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Abstract: With the maturation of technologies such as communication, sensors, and 
networks, very large amounts of data are generated that are available for processing 
and analysis. With the popularizing process of the Internet of things (IoT), available 
data resources will become even more plentiful and diversified in the near future. 
To provide feasible solutions in data science for the key features of the energy in-
ternet, such as energy interconnection and routing, a big data architecture could be 
utilized in the energy internet infrastructure to provide large-scale analysis of mas-
sive various types of data. In this chapter, the utilization of big data in the energy 
internet infrastructure is explored. A three-layer big data architecture for usage in 
the energy internet is presented. The characteristics of data utilized in the energy 
internet and the potential requirements of the energy internet for the big data archi-
tecture are studied. Then, analytics methods that could be executed in the energy 
internet big data infrastructure are introduced. Real-time and offline analyses, as 
two types of analysis modes for different requirements of application scenarios, are 
described. Several well-known open-source big data tools are discussed. In addi-
tion, the open challenges of utilizing big data in the energy internet are proposed. 
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1. Introduction 

Managing and analysing data have always been challenges in the energy industry 
across infrastructures with different scales and distributed locations. Electricity 
companies on the generation side, network side, and consumption side have always 
struggled to develop reliable approaches to capture and analyse information to sup-
port scientists and researchers in achieving a better understanding of their products, 
services and customers to offer advanced solutions and save cost. In the past forty 
years, collected data has been analysed utilizing database technologies. In recent 
years, however, with the maturation of technologies such as communication, sen-
sors, and networks, a very large amount of data is generated that is available for 
processing and analysis. With the popularizing process of the Internet of things 
(IoT), available data resources will become even more plentiful and diversified in 
the near future. 

With this incoming surge of data, the generated data have the following notable 
characteristics: Volume, Velocity, Variety, and Variability, which are the so-called 
“4 Vs” [49]. For the energy internet, specifically, the volume of generated data 
could be very large. Every device within the energy internet can generate logs with 
a regular interval or by events. Persons can also create records whenever required. 
Over time, the amount of data to be analysed is considerable. Additionally, the ve-
locity of data created in the energy internet can be especially rapid. To provide real-
time analysis and execute further processing later on, the generated data flow needs 
to be stored, analysed and visualized in a timely manner, which is the characteristic 
of velocity. In addition, data are generated from a variety of sources in- and outside 
of the energy internet with a variety of types, for instance, sensor readings, images, 
videos, ecommerce records, and social media streams. Each data source can be in-
dependently collected and analysed. In addition, utilizing multiple types of inte-
grated heterogeneous data to explore their interaction and the insight between them 
to achieve the purpose of analysis is an interesting and required topic [64]. Simul-
taneously, the variability of the above three Vs, which refers to changes in data 
volume, velocity and variety over time or between different energy internet subnets, 
must be considered. The changes include data flow rate, format, quality, etc. 

In addition, many additional Vs can be presented to summarize the characteris-
tics of big data in the energy internet. For example, the Veracity [23] of each data 
resource, which refers to the noise, biases, missing and abnormality in the data or 
the unmeasurable certainty of truthfulness and trustworthiness of the data, is re-
quired to be considered; Valence [32] refers to the connectedness of big data. Data 
items always relate with each other directly or indirectly. To find novel relationships 
between diverse types of data, involving additional data into consideration for com-
prehensive analysis with the support of big data techniques is the work of research-
ers. Although we can keep listing some other Vs that are attributed to big data, we 
prefer to utilize the 4 Vs we discussed in the previous paragraph as the primary 
characteristics. 
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However, one special V, Value, that we should mention here is the fundamental 
motivation of the entire big data technology revolution [44] and is also an important 
reason that we should consider the utilization of big data in the establishment of the 
energy internet. Big data is important because we believe that there is a huge amount 
of untapped value among the collected data [27]. Even though the data are too large 
to process with existing tools, the data arrive too rapidly to store and index optimally 
by centralized database technologies, and the data are too heterogeneous to fit any 
rigid schema, there is still enough value to dedicate capital and time into the corre-
sponding research and development to break through technical problems and 
achieve additional insight from the data. 

Big data is not a new technique. It is an association of existing and novel tech-
nologies. It is a scalable architecture of efficient storage, manipulation, and analysis. 
Traditional data architectures are no longer efficient enough to operate data through 
the architectures with the characteristics of volume, velocity, variety and variability 
simultaneously [37].  

Big data has attracted attention in both academia and industry. Many ongoing 
and achieved innovations are engaged in or on big data technologies that obtain 
considerable results [28]. In business, enterprises utilize big data technology to un-
derstand and forecast consumer behaviour from all kinds of data sources they could 
collect. The quality, price, and improvement of products or services rely on the re-
sults of big data analytics. Management departments are also able to utilize big data 
to optimize company operational efficiency and reduce personnel costs. 

In health care, big data has been utilized to analyse and forecast patient condition 
and disease progression, for example, analysing and comparing pathogenic charac-
teristics integrating with patient physique through a very large number of medical 
cases. A more precise and customized treatment suggestion can be given by a big 
data system to assist the doctor in diagnosis and to reduce the incidence of patients. 

Social media is another great known example of applying big data. Through an-
alysing user online behaviour, including but not limited to instant messages, pub-
lished content, online social networking and sharing activities, platforms such as 
Facebook, Twitter and LinkedIn are able to understand user behaviour patterns and 
preferences to improve service quality and efficiency. For example, if LinkedIn is 
aware that Alice works on machine learning using big data analysis, the website 
background will then more likely tend to push news and advertisements related to 
machine learning to Alice. A notorious case of abuse of big data in social media is 
the Facebook scandal. Cambridge Analytica Ltd. (CA) acquired approximately 50 
million Facebook users’ personal data and utilized the analysis results in the 2016 
US presidential election and UK Brexit referendum in a tendentious manner. Face-
book lost users and popularity. In addition, CA has filed for bankruptcy. It is a 
warning for all researchers and companies that protecting the privacy of data is an 
important principle, including research and development in the energy field. Addi-
tionally, the General Data Protection Regulation (GDPR) (EU) became enforceable 
in May 2018. It gives all individuals within the EU control of their personal data. 
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China and the US also have similar legislation being developed. We remind the 
reader here to comply with local laws while conducting research and development. 

The utilization of big data in the energy field shows that existing studies gener-
ally focus on local and regional solutions with single functionality, as surveyed in 
[36]. More existing studies have been conducted to establish smart grid or smart 
city solutions. Project and research objectives are mostly limited to the microgrid 
level. Research on large-scale, multi-functional big data platforms operating in the 
energy internet is rare. However, as we discussed above, the capability of perform-
ing large-scale analysis on massive amounts of data is the critical advantage of big 
data technology. To provide feasible solutions in data science for the key features 
of the energy internet, such as energy interconnection and routing, big data archi-
tecture, analysis methods and platform building in the energy internet are introduced 
and analysed in this chapter as a reference for energy internet researchers to better 
utilize big data as a powerful tool. In addition, the open challenges of utilizing big 
data in the energy internet are discussed. The remainder of this chapter is structured 
as follows. Sect. 2 introduces the architecture of big data specifically in the energy 
internet field. Big data analysis methods are summarized in Sect. 3. Sect. 4 provides 
an overview of big data platform building. The existing open challenges of utilizing 
big data in the energy field are presented in Sect. 5. 

 

2. The Architecture of Big Data 

If we focus on the technical level, big data in fact is an integrated term for a stack 
of technologies. The realization of big data requires an appropriate combination and 
cooperation among technologies from various disciplines. Relative technologies in-
clude data collection, storage, management, manipulation, analysis, results display, 
etc. Even though for each application scenario with specific conditions and require-
ments, a particular big data stack should be tailored for the implementation, a simi-
lar architecture is utilized in most of the implementations. 

In this section, a layered reference architecture is presented to discuss the tech-
nologies of the big data stack for the energy internet, while the specific characteris-
tics and requirements of the big data architecture targeting the energy internet sce-
nario are presented. 

2.1 The Architecture of Big Data 

Big data is a flourishing technology stack. Novel components and functions are 
booming in the big data landscape, enriching and evolving the entire stack con-
stantly. Diverse architectures are proposed and implemented in research and 
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industry. Industry giants such as Google, Microsoft, and IBM as well as academic 
leaders such as the University of Amsterdam and University of California, San Di-
ego, all hold their own proposed architectures. Nevertheless, certain key compo-
nents/common tasks are present as layer-like structures in the majority of architec-
tures, which are data collection, the storage and management layer, the data 
analytics layer, and the application layer, as shown in Fig. 1. 

 
Figure 1 Layer-like structure of big data. 

• Data Collection, Storage and Management Layer 
The data collection, storage and management layer is the basis of the entire big 
data architecture. As its name says, this layer first engages in collecting all types 
of data. The data can be structured, semi-structured or unstructured data records 
or data streaming from diverse data sources such as sensor readings, images, 
videos, ecommerce records, and social media platforms. 
Then, considering scalability, reliability, security, stability, and other reasons 
such as the data size and cost of communication, data are often stored in a dis-
tributed file system, such as the Hadoop Distributed File System (HDFS) [17] 
with duplications. The data can be stored as either SQL or NoSQL.  
Since the system is distributed, this layer also performs tasks to maintain the 
functionality of the entire system when node (a distributed server where data is 
stored) failure happens. Data should be able to be extracted, changed, and deleted 
by the upper layers while nodes leave and return. 
Above the storage system, a global resource manager (such as YARN [10]) is 
allocated to manage data usage and computational power. 
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To handle data with different formats, various data management tools are also 
engaged, such as Gephi [33] for graph data and MongoDB [45] for documents. 
In the big data architecture, the data collection, storage and management layer 
offers proper data material for further utilization by the analysis and application 
layer. Several open-source project-based big data services for the data collection, 
storage and management layer, such as HDFS and YARN, are introduced in Sect. 
4. 
 

• Data Analytics Layer 
The data analytics layer is the intermediate portion of the architecture and is also 
the core of the entire stack. In this portion, data stored in the distributed file sys-
tem can be operated and processed in real-time, near real-time or afterwards to 
provide diverse analytic results for applications. To realize data manipulations 
on data stored in numerous nodes simultaneously, parallel computing technology 
needs to be adopted [67].  
Since the big data stack is normally built on at least hundreds of nodes [51], 
traditional parallel techniques such as Open Multi-Processing [50] and Message 
Passing Interface [46] are no longer efficient enough to fit the novel implemen-
tation condition. Thus, the MapReduce [18] framework was developed to realize 
parallel processing on a large scale and with scalability. 
The fundamental idea behind MapReduce is “moving computation is cheaper 
than moving data” [17]. Therefore, MapReduce puts computational power and 
activity towards the data side and just obtains the results back, instead of trans-
mitting data back and forth. By following this philosophy, the cost of communi-
cation and the stress on the computation centre can be reduced. However, 
MapReduce supports only one type of programming model, the map-reduce 
model, which is introduced in more detail in Sect. 4.2.4. With continuous tech-
nological advancement, more flexible, object-oriented processing frameworks 
supporting more parallel programming models have been developed and released 
for both batch and stream processing of data mining and analysis, for instance, 
Spark [8] and Flink [6]. More details about the well-known processing frame-
work Spark are discussed in Sect. 4.2.4. 
By using batch and stream processing frameworks, big data analytical ap-
proaches such as deep learning can be achieved to study the association between 
variables and provide predictions/summaries to obtain the untapped value from 
big data. Several typical big data analytical approaches are presented in Sect. 3. 
The data analytics layer in the big data architecture handles the data analysis 
requirements from the application layer and submits deep analytic, predictive 
analytic, and/or summary analytical results for further utilization by top-layer 
applications. 
 

• Application Layer 
The application layer is the topmost layer of the big data architecture. This layer 
offers object-oriented services. 



8  

There are many tools that have been developed to realize different specific ser-
vices. For instance, Hive [11] is a data warehouse infrastructure offering ad hoc 
querying. 
Moreover, we should note that there is no obligation that a tool should only be-
long to the data analytics layer or application layer. Depending on requirements, 
one tool, for example, Hive, can be either a portion of an integrated solution, as 
utilized in Facebook Messages [21], or an application itself, such as a data query 
platform [62], which is utilized by Facebook as well. Additionally, there is no 
restriction that a product/platform covers only one layer. As an example, the 
Spark [8] platform provides an in-memory big data processing framework for 
analyses and predictions as well as multiple practical tools that help it to be en-
gaged in distinct types of applications. From this point of view, Spark covers 
both the intermediate and top layers. Furthermore, the Microsoft big data plat-
form, Dryad [43], is capable of covering the development of an entire stack as 
utilized. 
Moreover, tools can be adopted in combination to implement more complex 
functionalities. Furthermore, a stack should be able to run multiple services. 
Hence, a workflow management system is required in the big data stack to inte-
grate, schedule, coordinate and/or monitor tools and services. 
In addition, analysis results or extracted data items should be capable of interact-
ing with other programs such as visualization tools (for instance, Tableau [61]) 
and decision support mechanisms at this layer to assist people in understanding 
and handling the situation well. 

 
Through the implementation of the three-layer architecture discussed above in the 
energy internet, this approach could be able to realize an entire workflow from big 
data acquisition, management, and analysis to responses for a massive volume of 
various types of data that are generated within the energy internet or are captured 
from related resources with variability in data formats and generation velocities.  
 

2.2 Implementing Big Data in the Energy Internet 

In general, to build the energy internet through informatization and intellectualiza-
tion to solve problems including improving equipment utilization, safety and relia-
bility, power quality, and access to renewable energy, the introduction of big data 
analytics into the energy internet appears to be an indispensable technology 
roadmap at present [41]. Determining how to integrate the software and hardware 
requirements of the big data stack together with the requirements of the energy in-
ternet and existing energy and communication infrastructure to create an efficient 
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and affordable solution is a significant issue that energy internet practitioners need 
to solve jointly. 

In this subsection, the characteristics of generated data in the energy internet and 
some potential requirements of the energy internet for big data architecture are dis-
cussed. 
 

2.2.1 Characteristics of Energy Data 

With the development of IoT technology, many devices in the energy internet are 
capable of generating and publishing data. Discussing and studying the characteris-
tics of data generated in the energy internet is important for us to establish the big 
data stack and provide big data analyses and prediction services. From our perspec-
tive, data in the energy internet have the following characteristics: 

• Data volume is very large and is generated with fast speed, including a large 
amount of streaming data. 
In the energy internet, each equipment can keep generating its status log, includ-
ing but not limited to its U, I, P, and Q records. The generation frequency can be 
quick enough by selecting appropriate configurations. Hence, collecting, pro-
cessing, analysing and giving responses through the big data stack with very 
large throughput is a challenge that needs to be solved, which is further discussed 
in Sect. 5. 

• Considerable amounts of data generated in the energy internet are monitoring 
data, which are not critical for energy internet operations. However, once a situ-
ation fluctuates, the useful information is very dense. 
Data generated by equipment are mostly in a regular situation when the power 
prediction, scheduling and management procedures of the energy internet work 
well. Hence, in many circumstances, the data collected in the energy internet are 
used to confirm the prediction and management results and to monitor the situa-
tion. However, if an unexpected situation appears, the density of useful infor-
mation in the data is high. Real-time responses need to be given through the 
analysis results derived from the data. 

• The main portion of the data includes the real-time status information throughout 
the grid (such as U, I, P, and Q) as well as communication data about demand 
and supply. Additionally, there are various types of data generated outside the 
energy internet that should also be captured, stored and analysed by the energy 
internet big data stack, such as weather predictions and holiday pattern an-
nouncements. 
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2.2.2 Potential Requirements in Energy Internet Big Data Architecture 

Combining the expectations of the energy internet to increase equipment utilization, 
promote safety and reliability, boost power quality, and advance renewable energy 
access, with the characteristics of energy internet data, we consider that the energy 
internet big data architecture should have the following requirements: 

• Capability to process and monitor large-scale mass streaming data in real-time. 
To collect, process and manage data generated for the energy internet, the big 
data stack should be able to handle large-scale mass streaming data in real time. 
However, a certain amount of real-time data is not critical for energy internet 
operations and does not have a high information density for big data analyses. 
Therefore, the stack should be capable of “just” monitoring these data streams 
but not paying “too much” attention to them unless they are called by some ap-
plications (in real-time or as historical records). 
 

• Capability to process and analyse in parallel large-scale nodes whenever neces-
sary. 
When a demand or supply fluctuation appears, the energy internet big data stack 
should be capable of providing auto-decision making or decision support through 
processing and analysing the streaming data as well as historical data. If the fluc-
tuation affects the load/supply scheduling in a wide area, parallel processing and 
analysis of the large-scale streaming data is demanded in the energy internet big 
data architecture. 

 
• Low-latency real-time feedback, response, and decision making/support. 

The requirement of energy internet big data analysis on timeliness is sensitive. 
Real-time treatments, such as transient state balancing, are always important for 
power quality, grid stability, etc. In addition, response and decision making/sup-
port here do not refer to a centralized mechanism but to a distributed decision 
making/support mechanism or framework. By implementing treatments at dif-
ferent locations and on various infrastructures simultaneously, even lower la-
tency is expected to be achieved. 

 
• Scalability, stability and robustness in data analysis and prediction. 

The energy internet big data stack should be scalable along with the development 
of urban/rural areas, access to renewable energy, etc. In addition, the analysis 
and prediction should be robust and stable during issues such as network failure 
and grid damage. Furthermore, the stability and robustness of the stack are also 
crucial since the services that the stack offers relate to the most important termi-
nal energy in modern society—electricity. 

 
• Security of data, communication, and decision making, as well as protection of 

user privacy. 



11 

Historical energy data are required to be stored and manipulated safely. Simi-
larly, the corresponding communication and decision making both need to be 
performed with security guarantees. In addition, energy data are relevant to pri-
vacy, not only for individuals but also for enterprises. Thus, the protection of 
user privacy is also needed for the big data stack. 
 

3. Big Data Analytics Methods 

In the energy internet field, massive various types of data are collected and required 
to be analysed [36]. With the development and release of new generations of big 
data processing frameworks and service platforms, an increasing number of data-
base transformation operations, such as add, join, and filter, are supported. Most 
traditional analytical methods are able to be implemented in a big data stack easily 
and efficiently. There are tools or tool combinations that can provide similar data 
operations, interfaces and language environments as database management systems 
for a big data stack, such as Apache Impala [14], to make their users easily switch 
from a database to a big data stack.  

The analytical capability of a big data stack is much greater than this. Along with 
the iterative operations that are supported by many analytical frameworks, machine 
learning as an intense user of iterative operations is widely utilized in big data anal-
ysis. Analytical applications include regression, classification, clustering, etc. Re-
garding the type of learning, the tasks can be classified into two main categories: 
supervised learning and unsupervised learning. 

In this section, the two categories of big data analysis methods are introduced. 
Several commonly used analysis methods in the two categories are discussed. More-
over, deep learning and ensemble learning are presented as two notable methods 
that have promising potential in the energy internet field. 

 

3.1 Supervised Learning 

Supervised learning is a category of machine learning that learns the mapping be-
tween an input data set and the output data set (target). The objective of supervised 
learning is to precisely forecast the target for a given input. Frequently utilized su-
pervised learning models include regression, random forest (RF), adaptive boosting 
(AdaBoost), Naive Bayes, artificial neural networks (ANNs), k-nearest neighbours 
(KNN), support vector machine (SVM), etc. 
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Regression analysis, including linear regression, logistic regression, etc., is used 
to find the most likely mathematical explanation between the dependent variable 
and independent variables. The advantage of this approach is that after the learning 
process, we obtain the mathematical relationship of the problem. By checking the 
residuals, the accuracy of the mathematical model can be verified. However, regres-
sion analysis needs researchers to assert the type of mathematical expression man-
ually, which is an empirical task. More details on regression analysis can be found 
in [65]. 

 
RFs use decision trees as base prediction models to classify input data with dif-

ferent labels [22]. A decision tree is a tree-like graph used to model the different 
classifications among sets of input features. An RF first trains multiple individual 
decision trees constructed with a certain number of randomly selected features. In 
these trees, leaves correspond to the target classes, and branches represent the dif-
ferent variables of features selected by the tree that lead to those class labels. To 
classify a test input vector, it is passed through the trees in the forest. The forecast 
results are voted on by all trees with their own decisions. 

 
Adaptive boosting (AdaBoost) is another type of learning method that uses a 

sequence of decision trees as base prediction models to produce a forward stagewise 
additive model. In AdaBoost, an additional weight feature is allocated to each train-
ing sample [57]. The weight of a sample is a response to the importance of forecast-
ing the particular sample correctly. In each boosting iteration, according to the fore-
cast result, a vote coefficient of the iteration is calculated, and the weight of each 
sample is updated. Incorrect training samples get higher weights to receive more 
attention in the next iteration of operation. A better iteration yields a higher vote 
coefficient in the final vote. More details on AdaBoost can be found in [24]. 

 
A Naive Bayes algorithm is an efficient probabilistic classifier that applies 

Bayes’ probability theorem with the assumption that the input features are inde-
pendent of each other [38]. According to the distribution of input features (for in-
stance, Gaussian or multinomial), disparate Naive Bayes classifiers have been de-
veloped. More details on Naïve Bayes can be found in [47].  

 
Support vector machine (SVM) is a machine learning model that attempts to find 

the optimal hyperplane to separate a dataset into two groups [60]. The direction of 
optimization is to find the hyperplane that has the maximum margins with the two 
groups. Margin here is the distance between the hyperplane and the data points (one 
or multiple) that are the closest to the hyperplane. The so-called support vector re-
fers to the vector from the hyperplane directed towards the closest points. SVM was 
adopted in [52] to forecast the energy market and utilized in [26] to assess the solar 
radiation of a day to assist renewable energy generation. 
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K-nearest neighbours (KNN) is a widely used instance-based classification algo-
rithm. It provides class forecasting based on the “distance” relationship between a 
testing sample and training samples. The “distance” can be decided by any distance 
functions (e.g., Manhattan, Euclidean, Minkowski, and Hamming) [63]. The classi-
fication is computed through a simple/weighted vote within a certain number of 
nearest neighbours of the testing sample. It was utilized in [1] as a component algo-
rithm in an ensemble learning method to recognize the activities of ageing people 
in smart homes. 

 
Artificial neural networks (ANNs) are widely utilized in smart home solutions, 

such as electrical appliance power profile classification in residential buildings [59] 
and human activity recognition in smart homes [20]. These networks model a bio-
logical neural network as an interconnected group of nodes called neurons. In each 
neuron, the weighted summation of an input vector is sent to the activation function 
to attain the output of the node. Normally, nodes in the network are structured as 
feedforward layers. Feedforward here refers to the fact that the outputs of these layer 
nodes are used as the inputs of the next layer. The data flow from the first (input) 
layer to the last (output) layer without looping back. When an input row is processed 
through the network by edges, a network output is obtained. An ANN learns by 
updating the neurons’ weights after each training iteration. The weights are updated 
in the direction of minimizing the cost function of the problem. 

 

3.2 Unsupervised Learning 

Unsupervised learning uses unlabelled data as input to let the machine study the 
“structure” of the data. Unsupervised learning is normally utilized on problems that 
do not have a determined solution, which is also the reason why the data are unla-
belled. Hence, it is hard to evaluate the results, which is an important difference 
between unsupervised and supervised learning. Commonly adopted unsupervised 
learning approaches include k-means clustering and ANNs. Within the energy in-
ternet big data stack, unsupervised learning could be useful for tasks such as auto-
classifying sudden events to learn manual treatments to provide auto-decision mak-
ing and decision support services. 

 
K-means clustering uses the distances between each data item and the cluster 

centroids in the dataset vector space to classify data items into a certain number of 
clusters. The number of clusters should be assigned manually. The initial centroids 
are randomly selected from the vectors where the data items are held. The clusters 
are updated after each iteration of study by renewing the centroids of the clusters. 
The learning process finishes when the centroids no longer change or the changes 
remain within a certain range. 
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The learning process of an ANN in unsupervised learning is similar to that in 

supervised learning. The cost function is decided depending on the task, for exam-
ple, the objective of unsupervised learning, as well as a priori assumptions such as 
the implicit properties of the model and observed variables. 
 

3.3 Deep Learning 

Deep learning attempts to use a multi-layer structured learning model to study the 
data, which can be both supervised and unsupervised learning. Neural networks, as 
an important approach to structure multi-layer architectures, have been widely dis-
cussed and adopted in deep learning studies. Neural network-based deep learning 
architectures, such as deep neural networks, recurrent neural networks and convo-
lutional deep neural networks, have become representative deep learning ap-
proaches. 

 
In general, a deep neural network (DNN) refers to an ANN with multiple feed-

forward hidden layers. Hidden layers are the intermediate layers between the input 
layer and output layer. However, in simple ANNs, only one hidden layer is in-
volved. By introducing multiple hidden layers into the network, DNNs have the 
potential to model complex data with fewer neurons than single hidden layer net-
works [30]. 

 
A convolutional neural network (CNN) is another type of feed-forward neural 

network that consists of one or multiple convolutional layers, pooling layers, fully 
connected layers, etc. CNNs have achieved better performance in image recognition 
studies [42].  

 
A recurrent neural network (RNN) connects neurons by a directed graph along 

with a sequence, which enables the so-called “memory” in the network. It is capable 
of exhibiting dynamic behaviour on time series. Long short-term memory (LSTM) 
[34] and gated recurrent unit (GRU) [29] are two types of complex recurrent units 
for RNNs to promote the advantage of memory by gated state [3].   

 

3.4 Ensemble Learning 

Ensemble learning works to integrate multiple learning methods to obtain better 
analytical performance rather than focusing on a specific algorithm [55]. It was 
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developed based on evaluation results of different machine learning models for his-
torical data. A common realization of ensemble learning is taking a vote among 
multiple promising models to obtain the forecast result [54]. 

In addition, many other model integration architectures have been adopted in 
studies to adapt to realistic requirements, which is called hybrid ensemble learning 
[2]. Prediction of device status in smart homes was proposed by integrating random 
forest and gradient boosting as the basis of an ensemble method [19]. Using a hybrid 
ensemble learning model to predict time series data with a weighted mean of the 
forecast results of several algorithms was discussed in [66]. In [2], a two-layer hy-
brid stacking ensemble learning model was employed to forecast EV charging de-
mand. 

Moreover, one additional objective or benefit of utilizing ensemble learning 
could be to improve the stability of the analysis [3], which is particularly required 
by the predictions in the energy internet. 

 
 

4. Big Data Platforms 

This section provides an overview of big data platform building in the energy inter-
net. Real-time and offline analysis platforms are discussed. Some well-known open-
source big data tools that could be used in energy internet big data platforms are 
introduced as well. 

4.1 Real-time and Offline Analysis 

When we consider establishing a big data platform, or stack based on its structural 
characteristics, the three-layer architecture discussed in Sect. 2 or a similar archi-
tecture is often followed. There are numerous tools for each aspect of the stack. The 
tools provide us with diverse kinds of services with different features. When we 
choose from them to build our stack, speed and scale are the two essential aspects 
that we need to consider. Due to the requirements of different application scenarios, 
two types of analysis modes, real-time and offline analysis, should be available in 
the energy internet big data stack based on the trade-off between speed and scale. 

 

4.1.1 Real-time Analysis 
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Real-time analysis, just as its name suggests, tends to access, process, analyse data 
and to give responses as quickly as possible [39]. It is normally utilized in situations 
where the situation constantly changes, immediate analyses are required, and the 
response should be executed with very short latency. 

Implementations of real-time analysis mainly use two types of structures. One 
uses a traditional relational database in a parallel processing cluster, which is not 
capable enough to satisfy the growing requirements of speed and scale. The other 
structure is integrating in-memory analytics platforms with a distributed file system 
[40], which is very good for performance. 

Existing tools include portions or the entire platform of Spark [8], Storm [9], 
Beam [4] from Apache, Greenplum [31] from EMC and HANA [56] from SAP, etc. 
In the energy internet, potential utilization areas include real-time electricity de-
mand prediction, pricing adjustment, load auto-balancing/scheduling, etc. 

 

4.1.2 Offline Analysis 

In contrast to real-time analysis, offline analysis focuses on more comprehensive 
data processing and analysis. It is able to make use of larger amounts of and more 
complex data in more sophisticated analysis methods. 

For offline analysis implementations, data are normally already acquired and 
stored in the stack in advance, or the incoming data rate and response requirement 
are not high. Then, more sophisticated and, at the same time, more time-consuming 
operations are able to be utilized during the data processing. For example, we can 
realize iterative operations with fewer restrictions in offline analysis, which is one 
of the fundamental necessities of employing deep learning. 

It should be mentioned that to promote processing speed considerably, real-time 
analysis technologies as well as the frameworks that we mentioned in Sect. 4.4.1 
could be adopted for offline analyses as well.  

In summary, real-time analysis has novel requirements for big data analysis. 
Hence, techniques for instance in-memory processing are developed to fill the gap. 
However, currently, the gap has not been fully filled. We are in a situation in which 
some relatively simple operations have been successfully achieved while some 
complex operations have yet to be realized. Since well-known platforms such as 
Spark and Storm [9] have supported real-time analysis functionality at a certain 
level, we can utilize real-time analysis operations together with complex operations 
that still currently belong to offline analysis to find the sweet spot between speed 
and scale. 
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4.2 Open-source Big Data Tools 

Some well-known open-source big data tools are introduced in this subsection. 
Along with big data workflows, namely, acquisition, storage, management, analysis 
and response, we introduce one or two tools for each workflow pivot. 

 

4.2.1 Acquisition Tool: Kafka 

Data should be acquired by a big data stack before any further manipulation. To 
improve data acquisition efficiency and reduce the cost of format conversion during 
usage, acquisition tools have been developed based on distributed file systems, such 
as HDFS. 

Existing tools include Kafka [7] developed by LinkedIn and Apache, Chukwa 
[5] developed by Apache Hadoop, Scribe [58] from Facebook, TimeTunnel [35] 
from Taobao, etc. Here, we introduce Kafka as an example of an acquisition tool. 
 

 Kafka is a high-throughput, low-latency, fault-tolerant stream processing plat-
form that subscribes streaming data and distributed republishes the data in a proper 
way to feed the storage portion or for other purposes. It is able to collect and transmit 
hundreds of MB of data in each second. 

In the Kafka architecture, it acts as an intermedia role between data genera-
tors/publishers and data consumers/subscribers. Data records (messages) are pushed 
to Kafka as key-value pairs. Kafka runs one or multiple servers (brokers) to receive 
the messages. The pairs are grouped by keys (topics) in each broker. Consumers can 
poll brokers to obtain messages from Kafka, as shown in Fig. 2. As the key compo-
nents, the brokers store the published messages and prepare them plainly for con-
sumers to pull their required data at the rate they prefer. 

 
Figure 2 Architecture of Kafka. 
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4.2.2 Storage Tool: Hadoop Distributed File System (HDFS) 

The HDFS [17] is the most famous and widely used distributed file system. It uses 
one or multiple servers to store split large files in blocks.  
The HDFS architecture is a master and slave structure that consists of a cluster of 
nodes. The communication between nodes is based on TCP/IP. Each node (both the 
master and slaves) has a DataNode to store blocks that are allocated by the master. 
The master contains an additional NameNode to manage the namespace of the file 
system and to regulate file access from clients of the system. A file is first split into 
blocks with a standard block size, which is decided by the NameNode. Then, the 
blocks are stored in a set of DataNodes, as described in Fig. 3. To promote reliabil-
ity, each block is replicated a certain number of times, and the replications are stored 
in different nodes. 

 
 

 
Figure 3 Data storage in HDFS. 

 

4.2.3 Resource Management Tool: Yet Another Resource Negotiator (YARN) 

YARN [10] is a global resource manager on top of the HDFS used to schedule and 
optimize cluster utilization. Optimization can be practised in different criteria, such 
as capacity and fairness. 

In the architecture of YARN, there is a ResourceManager (RM) to arbitrate the 
resource usage (CPU, memory, disk, network, etc.) among all applications running 
on the file system. Each application (one or multiple jobs) is assigned a master man-
ager to negotiate resources from the ResourceManager and execute the application. 
Moreover, each node is assigned a NodeManager to report the resource and resource 
usage regularly to the ResourceManager. A brief overview of how an RM obtains 
information from other YARN key components is presented in Fig. 4. 
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Figure 4 Operations of an RM obtaining information within YARN. 

YARN supports many types of processing models operating on different execu-
tion engines, such as Tez [15], Spark [8], Flink[6], and Dryad[43], as well as big 
data applications, such as HBase [13]. 

 

4.2.4 Analytics Tool: MapReduce, Spark 

To analyse massive data stored in a distributed system, a parallel programming 
framework is required to achieve efficient data processing and computation. Ha-
doop MapReduce [18] is an open-source implementation used to execute the 
MapReduce processing model on the HDFS. 

The processing model of MapReduce only has two sequential stages, i.e., map 
and reduce. In the first stage, a map program is mapped towards certain nodes that 
store the blocks of input data. The map program is executed within the nodes in 
parallel. Then, in the second stage, the executed intermediate results are shuttled 
towards a small number of nodes to merge the intermediate results as a smaller set. 
Through several rounds of merging, the final output is achieved. The process of 
merging intermediate results towards the output is called “reduce”. The entire pro-
cedure is illustrated for a word count process example in Fig. 5. 

MapReduce is a simple but powerful processing model. The open-source 
MapReduce released by Apache, Hadoop MapReduce, simplifies the programming 
procedure of research and development on big data. Only two programs are needed 
to develop a MapReduce processing application.  

However, Hadoop MapReduce still has several shortcomings as an early big data 
execution engine. A fatal shortcoming is that Hadoop MapReduce supports only 
one processing model, and no other DAGs or iterations are supported. 
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Figure 5 MapReduce process of a word count program. 

 
Spark [8] is an open-source unified analytics platform first developed by AM-

PLab at the University of California, Berkeley, to support iterative and interactive 
big data processing pipelines. In addition to map and reduce operations, Spark sup-
ports a range of transformation operations, such as add, join, and filter. Moreover, 
there is no sequence restriction on pipeline implementation. Hence, Spark is capable 
of supporting high-performance iteration processing. 

A resilient distributed dataset (RDD) is utilized to enable in-memory computa-
tion in Spark. An RDD is a read-only distributed set of data items. A parallel oper-
ation is not able to change an RDD but can build a new one to store the intermedi-
ate/final result set. 

Spark includes multiple practical tools that help it to be engaged in distinct types 
of applications, such as streaming data processing and graph-parallel computation. 

 

4.2.5 Application Tool: Hive 

Tools for the application layer are mostly object-oriented to realize certain specific 
services. For distinct scenarios, various tools or tool combinations can be adopted 
to achieve a solution. Here, we use Apache Hive and Zookeeper as examples to 
provide the reader a preliminary impression of application layer tools. 

Hive [11] was initially developed by Facebook and joined Apache later for big 
data querying. It is a data warehouse infrastructure providing data summarization 
and ad hoc querying. Users can use SQL-like language (HiveQL) to access data 
stored in various databases with different storage types efficiently. Hive or its fur-
ther developed commercial versions are utilized by companies such as Netflix and 
Amazon as part of their big data implementations. 

Apache ZooKeeper [16] provides centralized services to coordinate distributed 
big data stacks. It stores configuration values hierarchically and provides distributed 
stack group services, such as maintaining and synchronizing configurations and 
naming registries among nodes. This kind of maintenance and synchronization ser-
vice is necessary for large distributed systems to enable highly reliable distributed 
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coordination. Zookeeper is utilized by companies such as Yahoo!, eBay, and Red-
dit. 

 

5. Open Challenges for Utilizing Big Data in the Energy 
Internet 

Although big data analysis has broad prospects in the energy internet field, several 
open challenges are required to be overcome ahead of utilizing it beyond demo 
cases. In this section, we introduce the main open challenges in implementing big 
data analysis in the energy internet. 

 

5.1 Data Throughput 

In the practice of the energy industry, a very large amount of data can be generated 
from infrastructure allocated at various places with a fast speed. For instance, rec-
ords of energy receiving and forwarding between energy routers are created from 
each energy router continuously. The records can change quickly depending on sit-
uations such as transient state change. This method is required to handle the situa-
tion through processing, analysing the records and providing suggestions as soon as 
possible. Moreover, to obtain a big data stack with better performance, it is neces-
sary to collect, store, manage, process, and analyse as much data as the system can, 
as rapidly as the system can. Hence, increasing the data throughput of the entire big 
data procedure, including data collection, storage, management, and analysis, is a 
continuing open challenge. This challenge remains along with the development of 
related technologies, which are able to generate and transmit more data with faster 
rates, such as the IoT. 

One possible way to tackle the challenge stands with the IoT as well. Fog com-
puting and edge computing can push the data processing even further towards the 
sensor itself or at the local sensor network level to reduce the cost of data transmis-
sion and central computing to promote the throughput of the big data stack.  

In addition, integrating the big data stack with the energy internet is another as-
pect of this challenge because the processing requirements for the energy internet 
functionalities overlap with the big data services. If we design the physical, 
transport, and application layers of the energy internet with consideration of big 
data analytical requirements, then we are able to achieve a better solution for utiliz-
ing big data in energy internet circumstances. 

 



22  

5.2 Data Privacy and Security 

For big data analytics, obtaining as much data as possible is a perpetual tendency. 
This is because a better performance analysis is more likely to be obtained by using 
enough data for analysis. However, in practice, it is not easy to obtain enough data 
to feed a big data stack. For researchers, electricity generation and consumption 
companies do not desire to let streaming data or huge amounts of records be taken 
outside their companies. It is even more difficult when negotiating with residential 
users to share their usage data. The situation has become worse after the Facebook 
scandal. Companies and individuals have become more conservative on data pri-
vacy and security issues. For companies in the power supply chain, obtaining data 
from upstream and downstream companies is also very difficult. Therefore, provid-
ing an efficient approach to obtain data with guaranteed privacy and security pro-
tection is an open challenge for both the research and industrial communities. 

The enforcement of the GDPR can be a positive signal of normative data usage 
related to business. The GDPR regulates business behaviour around data, especially 
on data security and privacy protection. The severe sanctions can, to some extent, 
curb the occurrence of data abuse like that in the case of Cambridge Analytica Ltd. 

Technically, blockchain [53] is a promising mechanism to protect data privacy 
and security. The data owner, which can be a company or an individual, can publish 
the authorizations of utilizing the data on the chain. An authorization includes the 
data abstract as well as the personnel of access, location of access, times of access, 
etc. A data user must obtain an authorization to access the data. Then, the utilization 
of data is easier to monitor by the owner and public. Thus, data privacy and security 
are able to be protected more efficiently. 

 

5.3 Data Storage 

At present, large amounts of data are generated with fast speed, but the progress of 
data storage capacity is not able to follow the increasing requirements on storage. 
The requirements generally regard two aspects, scale and speed, which are also the 
essentials of big data analysis. 

For the challenge of increasing the speed of storage, in-memory databases [48] 
can be a potential approach to tackle this challenge. Through storing in-memory 
data, performance such as the reading and writing speed is faster than that for data 
stored on disks or on flash drives. However, the disadvantages of utilizing in-
memory technology are still obvious at present: data should fit in-memory pro-
cessing; in-memory databases have difficulty remaining persistent for long periods; 
databases should be loaded from/to disk images before/after usage; and data 
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communication between in-memory databases and other databases is not straight-
forward. 

For the challenge of scale, web giants such as Google and Facebook keep build-
ing big data stacks with a larger scale of nodes for specific utilizations by them-
selves. However, the increasing number inspires our expectation of a large data 
storage scale in the energy internet. Public cloud service providers, such as Amazon 
and Microsoft, are also developing cloud storage-based big data stacks continuously 
for usage by industrial users. 

 

5.4 Data Stream Processing 

Although data acquisition frameworks such as Kafka and Flume [12] are capable of 
feeding the analytics layer hundreds of MB of streaming data per second, processing 
all valuable data in time, in other words, the timeliness of large-scale real-time pro-
cessing, is still a challenge. For instance, despite the fact that Spark supports both 
in-memory iterative processing and streaming data applications, its technical imple-
mentation uses micro-batching to handle streaming, which allows stream granula-
tion. It is not native stream processing, and the latency can be on the order of sec-
onds with the configuration of the size of a micro-batch. 

However, timeliness is a crucial requirement for utilization in the energy internet, 
including consumption pattern recognition, real-time power adjustment, schedul-
ing, management, etc. Moreover, historical data should be capable of being ex-
tracted from the file system and interacting with new incoming data. 

To overcome this challenge, big data processing frameworks, such as Apache 
Flink [6] and Beam [4] have been natively developed for streaming processing. 
These streaming processing frameworks just passed through their preview versions 
and entered the public view in 2018. The development of these frameworks could 
provide a promising solution for the timeliness challenge of large-scale real-time 
processing. 

 

5.5 Data Opening 

Data opening is a common challenge that researchers and public service providers 
face in many fields. For the purpose of data reuse and the social good, anonymous 
data should be stored for future usage. Data records and streams are commonly dif-
ficult to catch but easily disappear and are always valuable for research as well as 
public product development. These features are significant in energy data records. 
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To open up data records and data streams, financial support is necessary. Data 
with better quality, for example, more accurate, complete, and consistent data, often 
means more investment. In addition, better data quality also brings more accurate 
analysis, prediction and management. The trade-off regarding data quality is a chal-
lenge of data opening. 

Furthermore, managing the opened data is also a challenge. Before data are 
opened, anonymization should be performed. However, determining the edge of 
privacy is difficult. Several levels of anonymization exist. If we anonymize all pos-
sible factors, the value of the data will also be lost. Another point that can be con-
sidered together with anonymization is who can access the open data. In general, if 
the data owner wants to check the data, it is not necessary to be anonymized. If it is 
a person or company without any credit background and confidentiality technology 
certification, he or it should only be able to access the data after the strictest anon-
ymization process. Blockchain is also a potential solution to this challenge [25]. 

 

Summary 

In this chapter, the utilization of big data in the energy internet infrastructure is 
explored. A three-layer big data architecture of usage in the energy internet is pre-
sented. The characteristics of data utilized in the energy internet and the potential 
requirements of the energy internet for the big data architecture are studied. Then, 
analytics methods that could be executed in the energy internet big data infrastruc-
ture are introduced. Real-time and offline analyses, as two types of analysis modes 
for different requirements of application scenarios, are described. Several well-
known open-source big data tools are discussed. In addition, the open challenges of 
utilizing big data in the energy internet are proposed. 
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