical results can be compared in the same window.

4.2. Simulation Results

In the first experiment, the impact of the number of ants on load balancing performance is
investigated. Totally 7 system models are defined with identical information on agents,
workload and resources, as described in the last section. The ant number is configured with
20, 50, 100, 200, 500, 1000, and 2000, respectively. Ants are configured to wander randomly
with m=10. The simulation is processed for 300 steps and simulation results on all of
performance metrics are illustrated in Figure 3.

Figure 3. Performance Impact of the Number of Ants on Load Balancing: a Statistical View

In Figure 3, curves for ant numbers 20, 200 and 2000 are identified in black. Other in-
between situations are gray. It is obvious that with the number of ants increased, both load
balancing level and speed are improved. Especially during the early steps of the simulation,
system performance is dramatically improved with more ants involved. While extremely
good load balancing level and speed can be achieved with 2000 ants involved, system cost on
agent communications is proved to be also extremely high, leading to very low system
efficiency. It seems that with 200 ants involved, high system efficiency can be achieved as
well as reasonable load balancing level and speed. The choice of 200 ants is a good tradeoff
in this case study. The same result is also visualized in Figure 4.

Junwei Cao 10

n=20; step=1 n=20; step=300

n=50; step=300 n=100; step=300

n=200; step=300 n=500; step=300

n=1000; step=300 n=2000; step=300

Figure 4. Performance Impact of the Number of Ants on Load Balancing: a Visualization View

The first picture in Figure 4 visualizes the initial workload distribution among agents
during the simulation of the first system model in which n=20. 10% of agents are initialized
as overloaded. The rest pictures show agent workload distributions of all 7 system models
after the simulation of 300 steps. Initial situations of the rest 6 simulations are not included
since they are quite similar to that shown in the first picture. Extremely good load balancing
effects are achieved in the last three situations where so many ants are involved in load

Performance Evaluation of Self-Organizing Agents for Grid Computing 11

balancing processes. A reasonable load balancing is already achieved when only 200 ants are
involved after 300 steps.

The second experiment is motivated to study impact of the number of ant wandering
steps (m) on load balancing performance. The system model with 200 ants involved in the
first experiment is chosen. 4 additional models are desinged with various numbers of ant
wandering steps: 1, 5, 20, and 50, respectively. Ants are still wandering randomly in these
system models. The statistical view for the second experiment is given in Figure 5.

Figure 5. Performance Impact of the Number of Ant Wandering Steps on Load Balancing: a Statistical
View

Only 3 situations where m=1, 10, and 50 are identified in black in Figure 5. Curves for
m= 5 and 20 are gray. An interesting result is observed when comparing load balancing
levels of m=1 and 5. During early steps of the simulation when workload is seriously
unbalanced among agents, more load balancing processes help improve performance instead
of wandering a lot. However, during later steps of the simulation when the system has
achieved a reasonable load balancing level, it seems wandering more to look for more
overloaded or underloaded agents in a larger scope becomes more important than processing
load balancing locally and frequently. Within the simulation of 300 steps, further increases of
the number of ant wandering steps to m=10, 20, and 50 do not show any benefit. While it is
possible that a better load balancing level can be achieved given further steps in these
situations, the load balancing speeds are low.

Junwei Cao 12

Simulation results of the second experiment show that a better performance can be
achieved if ants wander for 5 steps in each mode, that is, 11 steps per loop. Since each ant
wanders randomly, the scope an ant can reach is actually very limit. In system models of this
experiment, 2500 agents and 200 ants are involved. This means averagely an ant is
responsible for load balancing among 12.5 agents. In general, a good load balancing effect
can be achieved in a system model if the number of ant wandering steps in a loop equals to
the average number of agents an ant is responsible for load balancing. This leads to an
empirical equation for choosing m:

n

P
m

2
≈ (5)

A third experiment is carried out to optimize ant wandering processes to improve load
balancing performance. Simulation results are illustrated in Figures 6 and 7, respectively.

Figure 6. Performance Impact of the Ant Wandering Style on Load Balancing: a Statistical View

The system model in the second experiment in which n=200 and m=5 is used again and
identified in Figure 6 in black. The curve associated with the optimal solution is dark gray.
The optimization obviously does not work as well as expected. As shown in the left picture of
Figure 7, the optimization guides all of the ants in one direction and a very good load
balancing is only achieved in a local area of the agent grid.

Performance Evaluation of Self-Organizing Agents for Grid Computing 13

style=optimal; step=300 style=jumping; step=300

Figure 7. Performance Impact of the Ant Wandering Style on Load Balancing: a Visualization View

In this experiment, an additional mechanism is introduced to enable ants “jumping”
randomly once a while (20 steps in this case) before stuck in a local area. The result is
identified in Figure 6 in gray and proved to work well as illustrated in the right picture of
Figure 7. It is also shown in Figure 6 that the optimal solutions, whether with or without the
jumping mechanism, costs much more than the previous random wandering and leads to low
system efficiency.

It is suggested that in a grid environment where workload is distributed randomly across
all areas, ants can already result in very good load balancing by wandering randomly. Further
optimal solutions can be considered to improve performance if system efficiency is not the
main issue for system engineering. These experiences learned from simulation-based
performance evaluation can become important references when engineering an actual
working system for grid resource management and load balancing.

5. Conclusions

This work addresses grid load balancing issues using a multi-agent approach coupled
with self-organizing mechanisms. The work is implemented using an existing agent-based
resource management system for grid computing, ARMS. Due to the absence of a large-scale
deployment of the ARMS system, a modeling and simulation approach is used to enable the
performance of an ant algorithm to be investigated quantitatively. Simulation results included
in this work illustrate the impact of different performance optimization strategies on the
overall system load balancing level, speed and efficiency.

Performance modeling and evaluation is a powerful method for distributed system study.
A grid is supposed to be a large-scale decentralized and dynamic system, which brings new
challenges compared with traditional centralized parallel and distributed systems. Approaches
from theoretical modeling to practical measurement are required in order to achieve a wider
understanding of the issues involved in grid performability. This work is one of initial
attempts to make joint consideration of grid performance and corresponding overheads using
a quantitative performance modeling and simulation approach.

Junwei Cao 14

References

[1] Ö. Babaoglu, H. Meling, and A. Montresor, “Anthill: A Framework for the Development of Agent-
Based Peer-to-Peer Systems”, 22nd IEEE Int. Conf. on Distributed Computing Systems, Vienna,
Austria, pp. 15-22, 2002.

[2] A. R. Butt, R. Zhang, and Y. C. Hu, “A Self-Organizing Flock of Condors”, IEEE/ACM
Supercomputing Conf., Phoenix, AZ, USA, 2003.

[3] J. Cao, D. J. Kerbyson, and G. R. Nudd, “High Performance Service Discovery in Large-Scale Multi-
Agent and Mobile-Agent Systems”, Int. J. Software Engineering and Knowledge Engineering, Special
Issue on Multi-Agent Systems and Mobile Agents, Vol. 11, No. 5, pp. 621-641, 2001.

[4] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd, “ARMS: an Agent-based Resource
Management System for Grid Computing”, Scientific Programming, Special Issue on Grid Computing,
Vol. 10, No. 2, pp. 135-148, 2002.

[5] J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd, “Grid Load Balancing Using Intelligent Agents”,
Future Generation Computer Systems, Special Issue on Intelligent Grid Environment: Principles and
Applications, Vol. 21, No. 1, pp. 135-149, 2005.

[6] I. Foster and C. Kesselman, The GRID: Blueprint for a New Computing Infrastructure, Morgan-
Kaufmann, 1998.

[7] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, “Condor-G: a Computation Management
Agent for Multi-Institutional Grids”, Cluster Computing, Vol. 5, No. 3, pp. 237-246, 2002.

[8] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. Sunderam, “Towards Self-organizing Distributed
Computing Frameworks: The H2O Approach”, Parallel Processing Letters, Vol. 13, No. 2, pp. 273-
290, 2003.

[9] I. Liabotis, O. Prnjat, T. Olukemi, A. L. M. Ching, A. Lazarevic, L. Sacks, M. Fisher, and P. McKee,
“Self-Organizing Management of Grid Environments”, Int. Symp. on Telecommunications, Isfahan,
Iran, 2003.

[10] M. Litzkow, M. Livny, and M. Mutka, “Condor – a Hunter of Idle Workstations”, 8th IEEE Int. Conf.
on Distributed Computing Systems, San Jose, CA, USA, pp. 104-111, 1988.

[11] S. Lynden and O. F. Rana, “Coordinated Learning to Support Resource Management in
Computational Grids”, 2nd IEEE Int. Conf. on Peer-to-Peer Computing, Linköping, Sweden, pp. 81-
89, 2002.

[12] A. Montresor, H. Meling, and Ö. Babaoglu, “Messor: Load-Balancing through a Swarm of
Autonomous Agents”, 1st Int. Workshop on Agents and Peer-to-Peer Computing, 1st ACM Int. Joint
Conf. on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002.

[13] S. K. Mostefaoui, O. F. Rana, N. Foukia, S. Hassas, G. Di Marzo Serugendo, C. Van Aart, and A.
Karageorgos, “Self-Organising Applications: A Survey”, 1st Int. Workshop on Engineering Self-
Organising Applications, 2nd ACM Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems,
Melbourne, Australia, pp. 63-69, 2003.

[14] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds,
MIT Press, 1994.

[15] F. Wang, “Self-organising Communities Formed by Middle Agents”, 1st ACM Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems, Bologna, Italy, pp. 1333-1339, 2002.

