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Abstract 

The data grid integrates wide-area autonomous data sources and provides users with a 
unified data query and processing infrastructure. Adapt data query and processing is 
required by data grids to provide better quality of services (QoS) to users and 
applications in spite of dynamically changing resources and environments. Existing 
AQP techniques can only meet partially data grid requirements. Some existing work is 
either addressing domain-specific or single-node query processing problems. Data 
grids provide new mechanisms for monitoring and discovering data and resources in a 
cross-domain wide area. Data query in grids can benefit from these information and 
provide better adaptability to the dynamic nature of the grid environment. 
 
In this work, an adaptive controller is proposed that dynamically adjusts resource 
shares to multiple data query requests in order to meet a specified level of service 
differentiation. The controller parameters are automatically tuned at runtime based on 
a predefined cost function and an online learning method. Simulation results show 
that our controller can meet given QoS differentiation targets and adapt to dynamic 
system resources among multiple data query processing requests while total demand 
from users and applications exceeds system capability. 

1 Introduction 

Query processing (QP) is an essential technology for traditional database management 
systems [1]. QP aims to transform a query in a high-level declarative language (e.g. 
SQL) into a correct and efficient execution strategy. Query optimization [2] is one of 
key techniques to achieve high performance data query using cost estimation in 
various types of database systems, e.g. multimedia, object-oriented, deductive, 
parallel, distributed databases, heterogeneous multidatabase systems, fuzzy relational 



databases, and so on [3]. 
 
Traditional query processing in database management systems is usually carried out in 
two phases: optimization and execution. While the details of optimization have been 
improved over the years, the basic approach of optimization followed by execution 
has not been changed. In this way, optimization could only be carried out in a 
coarse-grained way, since during the execution environmental changes could not be 
identified and feedback to implement an improved optimization. If data query 
processing has to be carried out in a long time, QP performance may not satisfy user 
requirements. This is why adaptability of QP is required. 
 
Adaptive Query Processing (AQP) [4] is becoming more popular in recent years 
where optimization is required to be carried out during execution. The main reason is 
the emergence of new domains, e.g. peer-to-peer (P2P) computing and grid 
computing, where it is nearly impossible to use traditional query processing, because 
of lack of reliable performance statistics or the dynamic nature of data and 
environments. Two styles of adaptation in AQP is summarized in [5]: plan-change 
based adaptation provides a well-defined query execution plan but allow the plan to 
be changed during query processing; tuple-routing based adaptation views query 
processing as routing of tuples through operators and effects plan changes by 
changing the order in which tuples are routed. 
 
P2P computing provides a dynamic and data sharing environment, where adaptability 
of data access and query is implemented by optimal selection in peers of data 
providers. All data requester at the same time become a data provider after its request 
is fulfilled. Due to the absence of a central control in a P2P environment, further 
fine-grained adaptability cannot be implemented. In this work, we only address AQP 
issues in data grids where AQP is required for distributed data access and fine-grid 
resource management and scheduling. 
 
Grid computing aims for integration and sharing geographically distributed resources 
in multiple management domains [6]. While the grid is originally motivated by 
computational power sharing, data management turns out to be an essential service 
since large volumes of data processing are involved in most grid applications. Data 
grids [7] provide a transparent and seamless infrastructure for cross-domain 
distributed data access, leading to the following challenges for data query processing: 

 Performance of grid resources may change dramatically over time, since most 
these resources are shared and not dedicated to the grid. 

 QoS requirements of data query processing from grid applications may also 
change over time, since most grid applications last for a long time with large 
amount of data processing involved. 

 
Existing AQP techniques can only meet partially data grid requirements. Some 
existing work is either addressing domain-specific or single-node query processing 
problems [8]. Data grids provide new mechanisms for monitoring and discovering 
data and resources in a cross-domain wide area. Data query in grids can benefit from 
these information and provide better adaptability to the dynamic nature of the grid 
environment. 
 
In this work, an adaptive controller is proposed that dynamically adjusts resource 



shares to multiple data query requests in order to meet a specified level of service 
differentiation. The controller parameters are automatically tuned at runtime based on 
a predefined cost function and an online system identification method. Simulation 
results show that our controller can meet given QoS differentiation targets and adapt 
to dynamic system resources among multiple data query processing requests. By 
carefully tuning weighting parameters in the cost function, the controller can make a 
good balance between adaptability and stability. 
 
The rest of this article is organized as follows: detailed research background of our 
work is introduced in Section 2; Section 3 provides a formal representation of the 
issue to be addressed in this work; corresponding adaptive controller is described in 
Section 4; Experimental evaluation results are included in Section 5; and the article 
concludes in Section 6. 

2 Research Background 

2.1 AQP 

As mentioned above, AQP is required in scenarios where optimization is carried out 
during execution, e.g. continuous queries (CQs) and data streams [9]. In this section, a 
brief introduction to several existing projects is given below. 
 
CQs are persistent queries that allow users to receive new results when they become 
available, and they need to be able to support millions of queries. NiagaraCQ [10], the 
continuous query sub-system of the Niagara project, a net data management system 
being developed at University of Wisconsin and Oregon Graduate Institute, is aimed 
to addresses this problem by grouping CQs based on the observation that many web 
queries share similar structures. NiagaraCQ supports scalable continuous query 
processing over multiple, distributed XML files by deploying the incremental group 
optimization ideas. A number of other techniques are used to make NiagaraCQ 
scalable and efficient: 

 NiagaraCQ supports the incremental evaluation of continuous queries by 
considering only the changed portion of each updated XML file and not the entire 
file. 

 NiagaraCQ can monitor and detect data source changes using both push and pull 
models on heterogeneous sources. 

 Due to the scale of the system, all the information of the continuous queries and 
temporary results cannot be held in memory. A caching mechanism is used to 
obtain good performance with limited amounts of memory. 

 
The Telegraph implementation explores novel implementations for adaptive CQ 
processing mechanisms. The next generation Telegraph system, called TelegraphCQ 
[11], is focused on meeting the challenges that arise in handling large streams of 
continuous queries over high-volume, highly-variable data streams. Specifically, 
TelegraphCQ is designed with a focus on the following issues: 

 Scheduling and resource management for groups of queries 
 Support for out-of-core data 
 Variable adaptivity 
 Dynamic QoS support 



 Parallel cluster-based processing and distribution. 
 
Researchers in Stanford University developed a general-purpose DSMS, called the 
STanford stREam dAta Manager (STREAM) [12], for processing continuous queries 
over multiple continuous data streams and stored relations. STREAM consists of 
several components: 

 The incoming Input Streams, which produce data indefinitely and drive query 
processing; 

 Processing of continuous queries typically requires intermediate state, i.e., 
Scratch Store; 

 An Archive, for preservation and possible offline processing of expensive 
analysis or mining queries; 

 CQs, which remain active in the system until they are explicitly reregistered. 
 
Eddy [13] is a query processing mechanism continuously reorders operators in a 
query plan as it runs. By combining eddies with appropriate join algorithms, the 
optimization and execution phases of query processing is merged, allowing each tuple 
to have a flexible ordering of the query operators. This flexibility is controlled by a 
combination of fluid dynamics and a simple learning algorithm. Eddies are typical 
implementation of tuple-routing based adaptation. 
 
Traditional query optimization can be successful is partially due to the ability to 
choose efficient ways to evaluate the plan that corresponds to the declarative query 
provided by the user. AQP merges optimization and execution because well-defined 
query plan cannot be achieved beforehand, especially for continuous queries and 
long-running data streaming. 

2.2 AQP and the Grid 

The grid brings more challenges for distributed data query processing. For example, 
information about data properties is likely to be unavailable, inaccurate or incomplete, 
since the environment is highly dynamic and unpredictable. In fact, in the grid, the 
execution environment and the set of participating resources is expected to be 
constructed on-the-fly. Existing solutions for AQP are either domain specific or focus 
on centralized, single-node query processing [14], so cannot meet adaptability 
demands of query processing on the grid. In this section, several efforts on AQP in the 
grid are given below. 
 
Distributed query processing (DQP) is claimed in the work by University of 
Newcastle and University of Manchester to be important in the grid, as a means of 
providing high-level, declarative languages for integrating data access and analysis. A 
prototype implementation of a DQP system, Polar* [15], is developed running over 
Globus [16] that provides resource management facilities. The Globus components 
are accessed through the MPICH-G [17] interface rather than in a lower level way. To 
address the DQP challenge in a grid environment, the non-adaptive OGSA-DQP1 
system described in [18] and [19] has been enhanced with adaptive capabilities. 
 
A query optimization technique, Grid Query Optimizer (GQO) [20], aims to improve 
overall response time for grid-based query processing. GQO features a resource 
selection strategy and a generic parallelism processing algorithm to balance 



optimization cost and query execution. GQO can provide better-than-average 
performance and is especially suitable for queries with large search spaces. 
 
In the work described in [21], a data grid service prototype is developed that aims at 
providing transparent use of grid resources to data intensive scientific applications. 
The prototype targets three main issues 

 Dynamic scheduling and allocation of query execution engine modules into grid 
nodes; 

 Adaptability of query execution to variations on environment conditions; 
 Support to special scientific operations. 

 
Based on the ParGRES database cluster, a middleware solution, GParGRES [22], 
exploits database replication and inter- and intra-query parallelism to efficiently 
support OLAP queries in a grid. GParGRES is designed as a wrapper that enables the 
use of ParGRES in PC clusters of a grid (Grid5000 [23]). There are two levels of 
query splitting in this approach: grid-level splitting, implemented by GParGRES, and 
node-level splitting, implemented by ParGRES. GParGRES has been partially 
implemented as database grid services compatible with existing grid solutions such as 
the open grid service architecture (OGSA) and the web services resource framework 
(WSRF). It shows linear or almost linear speedup in query execution, as more nodes 
are added in the tested configurations. 
 
ObjectGlobe [24] is a distributed and open query processor for Internet data sources. 
The goal of the ObjectGlobe project is to establish an open marketplace in which data 
and query processing capabilities can be distributed and used by any kind of Internet 
application. Furthermore, ObjectGlobe integrates cycle providers (i.e., machines) 
which carry out query processing operators. The overall picture is to make it possible 
to execute a query with unrelated query operators, cycle providers, and data sources. 
Main challenges include privacy and security enduring. Another challenge is QoS 
management so that users can constrain the costs and running times of their queries. 
 
Processing of multiple data streams in grid-based peer-to-peer (P2P) networks is 
described in [25]. Spatial matching, a current issue in astrophysics as a real-life 
e-Science scenario, is introduced to show how a data stream management system 
(DSMS) can help in efficiently performing associated tasks. Actually, spatial 
matching is a job of information fusion across multiple data sources, where 
transmitting all the necessary data from the data sources to the data sink for 
processing (data shipping) is problematic and in many cases will not be feasible any 
more in the near future due to the large and increasing data volumes. The promising 
solutions are dispersing executing operators that reduce data volumes at or near the 
data sources (query shipping) or distributing query processing operators in a network 
(in-network query processing). In-network query processing, as employed in the 
StreamGlobe [26] system, can also be combined with parallel processing and 
pipelined processing of data streams, which enables further improvements of 
performance and response time in e-Science workflows. 
 
An adaptive cost-based query optimization is proposed in [27] to meet the 
requirements of the grid while taking network topology into consideration. 



2.3 Control Theory for Adaptability 

There have been many works on the implementation of adaptability of computing 
systems using control theory. For example, variations of proportional, integral, and 
derivative (PID) control is applied in [28] and [29] for performance optimization and 
QoS supports of Apache web servers. The linear quadratic regulator (LQR) is adopted 
in [30] for application parameter tuning in web servers to improve CPU and memory 
utilization. Fuzzy control is utilized in [31] for IBM Lotus Notes email servers to 
improve business level metrics such as profits. Adaptive control is used in [32] to 
improve application level metrics such as response time and throughput for three-tier 
e-commerce web sites. In the work described in [33], an adaptive multivariate 
controller is also developed that dynamically adjusts resource shares to individual 
tiers of multiple applications in order to meet a specified level of service 
differentiation. This work has the similar motivation to maintain QoS differentiation 
at a certain level with our work, though at a different context of virtualization based 
host sharing. 
 
Traditional query processing research is focused on fine-grained adaptability within a 
single node or database. As mentioned in Eddies [13], eddies can be used to do tuple 
scheduling within pipelines, since they can make decisions with ongoing feedbacks 
from the operations they are to optimize. The work described in this article is focused 
on higher level coarse-grained data query processing optimization in a distributed data 
grid environment. Adaptability is achieved using feedbacks from real-time outputs of 
QoS levels of different applications. 

3 Problem Statement 

In this work, we consider a data grid query processing scenario described in Figure 1. 
A data grid is usually composed with many nodes, each serving a different dataset. If 
data replication strategies are used, different nodes can serve the same dataset, which 
is out of the scope of this work. A data grid application, e.g. scientific data analysis 
and processing, is in general a pipeline of tasks, each processing a different dataset. 
Users send requests to the grid for data query processing, each with different levels of 
priority corresponding to different levels of QoS requirements. 
 

Data Grid Node 1 Data Grid Node 2 Data Grid Node N 

QP 1/Task 1 QP 1/Task 2 QP 1/Task N QP Request 1 

QP 2/Task 1 QP 2/Task 2 QP 2/Task N QP Request 2 

QP M/Task 1 QP M/Task 2 QP M/Task N QP Request M 

 
Figure 1 Query Processing in a Data Grid 

In general, a data grid node is composed with large storage facilities and 
corresponding query processors, serving multiple QP requests. One of the key 



characteristics of the grid is that all nodes are shared instead of dedicated to the grid, 
so the available capacity of QP of a node varies over time. A grid node always gives 
highest priority to local users (resource owners) before sharing resources with grid 
users. When demand from all QP requests from grid users exceeds the total available 
capacity of a node, the node becomes saturated and cannot meet QoS requirements of 
all QP requests. In this situation, since different grid users have different priorities and 
QoS requirements, it is desired to keep QoS differentiation among multiple QP 
requests. 
 
Besides that multiple QPs are sharing one node to access a same dataset, different 
tasks of one QP on different nodes are also correlated with each other. For example, 
some scientific data analysis applications are pipelines of tasks, each looping through 
one dataset. After each loop of a task, the results are transferred to the next task for 
further data query and processing. The more resource located to a task, the more data 
query processing loops can be fulfilled, the higher QoS level can be achieved for a 
request. In order to achieve a higher end-to-end QoS, QoS levels of each tasks in an 
application pipeline have also to be coordinated. Reducing resource allocation to one 
task of an application leads to reduced load going to the next task in the pipeline. 
Such dependencies have also to be captured. 
 
Let N be the number of datasets and tasks involved in a certain data grid application, 
each located at one data grid node. The total processing capacity of the node i, pi 
(i=1,2,……,N), can be normalized up to 100%. Let M be the number of concurrent 
requests sent from different users with different QoS requirements. 
 
Let tij be the resource allocation for the task i of the request j. Since the total 
processing capacity of the node i is limit: 
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there are totally (M-1)*N such independent variables. 
 
Let yj (j=1,2,……,M) be the normalized end-to-end QoS ratio for the request j. The 
desired QoS ratio for the request j is represented as Qj (j=1,2,……,M). Since there is: 
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there are totally M-1 independent outputs. 
 
The major issue we are trying to address in this work is to find appropriate tij, for all 
i’s and j’s, there is: 

)11( −≤≤= MjQy jj . 

4 The Adaptive Controller 

The problem described in Section 3 can be solved using existing methods in control 
theory. As shown in Figure 2, a closed-loop control system is designed between user 
requests and the data grid to determine the overall resource allocation scheme tij. 
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Figure 2 The Adaptive Controller for Query Processing in a Data Grid with 

Online System Identification Supports 

In order to maintain QoS ratios for each request, the system has to figure out the 
relationship between the resource allocation scheme and QoS ratios. This can be 
represented using the linear, auto-regressive MIMO (multiple inputs and multiple 
outputs) model and model parameters can be determined using online system 
identification. The actual optimal controller generates the optimal resource allocation 
scheme based on estimated model parameters and a predefined cost function. These 
are introduced in details below. 

4.1 The Online System Identification 

Composed with M users and N nodes, the system can be modeled using the linear, 
auto-regressive MIMO. The use of a MIMO model allows us to capture interactions 
and dependencies among data nodes for different application tasks. For example, 
reducing resource utilization for one QP task on a certain grid node will increase 
resource allocation for other QP tasks on the same node, and may reduce the load 
going into the next node of the same QP request. Such dependencies cannot be 
captured by individual SISO (single input single output) models. The MIMO model 
enables the controller to make tradeoffs between different QPs and their tasks when 
the system total demand from users’ QP requests exceeds system capability. To 
simplify the problem, the system model is written using the ARMAX 
(autoregressive-moving average with exogenous inputs) model with multiple inputs 
and single output, i.e. M=2: 
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The values of above parameters may or may not change as system conditions and 
workload change. It is difficult to determine these values to represent all cases 
beforehand. Therefore, a self-learning approach is preferred where model parameters 
are estimated online and updated whenever new data has become available. In this 
work, the Matlab System Identification Toolbox is used to resolve system parameters 
online. In general, the order of the system is usually low in computer systems [34], 
which can be defined offline in advance. 
 
For the convenience of computing, we rewrite this model to be: 
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For the sake of processing, we define: 
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We use an ARMAX model and its corresponding estimator to identify the parameter 
matrix X, as provided by combing matrixes A and B. 

4.2 The Linear Quadratic Optimal Controller 

The optimal goal of the adaptive controller is for the output y(k) to follow the 
reference input Q(k) as close as possible, as defined in Section 3. Note that the 
required QoS level from users may change over time. Meanwhile, we penalize large 
changes in resource allocation variables t(k). Here we adopt the following cost 
function, using W and P to weight these two optimal goals, respectively: 

{ }22 )1()(()()1(( −−+−+= ktktPkQkyWEJ  

 
The following derivative is zero when the cost function J is at its minimum: 
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The derivation of the control law below is adapted from the controller synthesis in 
[33]. Note that X(k) and B0 are system identification results obtained using the 
ARMAX model estimator described in the last section. 
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5 Performance Evaluation 

As an example of the shared data grid environment presented in Section 3, we present 
the experimental evaluation results of our controller design using a two-tier data grid 
application. 

5.1 Simulation Environment 

We develop a simulation environment using Matlab, which provides sufficient math 
functions. In this simulation environment, M=2 and N=2, so that the controlled system 
is a two-input-one-output system to simplify the problem. The input variables are 
t(k)=[t1(k) t2(k)]T, each denoting resource allocation for a sub-task of an application. In 
our models, the two nodes have similar parameters of transfer functions, and therefore 
the resources would be similar. 

5.2 Experimental Results 

The experimental results included in this section illustrate clearly the effectiveness of 



our control method and the impact of W and P on control performance. In each 
experiment, we set the reference output Q(k) as follows: 
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in order to observe the tracking performance of the actual system output. As shown in 
Figure 3, the output y(k) can follow up with Q(k) in less than 10 steps. In most cases, 
inputs of this system represent the resource (usually CPU and memory consumption) 
allocated to an application. Figure 3 also shows the two inputs and target output are 
positively related, demonstrating a physical fact that QoS will improve with the 
increase of allocated resources. 

 

 

Figure 3 Tracking Performance of the Output and the Variation of Inputs with 
W=1 and P=I 



To further explore characters of our control method, we select different weights W 
and P to observe their impacts on control performance. Figure 3 shows the tracking 
performance of the output and the variation of two inputs with W=1 and P=I. As 
shown in Figure 4 with W=0.4 and P=I, the decrease of W and relative increase of P 
will smooth the curves of both output and inputs, since P serves as a weight matrix of 
the continuity of inputs (and thus output). The relative decrease of W leads to a slower 
tracking speed for the actual system output compared with the reference output. 

 

 

Figure 4 Tracking Performance of the Output and the Variation of Inputs with 
W=0.4 and P=I 

What’s more, W is the weight parameter of the gap between the reference output and 



current output. Therefore, curves in Figure 5 with a relatively higher W compared to 
Figure 3 are steeper at the point of change. In actual systems, fast tracking may lead to 
instability, as shown in Figure 5. Also more burrs occur as a result of relatively lower 
P and less continuity of curves. In order to obtain a stable and fast tracking 
performance, matrixes W and P should be set in a specified zone. 

 

 

Figure 5 Tracking Performance of the Output and the Variation of Inputs with 
W=1.4 and P=I 



6 Conclusions 

In this work, we address the connection of AQP and Data Grids, where AQP is 
required to provide better quality of services (QoS) to users and applications in spite 
of dynamically changing resources and environments in a data grid. Existing AQP 
techniques are either addressing domain-specific or single-node query processing 
problems. 
 
To address the data query challenge in data grids, we propose an adaptive controller 
that dynamically adjusts resource shares to multiple data query requests in order to 
meet a specified level of service differentiation. The controller parameters are 
automatically tuned at runtime based on a predefined cost function and online system 
identification. The cost function considers both output tracking speeds and system 
stability.  
 
A simulation environment is developed using Matlab to evaluate our controller design. 
Experimental results show that our controller can meet given QoS differentiation 
targets and adapt to dynamic system resources among multiple data query processing 
requests. By carefully tuning weighting parameters in the cost function, the system 
can make a good balance between adaptability and stability. 
 
Ongoing works include the implementation of a grid environment for data intensive 
applications. Currently a simulated system is used in our Matlab environment, which 
will be replaced with an actually running system. Performance of real time system 
identification and adaptive control will be evaluated using existing data query and 
processing applications. 
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