
FROM ENABLING TO ENSURING GRID WORKFLOWS

Junwei Cao1,3,*, Fan Zhang2, Ke Xu2, Lianchen Liu2,3, and Cheng Wu2,3
1Research Institute of Information Technology, Tsinghua University

2National CIMS Engineering and Research Center, Tsinghua University
3Tsinghua National Laboratory for Information Science and Technology

*Corresponding email: jcao@tsinghua.edu.cn

Abstract

Grid workflows are becoming a mainstream paradigm for implementing complex grid
applications. In addition to existing grid enabling techniques, various grid ensuring
techniques are emerging, e.g. workflow analysis and temporal reasoning, to probe
potential pitfalls and errors and guarantee quality of services (QoS) at a design phase.
A new state π calculus is proposed in this work, which not only enables flexible
abstraction and management of historical grid system events, but also facilitates
modeling and verification of grid workflows. Some typical patterns in grid workflows
are captured and both static and dynamic formal verification issues are investigated,
including structural correctness, specification satisfiability, logic satisfiability and
consistency. A grid workflow modeling and verification environment, GridPiAnalyzer,
is implemented using formal modeling and verification methods proposed in this work.
Performance evaluation results are included using a grid workflow for gravitational
wave data analysis.

1 Introduction

1.1 Grid workflow QoS

Advance in technology has made collections of internet-connected computers a viable
computational platform. Grids connecting geographically distributed resources have
become a promising infrastructure for solving large problems. The definition of Grids
has been redefined over time. Initially Grids were defined as an infrastructure to
provide easy and inexpensive access to high-end computing [1]. Then, it was refined
in [2] as an infrastructure to share resources for collaborative problem solving. More
recently, in [3] the Grid definition evolves into an infrastructure to virtualize resources
and enable their use in a transparent fashion.

Grid workflows [4], a composition of various grid services according to prospective
processes, have become a typical paradigm for problem solving in various e-Science
domains [5], e.g. gravitational wave data analysis [6]. With increasing complexity of
e-Science applications, how to implement reliable and trustworthy grid workflows
according to specific scientific criteria is becoming a critical research issue. In
addition to existing grid enabling techniques, e.g. job scheduling, workflow
enactment and resource locating, various grid ensuring techniques are developed [7],
e.g. data flow analysis and temporal reasoning.

Issues of quality of service (QoS) are of increasing importance to the success of those
Grid-based applications. As defined by I. Foster in the three point checklist of the
Grid [8], the Grid has to deliver to nontrivial qualities of service, relating for example
to response time, throughput, availability, and security, and/or co-allocation of
multiple resource types to meet complex user demands. This requirement is especially
pronounced in experimental science applications such as the National Fusion
Collaboratory [9] and NEESgrid [10]. Enabling such interactions on the Grid requires
two related efforts: (1) the development of sophisticated resource management
strategies and algorithms and (2) the development of protocols enabling structural
negotiation for the use of those resources.

Most of existing research on grid workflow QoS is related to task scheduling. In the
work described in [11], application performance prediction is coupled with genetic
algorithms for workflow management and scheduling with consideration of
makespans and job deadlines. QoS guided min-min heuristic for grid task scheduling
is also proposed in [12]. Similar work can also be found in [13] and [14] for QoS
aware grid workflow scheduling using performance prediction and optimization. In
the grid standard organization, Global Grid Forum, a WS-Agreement model is
proposed and defined in [15]. This provides an infrastructure to agreement-based
application like [16] and [17], within which QoS can be negotiated and obtained.

While all of above in common is that they show how task can be scheduled to
improve efficiency of grid workflows, this work is dedicated to ensuring mechanisms
on workflows as a whole. All of services in a workflow are guaranteed without
redundancy and collision. Also how to make sure all services in a workflow is
reachable and terminatable is another concern in this work. All these issues are
modeled, verified and finally implemented using our environment, GridPiAnalyzer.

1.2 Grid workflow verification

As mentioned above, it is significant for grids to implement large scale heterogeneous
resource sharing and accessing. How to ensure the correctness of design and
implementation of grid workflows is a critical task. Though it is widely recognized
that corporation of grid workflows are important, most of those research work are
focused on grid enabling techniques, e.g. automatic execution, service binding and
transaction processing. In the field of grid workflows, formal semantics, business
logic verification and improving of verification performance needs to be solved.
Obviously, these formal verification techniques can ensure the correctness of
workflows as a whole and guarantee the fulfilling of users’ demands.

These intrinsic characteristics provide several challenges to formal verification:

 Difference in professional domains
 Complexity of applications
 Non-formalism semantics of grid workflows
 Diversity in grid workflows models
 Uniqueness of grid workflow criteria
 Dynamicity of grid environments

IEEE defines correctness as: “……free from faults, meeting of specified requirements,
and meeting of user needs and expectations” [18], and formal verification as: “it is

mathematical verification methods to test whether those system model can meet
requirements” [19]. Requirements here can be interpreted from two aspects. It can be
restraints from the system model or business logics of users’ expectations. According
to definitions mentioned above, the article includes four aspects:

 Structure verification
 Verification of semantic restraints in grid workflows
 Verification of users’ demands
 Consistent verification of business logics

The following problems have to be solved to verify above issues:

 Formal theory and methods for grid workflow criteria
 Formal semantics for existing grid workflow criteria
 Dynamic/static verification methods
 Implementation of a grid workflow modeling and analysis environment

1.3 Grid workflow modeling

Many models are introduced as grid workflows become indispensable component of
grid networks. Different models have different descriptions and semantics. From
different application domains, grid workflows can be categorized as follows:

 XML-based tags, e.g. GridAnt [20], BPEL4WS [21] and Gridbus workflows [22].
 Visual languages, e.g. Triana [23], JOpera [24] and BPEL visual modeling.
 Customized script languages, e.g. Condor [25] DAGMan and Glue [26].

Different model specifications increase the complexity among various grid workflows.
The integration of web and grid technologies is a clear trend since web service
standards, e.g. Web Services Resource Framework (WSRF), are emerging. What’s
more, as BPEL4WS is gradually becoming the standard web execution language,
more work is being related to the extension of BPEL4WS based on WSRF.

The motivation of our work is not to redefine a new model for grid workflows but
rather try to find and propose a formal modeling and verification tool that works well
with grid workflows. And hopefully the following can be achieved:

 Define critical characteristics and operations of grid workflows as well as bring
out exact execution semantics of service interactions.

 Propose a uniform semantic basis as a bottom line for typical grid workflows.
 Verify grid workflows completely, automatically and effectively.

2 State π calculus

2.1 Introduction to π calculus

π calculus [27] was initially introduced by Milner’s work for modeling state/action
hybrid systems since it is intrinsically mobile and combinable. Nowadays, this tool is
efficiently used in the description of open communication systems and web/grid
workflows as described in [28] and [29]. The syntax of π calculus is as follows:

11
:: . | () | ! | | | | (,...,) | 0

:: | () |
:: [] |

n

i

n
i ii

P P new x P P P Q P A y y

x x
x y

y y
α φ

α τ
φ φ φ

=
=

= < >
= = ∧

∑

The fundamental concept of π calculus is the names, which are used to express atomic
interactive actions in a system. A system in π calculus evolves through the operators
including composition ‘|’, choice ‘+’, guard ‘.’, match ‘[]’, restriction ‘new’ and
replication ‘!’.

 An output action (x y< > .P): This means outputting through y x with system
behaviors evolved into P. For example, in a communication system x can be
considered as an output port and the output data. y

 An input action (.P): Intuitively, it means inputting through x with
system behaviors evolved into P.

()x y y

 A silent action (τ.P): The system behavior evolves into P with internal actions
instead of interactions with the environment.

 A composition (P|Q): Processes P and Q are independent, or synchronize with
each other via an identical port.

 Choice (P+Q): Unpredictable execution of P or Q.
 March ([x=y]P): If x matches y, the system behavior evolves into P. Otherwise no

actions happen.
 Restriction ((new x) P): x is a new name within the process P.
 Replication (!P): An infinite composition of process P.

Process algebras like π calculus have an explicit description of system behaviors and
interactions, but state models are implicitly. For life-cycle management of system
states, it is needed to enable modeling of:

 creation and destruction of states;
 access and update of states;
 association of states with system behaviors.

2.2 State π calculus: models and operations

To address issues mentioned above, state π calculus is proposed in this work where a
state S is defined as a finite set of system propositions PROP.

Definition 1 (system proposition). A system proposition PROP=(ident, set) ranged
over a universe D is a pair, where ident is a unique identifier of PROP and set is the
set of all valuations that make PROP to be true(set∈D).

Consequently, a state is S= {p1, …, pn}, where pi (i=1,…, n) is the system proposition
PROP ranged over D. To enhance the capability for the states to express their
relations among different components in a system, in state π calculus the identifier
ident is defined by the following hierarchical structure: ident::=atom | atom.ident.
Here atom indicates a symbolic constant value and ‘.’ indicates a separator for the
atoms. Consequently, a prefix/suffix relation is used to define the hierarchical
structure of ident:

 : ' '' (, ') '' IFF ''. '
 : ' '' (, ') '' IFF '. ''

prefix ident ident ident prefix ident ident ident ident ident ident
suffix ident ident ident suffix ident ident ident ident ident ident

× → = =
× → = =

For example, a state S={(AvailableSrv, {Srv1, Srv2}), (Srv1.Status, {Active}),
(Srv2.Status, {Input_Pending})} can be used to indicate that in state S, there are two
available services Srv1 and Srv2 in the system, where Srv1 is running and Srv2 is
waiting for its input. The identifier Status is the suffix of Srv1 and Srv2. To complete
the static semantics of states and system propositions, three functions are further
defined:

 range: PROP set returns the set of all constants that make PROP true;
 eval: PROP×valueset {true, false} determines whether PROP is true for a given

set of values;
 proposition: S×ident {p1, …, pm} returns corresponding system propositions

given an identifier. Since semantics of range and eval are quite straightforward, here
we focus on the implementation of proposition. Note that due to the hierarchical
structure of identifiers ident, the function of proposition should also be able to get all
system propositions identified by the prefix of an ident.

1 1

1 1

(,) if (,)
(,*) { ,..., } if { ,..., }
(, .*) { ,..., } if { ,..., } ,

k k

m m

proposition S ident p p ident set S
proposition S p p p p S
proposition S ident p p p p S

= ∃ = ∈
= =

= ⊂

 1

1 1

1

{ ,..., }, ' s.t. (,) '
(,*.) { ,..., } if { ,..., } ,

{ ,..., }, ' s.t. (,) '

m

n n

n

p p p ident suffix p ident ident
proposition S ident p p p p S

p p p ident prefix p ident ident

∀ ∈ ∃ =
= ⊂

∀ ∈ ∃ =

Besides static definition of system states and proposition, dynamic operational
semantics of the creation, destruction and update of states based on system actions
have also to be defined. Different from original π calculus, a group of state operators
are introduced into the syntax of state π calculus. State π calculus aims to create
dynamic association between states and actions in π calculus via state operators.
Creation, destruction and update of states can thus be enabled by integrating
operational semantics of original π calculus and semantics of state operators.
Therefore, state π calculus reuse existing properties and analysis techniques in π
calculus instead of revising the core of π calculus.

 :: { }. | () | ! | | | | (,...,) |

{ }:: { }| (){ } | { }
 :: [] | (,) |
 :: (

1 n

i

n
i ii 1P StateExp P new x P P P Q P A y y 0

StateExp x StateExp x StateExp StateExp
x y eval Prop valueset

StateExp

y y
α φ

α τ
φ φ φ

=
=

= < >
= = ∧
=

∑

,) | ,
 :: | | |

:: (,)
:: | .

StateOp S StateExp StateExp
StateOp

S iden trueset
iden x iden iden

= + − ++ −−
=
=

As shown above, in state π calculus each input/output action can be associated with
multiple state expressions StateExpr. StateExpr depicts possible state operations
StateOp that a system action can do to a state. The choice operator ‘?’ is also support
in StateExpr. Consequently, the expression [ConditionExpr]StateExpr?StateExpr

describes that when the condition ConditionExpr is (not) satisfied, a system action
will be associated with the state expression of the former (latter) StateExpr. Four state
operators are provided in state π calculus: state creation (+), state destruction (−), state
association (++), and state removal (−−). An additional operation of state updates is
also included in the state creation (+) operator. To be more intuitive, each state
operator can be regarded as an association relation between states: ℜ:
SysState×StateOp×S SysState. That is, a new system state is determined by the
current system state (SysState) and the target state operation (StateOp×S). In state π
calculus, a system state is the set of all existing states and their values in the system.
Therefore, semantics of state operators are very essential to state π calculus, which
define the association between system actions and states and life-cycles of system
states.

Definition 2 (irrelevant states and conflict states). Two states S1 and S2 are conflict
(S1◊S2) if ∃p1=(ident1,set1)∈S1 and p2=(ident2,set2)∈S2 s.t. ident1=ident2. Meanwhile
system propositions p1 and p2 are overlapped (p1◊p2); S1 and S2 are irrelevant (S1∇S2)
if they are not conflict.

Definition 3 (state preordering). For any two nonconflict states S1 and S2, S1≺S2 if

∀p=(ident,set)∈S1, ∃p’=(ident’,set’)∈S2, s.t. ident=ident’ and set⊂set’; S1=S2 if S1≺

S2 and S2≺ S1.

Definition 4 (well-formed states). A state S is well-formed, iff the following two
conditions are satisfied: (1) ∀p1, p2∈S, there is no p1◊p2; (2) ∀p=(ident,set)∈S, set is
not empty.

Two propositions in a well-formed state do not conflict and each proposition in the
state is not always false. Given the current system state SysState={p11,…,p1n}, and the
state associated with the state operator StateOp S={p21,…,p2m}, formal semantics of
each state operator is provided as follows, defined over well-formed states.

1. State Creation (+): Define a new state and overwrite the existing one in the current
system;

11 1 21 2

1 1

11 1 1 1 1 1 21 2

{ , ..., , , ..., }
, s.t.

{ , ..., , , , ..., , , ..., }

n m

i i

i i n m

SysState SCREATE
S p p p p

SysState S p SysState p S p pUPDATE
S p p p p p p p− +

∇
+ =

◊ ∃ ∈ ∈ ◊
+ =

2. State Destruction (−): Remove a specific state from current system states;

11 1

1 1

11 1 1 1 1 1

_
{ , ..., }

, s.t.
{ , ..., , , ..., }

n

i i

i i n

SysState SDESTROY VOID
S p p

SysState S p SysState p S p pDESTROY
S p p p p− +

∇
− =

◊ ∃ ∈ ∈ ◊
− =

3. State Association (++): Insert a state in current system states;

11 1 21 2

1 1

11 1 1 1 1 1 1 21 2

1

_
{ , ..., , , ..., }

, s.t.
{ , ..., , ', , ..., , , ..., }

(') () ()

n m

i i

i i i n m

i i

SysState SINSERT VOID
S p p p p

SysState S p SysState p S p pINSERT
S p p p p p p p

range p range p range p
− +

∇
+ + =

◊ ∃ =∈ ∈ ◊
+ + =

= ∪

4. State Removal (−−): Remove the specific propositions from a state in the current
system states;

11 1

1 1

1

11 1 1 1 1 1 1 21 2

1

_
{ , ..., }

, s.t.
() / ()_

{ , ..., , ', , ..., , , ..., }
(') () / ()

_

n

i i

i

i i i n m

i i

SysState SREMOVE VOID
S p p

SysState S p SysState p S p p
range p range pREMOVE SHALLOW

S p p p p p p p
range p range p range p

REMOVE D

φ

− +

∇
− − =

◊ ∃ =∈ ∈ ◊
≠

− − =
=

1 1

1

11 1 1 1 1 1 21 2

, s.t.
() / ()

{ , ..., , , ..., , , ..., }

i i

i

i i n m

SysState S p SysState p S p p
range p range pEEP

S p p p p p p
φ

− +

◊ ∃ =∈ ∈ ◊
=

− − =

As previously mentioned, above semantics form a basis for implementation of the
state relation ℜ, i.e.,

ℜ : SysState × StateOp × S SysState’
ℜ : (SysState, StateOp, S) = SysState’

, where SysState’ is determined by the above 9 semantic rules.

2.3 State π calculus: extended operational semantics

In this section we integrate state operators with operational semantics of original π
calculus, which leads to extended operational semantics for state π calculus. This
interprets how system states and actions are mutually operated. Traditionally the
behavior of π calculus is modeled using a standard Labeled Transition System (LTS).
However, for modeling and reasoning of state/action hybrid systems, LTS should be
extended to model both system actions (i.e. transition labels) and system states (i.e.
state labels). Typical examples of these extensions can be found in the Labeled Kripke
Structures [30] and the Doubly Labeled Transition Systems [31]. A State Label
Transition System (SLTS) is proposed in this work for interpreting behaviors of state π
calculus.

Definition 5 (state labeled transition system). An SLTS

 consists of a set SP of state/process pairs, a set M of
transition labels, and a set of transitions
where .

{ }(, ,{ | })a StateExprS M a M⎯⎯⎯⎯⎯⎯⎯⎯→ ∈
{ }{ a StateExpr

⎯⎯⎯⎯⎯⎯⎯⎯→} { }a StateExpr S S⎯⎯⎯⎯⎯⎯⎯⎯→ ⊆ ×
a M∈

In an SLTS, a transition is represented as { }(,) (', ')a StateExprP SysState P SysState⎯⎯⎯⎯⎯⎯⎯⎯→ . This
means the current process and state of the system is P and SysState, and by executing
the action a associated with the state expression of StateExpr, the system process
evolves to P’ and the system state is updated to SysState’. According to SLTS, a static
association transState can be defined between the system state SysState and its
possible modification (StateExpr):

{
: '

(, ,) ((,)

transS S
,)

ysState StateExpr SysState
SysState Op S StateExpr Op StransS SysState StateExpr SysState StateExpr

× →
ℜ ==

 is null

Consequently, the extended operational semantics of state π calculus is defined below
based on the early transitional semantics [32] of π calculus.

{ }({ }. ,) (, (,x y
OUT

x y P P transSϕ))ϕ δ δ ϕ< >< > ⎯⎯⎯→

(){ }((){ }. ,) { / }(, (,))x y
INP

x z P y z P transSϕδ δ ϕ⎯⎯⎯→

ϕ

{ }({ }. ,) (, (,))
TAU

P P transSτ ϕτ ϕ δ δ ϕ⎯⎯⎯→
 (,) (', ')

(,) (', ')

P P
SUM L

P Q P

α

α

δ δ

δ δ
−

+

⎯⎯→
⎯⎯→

(. ,) (', ')
 or (,)

([] . ,) (', ')

P P
MAT x x eval Prop valueset true

P P

α

α

α δ δ
φ

φ α δ δ
= =

⎯⎯→
⎯⎯→

 means

(,) (', ')
() ()

(| ,) (' | , ')

P P
PAR L bn fn Q

P Q P Q

α

α

δ δ
α

δ δ
− ∩

⎯⎯→
⎯⎯→

= ∅

{ , '}

{ } (){ '}(,) (', (,)) (, ') (', (', '))

(| , '') (' | ', (('',), '))

x y x yP P transS Q Q transS
COMM L

P Q P Q transS transSτ ϕ ϕ

ϕ ϕδ δ ϕ δ

δ δ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→
< >

−
⎯⎯⎯→

δ ϕ

ϕ ϕ

{ , '}

{ } (){ '}(,) (', (,)) (, ') (', (', '))
()

(| , '') ()(' | ', (('',), '))

x z x zP P transS Q Q transS
CLOSE L z fn Q

P Q new z P Q transS transSτ ϕ ϕ

ϕ ϕδ δ ϕ δ δ ϕ

δ δ ϕ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→
< >

− ∉
⎯⎯⎯→ ϕ

(,) (', ')
()

(() ,) (() ', ')

P P
RES z n

new z P new z P

α

α

δ δ
α

δ δ
∉

⎯⎯→
⎯⎯→

{ }

{ }

(,) (', (,))

(() , ') (', (',))

x z

x z

P P transS
OPEN z x

new z P P transS

ϕ

ϕ

δ δ ϕ

δ δ ϕ

< >

< >
≠

⎯⎯⎯→
⎯⎯⎯→

(,) (', ')

(! ,) (' | ! , ')

P P
REP ACT

P P P

α

α

δ δ

δ δ
−

⎯⎯→
⎯⎯→

{ } (){ '}

{ , '}

(,) (', (,)) (, ') ('', (', '))

(! , '') ((' | '') | ! , (('',), '))

x y x yP P transS P P transS
REP COMM

P P P P transS transS

ϕ ϕ

τ ϕ ϕ

δ δ ϕ δ

δ δ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→

< >

−
δ ϕ

ϕ ϕ

{ } (){ '}

{ , '}

(,) (', (,)) (, ') ('', (', '))
()

(! , '') (()(' | '') | ! , (('',), '))

x z x zP P transS P P transS
REP CLOSE z fn P

P new z P P P transS transS

ϕ ϕ

τ ϕ ϕ

δ δ ϕ δ δ ϕ

δ δ ϕ

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→

< >

− ∉
ϕ

In above semantics, ϕ and δ are shortcut notations for StateExpr and SysState
respectively; α denotes an arbitrary action in state π calculus; fn and bn are used to
indicate the set of all free names and bounded names. Note that state π calculus does
not tend to change the fundamental definition of Structural Congruence in π calculus,
and reduction rules can also be extended similarly for state π calculus. Therefore,
above operational semantics in state π calculus can be regarded as a further extension
to the ones in π calculus for integrating system states with actions and management of
these states.

2.4 State bi-simulation

Bi-simulation analysis is an important tool in process algebras to define process
equivalence. In state π calculus, system states and their changes need to be further

considered into the original strong (weak) bi-simulation relation in π calculus to
define (observable) behavior equivalence between state/action hybrid systems. Denote
⇒τ to be a transition sequence triggered by invisible action τ. Denote ⇒a and ⇒τ to
be a transition sequence triggered by arbitrary action a where a≠τ and a=τ
respectively; Denote ⇒ to be either ⇒a or ⇒τ and ⇒a to be the abbreviation
for . A hybrid bi-simulation is defined below as a bi-simulation relation
which considers both system states and actions.

a
⎯⎯→⇒ ⇒

Definition 6 (hybrid Bi-simulation). A symmetric binary relation R is a strong (weak)
hybrid bi-simulation relation, iff for any (P, SysStateP)R(Q, SysStateQ) and substitution
σ: If (Pσ , SysStateP) a

⎯⎯⎯→ (P’, SysStateP’) (bn(a)∉fn(Pσ , Qσ)),∃Q’ s.t. (Qσ , SysStateQ)
a

⎯⎯⎯→ (Q’, SysStateQ’),(P’, SysStateP’)R(Q’, SysStateQ’) and SysStateP’= SysStateQ’.

As an independent dimension for system description, we can also exclusively follow
the lead of states to define equivalence between systems.

Definition 7 (state simulation). A symmetric binary relation R is a state simulation
relation, iff (P, SysStateP)R(Q, SysStateQ) and any substute σ, if (Pσ ,
SysStateP) a

⎯⎯⎯→ (P’, SysStateP’) (bn(a)∉fn(Pσ , Qσ)), ∃Q’ s.t. (Qσ , SysStateQ)⇒(Q’,
SysStateQ’) and SysStateP’ ≺ SysStateQ’.

Definition 8 (state bi-simulation). A symmetric binary relation R is a state
bi-simulation relation, iff R and its reverse are both state simulation relations.

3 Formal semantics of grid workflows

3.1 Formalism of services

Figure 1 Job State Abstractions for Grid Services

As shown in Figure 1, each service can be pended for staging in required input data.
After the service is executed (i.e. being active), it stages out the results and cleans any
unnecessary data, or otherwise the execution of service can fail. Therefore, based on
state π calculus the service formalism in grid workflows is as follows:

{ . ,{ }}; # { . ,{ }}
{ . ,{ }}; # { . ,{ }}
{ . ,{ }};

STATE srvactive A Status Active STATE srvstagingin A Status StagingIn
STATE srvpending A Status Pending STATE srvfailed A Status Failed
STATE srvexit A Status Exit S

= =
= =

=

1 2

1 1

 { . ,{ }}
{ . ,{ }}; # { ,{ }}

(, , , , , ,)

((:){(,

i def

TATE srvstagingout A Status StagingOut
STATE srvcleaning A Status Cleaning STATE execsrv ExecutingSrv A

ServiceA port execute set get succ fail port

new ack port v t

=
= =

=

+

;

1

1
1

3 2

2

),(,)}.(|

..... . {(,)}. (: , , |

((:).(| . {(,), (--,)})

{(,)}. {(,

n
ii

n

srvpending execsrv StageIn

ack ack ack srvactive new t f execute v t t f

t res t StageOut ack port srvexit execsrv succ

f srvfailed port srvexi

=

−

++

+ < >

+ < > +

+ +

∏

2

3

), (--,)}))))

(,) (:){(,)}. {(,)}

(, ,)

(: {(,)}. | {(,)}.))

def

def

t execsrv fail

StageIn get ack get x t srvstagingin ack srvpending

StageOut set ack res

new res clean set res t srvstagingout clean clean srccleaning ack

< >

= + +

=

< > + +

In the above formalism for a service A, ‘#STATE’ is a reserved word for state
declarations. According to the syntax of state π calculus, when no state declaration is
predefined, states can also be alternatively defined in the declaration of actions. Free
names port, set and get are channels for interaction of services and variables (their
definition will be given in the next section). Since there are cases in grid systems
when concurrent access to expensive resources is not desired, nested process
definition is used in the formalism of ServiceA. The purpose is to allow the creation of
a new instance of process ServiceA only when the old instance of ServiceA is finished.
When multiple instance of a service is desired, the nested position of process ServiceA
should be changed as follows:

(, , , , ,)
((){(,), (,)}.(...... |)

ServiceA port execute set get succ fail
new ack port v srvpending execsrv ServiceA

=
+ ++

3.2 Formalism of activities

Grid workflows adopt four basic activities from BPEL4WS: Receive, Send, Invoke
and Assign. In BPEL4WS, data interactions between activities can be realized by
sharing of variables. Consequently, activities of Receive and Send can be used to
model data passing in a grid workflow and the activity of Assign can be used to model
specific data reproduction. Their formal definitions are provided as follows:

1 2 1 2

2

2 2 2

(, , , ,) . (:). : . ().

(, , ,)

{ ,{ ,{ }}}. (:){--,{ ,{ }}}. : .

(,

def

def

Invoke start get port port done start get v t port v t port s done

Receive start port set done

start msgPort port port v t msgPort port set v t done

Reply start get

= < >

=

++ < >

1 1

1 2 1 2

0

0 1

, ,) . (:). : .

(, , ,) . (:). : .

(,) .

 (,)

(,) (:){ ,{

def

def

def

V def V

V def

port done start get v t port v t done

Assign start get set done start get v t set v t done

Empty start done start done

Var Var set get

Var set get set x t V

= < >

= < >

=

=

= ++ 1 1 1

1 1 2 2 2 2 1 2

1 1 1 0

1

. ,{ }}}. (, ,)

(, ,) (:){ ,{ . ,{ }}}. (, , ,)

 : {--,{ . ,{ }}}. (,)
......

(, ,

V

V def V

V

V n

bSize x Var set get x

Var set get x set x t V bSize x Var set get x x

get x t V bSize x Var set get

Var set get x

= ++ +

< >

1 1,...,) : {--,{ . ,{ }}}. (, , ,...,)n def n n n V n n 1x get x t V bSize x Var set get x x− −= < >

Here the value access and assignment in Variables are realized by channels get and
set. The Variable process implements a variable stack with arbitrary depth. In a real
grid workflow, the definition of Variable can also be simplified as follows if its depth
is 1.

(, ,) : . (, ,)

(:){ ,{ . ,{ }}}. (, ,)
V def V

V

Var set get x get x t Var set get x

set y t V CurrentVal y Var set get y

= < > +

++

Moreover, all the above activities use the channel of port to trigger the execution of a
desired service and obtain its result. Note that in BPEL4WS, ‘link name’, ‘partner
name’ and ‘operation name’ are three elements in its activities to define the access of
a service. A service in grid workflows can thus be first defined as an abstract one and
later refined to an executable one by using a service mapping/selection mechanism, as
described in [33] and [34]. Therefore the port channel here is used to indicate both an
abstract service interface (e.g. an abstract functional definition of the service), and a
concrete service invocation interface (e.g. via WS-Addressing). The service mapping /
selection in grid workflows is further discussed in the next section.

3.3 Service selection

There are often scenarios when multiple candidate services are available to implement
a desired abstract function. Semantics of service selection need to be formally defined.
A simple way to define interaction with one of candidate services is direct
composition of their corresponding state π calculus processes. For the invocation of
1-out-of-n services, the implementation is as follows:

1| | | nClosedInvocation Invoke Service Service=

The above processes of Invoke, Service1, …, Servicen share the same port channel. In
this way multiple services compete for a single Invoke activity. The competition is

resolved by a non-deterministic choice from n services. However, when a specific
service selection strategy needs to be explicitly modeled, an addition process for
service selection should be implemented:

1 11 12 1 2 11 12

11 12 1 2 1 2 1

(, , ,..., ,) , .
......

(, , ,..., ,) , .

sel n n def sel

n sel n n def sel n n

def

Selection port port port port port port port port Selection

Selection port port port port port port port port Selection

Selection Se

= < >

= < >

=

2

1

1 2 1 2

1

'(, , , , ,)

. (:). (,). : . ().
 ' | | | |

sel def

sel

def n

lection n

Invoke start get port done fail succ

start get v t port p p p v t p s done
ClosedInvocation Invoke Service Service Selection

=

< >

=

 is a predefined constant

The process of Selection stores all port channels for the desired abstract function. It
selects these ports sequentially by their orders in a queue. The order of the ports, on
the other hand, can be decided by the performance of different corresponding services
such as QoS, execution time, etc. Moreover, the new invocation process Invoke’ no
longer interacts directly to a specific service by the given port. It queries the Selection
process first to get what exact service it should invoke by the naming passing
capability of π calculus. The interaction between Invoke’ and the target service can
thus be dynamically formed.

3.4 Formalism of workflows

Grid workflows adopt six BPEL4WS control structures: Sequence, While, Flow,
Switch, Pick and Link. The formalism of these structures is as follows.

The Sequence structure defines sequential relations among execution in a grid
workflow:

2 2 1

1 2

1 2 1 2

((), ())

 ; ()({ / } |
d s

def def Act Act Act

Sequence fn Act fn Act

)Act Act new start start done Act Act= =

The While structure defines repeat invoking of one or a group of services in a grid
workflow under certain conditions:

((), ,) (.
([(,{ })](| | .(|)) [(,{ })]))

sd while while def Act Act while

Act Act while while

While fn Act start done new start done start
eval C t start Act done start While eval C f done

=

+

The Flow structure defines synchronization of parallel execution and completion
among service activities and structures in a grid workflow:

1 1

1

1

1

((), ..., (), ,)

(... ... ')
(. | | | | | '.)

(, ...,

m m

sd sd m Flow Flow def

Act Act Act Act

Flow m Flow

Act

Flow fn Act fn Act start done

new start start done done ack ack
start Starter Act Act Acker ack done

Starter start start

=

1

1 1

) | |
(, ..., , , ') . | | . | '

m m

m m

Act def Act Act

Act Act def Act Act
m

start start
Acker done done ack ack done ack done ack ack ack ack

=

=

The Switch structure defines a conditional choice structure in a grid workflow:

1 2 1

1 1

1 2

1 1 1

1

((), (), ,) (

(.([(,{ })] {(,{ ,{ }})}| | .

[(,{ })

2
)sd sd Switch Switch def Act Act Act Act

Switch Act Act Switch

Switch fn Act fn Act start done new start start done done

start eval C t start Branch Act Act done done

eval C f ev

=

++ +

∧
2 22 2 2(,{ })] {(,{ ,{ }})}| | .))Act Act Switchal C t start Branch Act Act done done++

The Pick structure defines execution selection among different services and structures
in a grid workflow based on message trigger:

1 2 1 2

1

1 2 1 2

1 1 1

1

((), (), , , , ,)
()(.

({ ,{ ,{ }}}.

{(,{ ,{ }}), (--,{

sd sd p p Pick Pick def

Act Act Act Act Pick

p p

Act

Pick fn Act fn Act port port timeout start done
new start start done done start

port msgPort port

start Event Act msgPort

=

++

++
1

2 2

1 1 1

2 2 2

2 2 2 2

,{ }})} | | .

{ ,{ ,{ }}}.

{(,{ ,{ }}), (--,{ ,{ }})} | | .)

{(,{ ,{ }})}.)

p Act Pick

p p

Act p Act Pick

Pick

port Act done done

port msgPort port

start Event Act msgPort port Act done done

timeout Event Timeout done

+

++

++ +

++

On the other hand, the Link structure imposes synchronization constraints on activities
in a grid workflow. Each Link has a source and target activity, which restricts that the
target activity can only be executed after the source activity is done. Besides, when a
‘death-path’ is detected in a grid workflow (e.g. if a branch in a Switch to which the
activity A belongs is not selected), negative tokens should be propagated through all
outgoing Links of A (i.e. A is the source activity of these Links). The semantics are
also known as the Death-Path Elimination in BPEL4WS. The formalism of Link is
given in the following:

 , ,

(, , ,) (, , ,)

(, , ,) . . 1,...,

() (, defin in links

i in in def i in in

i in in def in in

done neg done deathpath

Link done neg ack nack EvalTransCondition done neg ack nack

EvalTransCondition done neg ack nack done ack neg nack i n

Links new

=

= + =

=

1

)

(| ... | | .(... .(. .)... .))

() .(. (, .(

.()(| | .
def

n links

n

links

Act Act Act Act

ack nack

Link Link ack ack done nack deathpath nack deathpath

ActWithLinks freeN start done new t f evaljoin t f

t new start done start Act done

+ +

= < >

, ,

.)

{ ,{ ,{ }}}.)) .)

{ , , ,
 , , , ()}

,out

out

out

links out

sd

done done

f Exception Act throw joinfailure deathpath neg

freeN start done done done neg deathpath
evaljoin fault joinfailure fn Act

+

++ < > +

=

∏
∏

In the above state π calculus process, ActivityWithLinks indicates the implementation
of the four types of activities introduced in Section 3.2 when Link is considered.
ActImpl is a shortcut notation for detailed formalism of Receive, Send, Assign, Invoke
activities in Section 3.2. In Activity-WithLinks, the start of an activity is subject to
completion of its previous activity (donepreceding) and incoming Links (donelinks).
The process then starts to evaluate execution conditions for the corresponding activity
(evalJoin). The activity will be normally executed if all conditions are satisfied, or
otherwise a JoinFailure exception is thrown by the ThrowAct process (see its
implementation in the next section) and the exception is recorded into the Exception
variable in a grid workflow. Note that in the above Link processes, for each received
negativein token, it will pass the information via the deathpath channel such that the
negativeout token can continue to be propagated to outgoing Links of the
corresponding activity.

3.5 Formalism of handling exceptions and compensations

Due to the existence of dynamic interactions and long-running services in grid
applications, handling of exceptions and compensations is a critical issue in grid
workflows. To correctly depict this aspect of semantics in grid workflows, the Invoke
activity needs to be further implemented as follows:

1 2

1 2

_ (, , , , , , , ,)

. (:). : . ().(

[] {(,{ ,{ }})}. [])

(,

S defInvoke WithFault start get port port done throw invokefailure fail succ

start get v t port v t port s

s fail Exception S throw invokefailure s succ done

ThrowAct throw faul

τ

=

< >

= ++ < > + =

) ().deft throw failttype fault failttype= < >

When the invocation of a service returns a failure ([u=fail]), the ThrowAct process
throws an invokeFailure exception and records it into the state Exception. On the
other hand, the FaultHandling process is responsible for capturing and processing the
corresponding exceptions. The channel fault is used to receive the exception that
ThrowAct throws out. If the received exception type can be processed by
FaultHandling (here type1, …, typen can be the previously mentioned invokefailure,
joinfailure, or other user customized exceptions), corresponding Activity is executed
to deal with the exception (detailed implementation of Activity is omitted here).
Otherwise FaultHandling sequentially invokes compensation activities to compensate
the failure caused by the exception. This is defined in grid workflows as:

1

1 1

1

1

(, , , (), ..., ())
().(...)

([](|) ... [](|)

[]
i

s s def

n

n n

i

n

n

type

FaultHandling faulttype type compensate fn Act fn Act
fault faulttype new start start

faulttype type start Act faulttype type start Act

faulttype type

=

= + + =

=

+

1 1, .. ()

(, ()) .

(()(| | .

.

c
j j sd j def j

c c c c c
j j j j j

mtype i n compensate compensate

m
CompensationHandler compensate fn Act compensate

new start done start Act done CompensationHandler

∈ ≠

=

∑
 is a finite constant

)) 1j

)

j m≤ ≤

3.6 Formalism of global termination

It is required to terminate all service activities that are being (or waiting to be)
executed when certain conditions become true (e.g. abnormality in the executing).
Different from the Cancellation Patterns proposed by Puhlmann [35], it requires all
activities monitor termination signals but rather withdraw the waiting for the service
invoke. Meanwhile, another global termination signal is required to ensure proper
termination of all activities. Formalism of global termination is described in the
following:

1 2 1 2

2 2

1

(, , , ,) .[] (:).[] : .[] ().[]

(, , ,) .[] (:).[] : .[]

(, , ,) .[

def

def

def

Invoke start get port port done start get v t port v t port s done

Receive start port set done start port v t set v t done

Reply start get port done start

φ φ φ φ

φ φ φ

φ

= < >

= < >

= 1

1 2 1 2

] (:).[] : .[]

(, , ,) .[] (:).[] : .[]def

get v t port v t done

Assign start get set done start get v t set v t done

φ φ

φ φ φ

< >

= < >

The condition φ equals to eval(Exception, {}). Based on the semantics of state π
calculus, the process behavior is null(0) when the condition is not satisfied.
Termination of a process is easily achieved via global management of state π calculus.

4 Formal verification of grid workflows

4.1 State labeled transition system (SLTS)

Management of actions and behaviors with state π calculus are achieved via the state
label transition system. The application of SLTS leads to complete reasoning of grid
workflow behaviors in its state space.

The first critical step is the transform from state π calculus formal semantics to the
corresponding SLTS. This step is used not only to complete analysis of proposition
properties of grid workflows, but also to enable existing model checking techniques
incorporated into the framework of state π calculus seamlessly.

In previous sections, it is mentioned that basic π calculus can be interpreted using a
general label transition system. In Ferrari [36] and Pistore’s [37] work, it is proven
that any finite π calculus process can be transformed to its equivalent general label
transition system via pre-transition semantics. This is actually a transformation from a
name-based to nameless formal theory. For state π calculus, although its operational
semantics is also based on pre-transition semantics (see Section 2.3), additional
extensions to SLTS have to be processed, e.g. creating and managing state labels
when action labels are created as processes evolve. This is the dual label character of
SLTS (action labels + state labels). Some critical rules of SLTS are summarized in
Figure 2. Operational semantics in Figure 2 are already introduced in Section 2.3.

OUT x <y>.P
δ

P
(,)transState δ ϕ

TAU .Pτ
δ

P
(,)transState δ ϕ

action = τ
paralist = {}
type = tau

INP
x(z).P
δ

{y1/z}P
(,)transState δ ϕ

action = x
paralist = {y1}
type = input
……

action = x
paralist = {yn}
type = input {yn/z}P

(,)transState δ ϕ

{*/z}P
(,)transState δ ϕ

action = x
paralist = {*}
type = input

P’|Q’
(,)transState δ ϕ′′

action = x
paralist = {y}
type = tau

P’|Q’
(,)transState δ ϕ′′

P|Q
δ

action = x
paralist = {y}
type = tau

{y1, y2,……, yn}=fn(x(z).P)
* is a new instance name after input

P|Q
δ

action = x
paralist = {y}
type = output

1
1 1(,) (,)......(,) (,)n

n nP P P Pααδ δ δ δ⎯⎯→ ⎯⎯→

:: | () |
1, 2, ,

i i i i ix y x y
i n
α τ= < >

=

P1

1δ

Pn

nδ

P
δ

action = x1
paralist = {y1}
type = input/output/tau

……

action = xn
paralist = {yn}
type = input/output/tau

SUM-L,PAR-L,RES,OPEN,REP-ACT,REP-COMM,REP-CLOSE can be derived.

MULTI-TRANS

CLOSE-L

COMM-L

Figure 2 SLTS Semantic Transformation Rules

A complete transformation algorithm is illustrated in the flowchart of Figure 3.

TransSys(SrvFlow,SysStateinit)
Init States and Processes

Input(P,S)
Check and analyze state π

calculus semantics
ParseStatePi(P,S)

Decomposition of concurrent
and contradictory sub-processes

in target state π calculus
DecompStatePi(P)

For all sub-processes, find out all transitable
actions using extended operational

semantics of state π calculus
GetTransitable(P,S)

For each Act∈{Act1,……,Actn}

One transition of Act
StepDeduce(P,S,Act)

Record the transited Act
Record(Act)

Get states and processes after the
transition using extended operational

semantics of state π calculus
Get(P*,S*)

Do current states
and processes

happen before?
IsSameNode(P*,S*)

Record states and processes after
the transition
Record(P*,S*)

Yes

No

Figure 3 Flowchart for SLTS Transformation

4.2 Structural verification

Structural verification is a fundamental stage in formal verification of grid workflows.
Reachability and terminatability are two aspects considered in structural verification.
More specifically, given the context of a grid workflow, reachability checks whether
there is some service that cannot be arrived due to restraints in the given service set;
terminatability checks whether a given termination condition can be met.

Definition 9 (execution). A tuple (α,β) is defined as an execution of state π calculus
(P,S), if:

 α is an ordered finite state π calculus action sequence α={π1{StateExpr1},
π2{StateExpr2},…,πn{StateExprn}};

 β is a finite state sequence β={S1, S2,…, Sn} corresponding to α;
 , in

which (Pi, Si) ≠ (Pj, Sj), (1≤ i≤ n, 1≤ j≤ n, i ≠ j）

1 1 2 2 { } { } { }
1 1 2 2(,) (,) (,)...... (,)n nStateExprStateExpr StateExpr

n nP S P S P S P Sππ π⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

Here we call P and S initial processes and states, Pn and Sn end processes and states.

Definition 10 (acceptable execution). A tuple (α,β) is an acceptable execution of
state π calculus process (P,S), if:

 (α,β) is an execution of (P,S);
 There is no other execution (α’,β’), where α⊂α’ and β⊂β’.

So here in state π calculus, an accepted execution of (P,S) is the longest transition
process without looping in its corresponding SLTS.

Definition 11 (strong state assertation). For (P,S) ⎡Sc⎦(P’,S’), ∀(α,β), which are
acceptable executions of (P,S), ∀(P,S) α*(P*,S*), where α*⊂α, if P*≡P’ and S* S’,
there is S* Sc. In this situation, the state π calculus process (P,S) satisfies a strong
state assertation Sc defined on the targeting process (P’,S’), (P,S) ⎡Sc⎦(P’,S’).

Definition 12 (weak state assertation). ∃(α,β), which are acceptable executions of
(P,S), ∃(P,S) α*(P*,S*), where α*⊂α, if P*≡P’ and S* S’, there is S* Sc. In this
situation, the state π calculus process (P,S) satisfies a weak state assertation Sc
defined on the targeting process (P’,S’), (P,S) 〈Sc〉(P’,S’).

Definition 13 (reachability). Given a state π calculus of a grid workflow SrvFlow
and its initial state SysStateinit, a set of service SRV={Srv1,…, Srvn} is reachable, if
∀Srv∈SRV, (SrvFlow, SysStateinit) 〈Srv.Status=Exit〉(Φ, true).

Definition 14 (terminability). Given a state π calculus of a grid workflow SrvFlow
and its initial state SysStateinit, SrvFlow is terminatable under termination conditions
TC, if (SrvFlow, SysStateinit) ⎡Tc⎦ (Φ, true).

4.3 Semantic restraint verification

Semantic restraint verification of grid workflows are used to ensure that the model we
use is not contradictory to related restraints. Some of these restraints can be checked
by its intuitive syntax (for example, in BPEL4WS Link structure can’t form into a
loop). In this work, two types of semantic restraints that cannot be directly verified
from its syntax are focused, message competitive confliction and variable garbage
collection.

More specifically, it’s explicitly announced in BPEL4WS that any service instance
shouldn’t trigger two or more receiving activities to monitor one event sent from a
same port to avoid message conflictions. Variable garbage collection means in the
execution process of grid workflows, all temporary variables should be null at the end
to ensure no extra message and data.

Definition 15 (message competitive confliction). Given a state π calculus of a grid
workflow SrvFlow and its initial state SysStateinit, no message competitive confliction
exists during its execution, if ∀msgPort during transitions of SrvFlow,
(SrvFlow,SysStateinit) ⎡|range(*.msgPort)|=0 ∨ |range(*.msgPort)|=1⎦(⎯, true).

Definition 16 (variable garbage collection). Given a state π calculus of a grid
workflow SrvFlow and its initial state SysStateinit, no variable garbage exists during its
execution, if ∀bSize during transitions of SrvFlow, (SrvFlow,SysStateinit)
⎡|range(*.bSize)|=0⎦(Φ, true).

5 GridPiAnalyzer

As discussed in previous sections, the correctness and reliability assurance is a critical
task for QoS supports of grid workflows. More specifically, the correctness of a grid
workflow refers to that it must satisfy all the desired properties and constraints from
users; the reliability of a grid workflow refers to that it will loyally fulfill users’
requirements without any exceptions during the execution. Based on the formal
method for grid workflow QoS proposed in this work, a system implementation is
introduced in this section, followed by a detailed case study.

5.1 System implementation

Briefly speaking, model checking consists of three steps: system modeling, property
specification and property verification. State π calculus is used as a formal language
for modeling grid workflows in this work, and the Linear Temporal Logic (LTL) is
used as the property specification language. An automatic verification prototype,
namely the GridPiAnalyzer, for grid workflows models is implemented. State π
calculus semantics of grid workflows are transformed in GridPiAnalyzer and
verification is actually carried out using a mainstream open source engine NuSMV2
[38]. Final results are also additionally encapsulated in GridPiAnalyzer. User
interfaces based on the Eclipse platform are illustrated in Figure 4.

Figure 4 GridPiAnalyzer User Interfaces

JavaCC is used in GridPiAnalyzer to check the syntax and model compiling.
Correspondently, when it finished compiling, GridPiAnalyzer caches grid workflows
state π calculus semantics in the meta-model included in Figure 5.

Figure 5 The Meta-Model of State π Calculus Syntax

SLTS transferring, state ascertaining and formal verification are then carried out.
Different output results are encapsulated in XML files. It includes criteria of grid
workflow models to be tested, process logics to be tested, final results and counter
examples.

5.2 A case study – gravitational wave data analysis

5.2.1 Application background

Gravitational Waves (GW) are produced by the movement of energy in mass of dense
material which fluctuate space-time structure. The analysis of unknown mass
movement and formulation in the universe is stemmed from its detection. But the
difficulty is that the detection and analysis of them relates to multiple tasks and
massive data.

LIGO (Laser Interferometer Gravitational-Wave Observatory) includes three most
sensitive GW detectors in the world, jointly built by Caltech and MIT. LIGO

Scientific Collaboration (LSC) includes over 500 research scientists from over 50
institutes all over the world who are working hard on LIGO data analysis for GW
detection. LIGO produces one terabyte of data per day and LIGO data analysis require
large amount of CPU cycles. The LIGO data grid [6] provides such a computing
infrastructure to integrate petabytes of data storage capability and thousands of CPUs
and enable research collaboration cross multiple institutes.

A typical example of a grid workflow for LIGO data analysis can be found in [26].
Figure 6 includes a Condor DAGman script for inspiral GW search and its
visualization.

JOB initdata initdata.sub
RETRY initdata 0
JOB tmpltbankl1 inspiral_pipe.tmpltbank.sub
RETRY tmpltbankl1 0
VARS tmpltbankl1 macroframecache="cache/L-791592854-791607098.cache" macrochannelname="L1:LSC-AS_Q" macrocalibrationcache="cache_files/
calibration.cache"
JOB tmpltbankh1 inspiral_pipe.tmpltbank.sub
RETRY tmpltbankh1 0
VARS tmpltbankh1 macroframecache="cache/H1-791592855-791607099.cache" macrochannelname="H1:LSC-AS_Q" macrocalibrationcache="cache_files/
calibration.cache"
JOB tmpltbankh2 inspiral_pipe.tmpltbank.sub
RETRY tmpltbankh2 0
VARS tmpltbankh2 macroframecache="cache/H2-791592856-791607100.cache" macrochannelname="H2:LSC-AS_Q" macrocalibrationcache="cache_files/
calibration.cache"
JOB inspirall1 inspiral_pipe.inspiral.sub
RETRY inspirall1 0
VARS inspirall1 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="L1-TMPLTBANK-791592862-2048.xml" macrochannelname="L1:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/L-791592854-791607098.cache" macrosnrthreshold="7.0"
JOB trigbankh11 inspiral_pipe.trig.sub
RETRY trigbankh11 0
VARS trigbankh11 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H1:LSC-AS_Q"
JOB trigbankh12 inspiral_pipe.trig.sub
RETRY trigbankh12 0
VARS trigbankh12 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H1:LSC-AS_Q"
JOB inspiralh11 inspiral_pipe.inspiral.sub
RETRY inspiralh11 0
VARS inspiralh11 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="H1-TMPLTBANK-791592863-2049.xml" macrochannelname="H1:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H1-791592855-791607099.cache" macrosnrthreshold="7.0"
JOB inspiralh12 inspiral_pipe.inspiral.sub
RETRY inspiralh12 0
VARS inspiralh12 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="H1-TMPLTBANK-791592864-2050.xml" macrochannelname="H1:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H1-791592855-791607099.cache" macrosnrthreshold="7.0"
JOB sincalih1 inspiral_pipe.sinca.sub
RETRY sincalih1 0
VARS sincalih1 macroframecache="cache/L-791592854-791607098.cache, cache/H1-791592855-791607099.cache"
JOB thincalih1 inspiral_pipe.thinca.sub
RETRY thincalih1 0
VARS thincalih1 macroframecache="cache/L-791592854-791607098.cache, cache/H1-791592855-791607099.cache"
JOB trigbankh21 inspiral_pipe.trig.sub
RETRY trigbankh21 0
VARS trigbankh21 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H2:LSC-AS_Q"
JOB trigbankh22 inspiral_pipe.trig.sub
RETRY trigbankh22 0
VARS trigbankh22 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H2:LSC-AS_Q"
JOB trigbankh23 inspiral_pipe.trig.sub
RETRY trigbankh23 0
VARS trigbankh23 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H2:LSC-AS_Q"
JOB InspVeto inspiral_pipe.veto.sub
RETRY InspVeto 0
VARS InspVeto macrocalibrationcache="cache_files/calibration.cache" macrochannelname="L1:LSC-AS_Q"
JOB inspiralh21 inspiral_pipe.inspiral.sub
RETRY inspiralh21 0
VARS inspiralh21 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="H2-TMPLTBANK-791592865-2051.xml" macrochannelname="H2:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H2-791592856-791607100.cache" macrosnrthreshold="7.0"
JOB inspiralh22 inspiral_pipe.inspiral.sub
RETRY inspiralh22 0
VARS inspiralh22 smacrocalibrationcache="cache_files/calibration.cache" macrobankfile="H2-TMPLTBANK-791592866-2052.xml"
macrochannelname="H2:LSC-AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H2-791592856-791607100.cache" macrosnrthreshold="7.0"
JOB thinca2lih1 inspiral_pipe.thinca2.sub
RETRY thinca2lih1 0
VARS thinca2lih1 macroframecache="cache/L-791592854-791607098.cache, cache/H1-791592855-791607099.cache"
JOB thinca2lih2 inspiral_pipe.thinca2.sub
RETRY thinca2lih2 0
VARS thinca2lih2 macroframecache="cache/L-791592857-791607101.cache, cache/H1-791592855-791607099.cache"
JOB returnres returnres.sub
RETRY returnres 0

PARENT initdata CHILD tmpltbankl1 tmpltbankh1 tmpltbankh2
PARENT tmpltbankl1 tmpltbankh1 tmpltbankh2 CHILD inspirall1
PARENT inspirall1 CHILD trigbankh11 trigbankh12 thincalih1
PARENT trigbankh11 CHILD inspiralh11
PARENT trigbankh12 CHILD inspiralh12
PARENT inspirall1 inspiralh11 inspiralh12 CHILD sincalih1
PARENT sincalih1 CHILD thincalih1 trigbankh21
PARENT thincalih1 CHILD trigbankh22 returnres
PARENT trigbankh21 CHILD inspiralh21
PARENT trigbankh22 CHILD inspiralh22
PARENT inspiralh21 inspiralh22 CHILD thinca2lih1
PARENT thinca2lih1 thincalih1 CHILD returnres

Figure 6 An Example Grid Workflow for GW Search

5.2.2 Grid workflow modeling

In this section, an example of state π calculus semantics for modeling GW data
analysis workflows is provided in Figure 7. It is a simplified segment of the workflow
described in Figure 6.

{(. ,{ }),
 (. ,{ }), (. ,{ })};

STATE InitS Inspiral status NotStarted
sInca status NotStarted thInca status NotStarted

=

1 2

1 2

1 2

1 2

(, , , ,)
. (). . .

(, , , ,)
. (). . .

Inspiral Insp Insp Insp Insp Insp def

Insp Insp Insp Insp Insp

sInca s s s s s def

s s s s

Invoke start get port port done
start get v port v port done

Invoke start get port port done
start get v port v port d

=

< >
=

< >
1 2

1 2

(, , , ,)
. (). . .

(, ,) . (, ,)
(){ ,{ .

s

thInca th th th th th def

th th th th th

Insp Insp Insp def GWD Insp Insp Insp

Insp

one
Invoke start get port port done

start get v port v port done
Var set get inspd get inspd Var set get inspd

set y Insp C

=

< >
= < >

+ + ,{ }}}. (, ,)
(, ,) . (, ,)

(){ ,{ . ,{ }}}. (, ,)
(, ,)

Insp Insp Insp

sInca s s def s sInca s s

s sInca s s

thInca th th d

urrentVal y Var set get y
Var set get sIncad get sIncad Var set get sIncad

set y SInca CurrentVal y Var set get y
Var set get thIncad

= < >
+ +

= . (, ,)
(){ ,{ . ,{ }}}. (, ,)

() ()
(| | |

ef th thInca th th

th thInca th th

def Insp s th

Inspiral sInca thInca

get thIncad Var set get thIncad
set y ThInca CurrentVal y Var set get y

SynPar freeN new done start start
Invoke Invoke Invoke Syn

< >
+ +

=

1 2 1 2

1 2

)
{ , , , , , , ,

 , , , , }
(, ,) .(|)

Insp Insp Insp Insp s s s

th th th s th

Insp s th def Insp s th

ParImpl
freeN start get port port get port port

get port port done done
SynParImpl done start start done start start
ServiceFlow

=

=
= ((, , , , , ,))

({ , }.(| | | | |
| | | |))

def Insp sInca thInca Insp sInca thInca

Insp Insp sInca thInca

Insp sInca thInca s th

new fn SynPar Var Var Var Service Service Service
InitS start SynPar Var Var Var

Service Service Service done done
τ +

Figure 7 An Example State π Calculus Semantics for GW Data Analysis

Workflows

5.2.3 Logic verification for grid workflows

The analysis of GW data involves multiple tasks and large amount of data. Because of
the large scale scripts produced by LIGO data analysis tasks which in general may run
from days to months, ensuring correctness and effectiveness of workflow structures
and logics become critical which can be implemented using GridPiAnalyzer.

The GW detection is a complex task. To distinguish potential GW signals from noises,
the whole process can be categorized into four critical logics. Model checking in state
π calculus is used to verify these logics. As previously mentioned, model checking is
a formal verification tool to analyze expected sequential logics be true or not in finite
state system model. Structural verification and formal semantics restraints description
of the four groups of LTL logics are listed below.

Logic 1 (Operations after creation of template banks): In any circumstances, once
a template bank (TmpltBank) is created, two critical following steps: Matching with
expected waves (Inpiral) and optimizing the matching (TrigBank) should be
conducted to ensure effectiveness of data analysis.
1) G (_ 1. ((F _ 1.) (F _ 1.)))TmpltBank H Exit TrigBank H Exit Inspiral H Exit→ ∧
2) G (_ 2. ((F _ 2.) (F _ 2.)))TmpltBank H Exit TrigBank H Exit Inspiral H Exit→ ∧

Logic 2 (Working state restraints of interferometers): Because of different
sensitivity of different interferometers, two interferometers in Handford (H1 and H2)
are working simultaneously (InitData_H1H2), it is required that the process of
matching with the expected wave of H2 (Inspiral_H2) should be suspended, until
both the data in H1 and H2 pass the contingency analysis (sInca_L1H1 and
thInca_L1H1).
G ((_ 1 2.) ((_ 2. U _ 1 1.)
 (_ 2. U _ 1 1.)))

InitData H H Active Inspiral H Exit sInca L H Active
Inspiral H Exit thInca L H Active

→ ¬ ∧
¬

Logic 3 (Integrity of contingency analysis): The data collected by three
interferometers have to pass all contingency analysis (sInca, thInca and thIncall) to
minimize noise signal in final analysis. What’s more, sInca and thInca should be done
before thIncall.
((F _ 1 1. (_ 1 1. U _ 1 1.))
(F _ 1 1. (_ 1 1. U _ 1 1.)))

F _ 1 1.

 sInca L H Active thIncaII L H Exit sInca L H Active
thInca L H Active thIncaII L H Exit thInca L H Active
thIncaII L H Exit

∧ ¬ ∨
∧ ¬

∧

Logic 4 (Inevitability of contingency analysis): In any circumstance, once the
process of matching with expected waves is done or template banks are created,
contingency analysis should be done finally.
1) G (_ 1. (F _ 1 1.))Inspiral H Exit thIncaII L H Exit→
2) G (_ 2. (F _ 1 1.))Inspiral H Exit thIncaII L H Exit→
3) G (_ 1. (F _ 1 1.))TmpltBank H Exit thIncaII L H Exit→
4) G (_ 2. (F _ 1 1.))TmpltBank H Exit thIncaII L H Exit→

Reachability: (SrvFlow, SysStateinit) 〈Srv.Status=Exit〉(Φ, true), in which
Srv∈{initData_H1H2, tmpltBank_L1, tmplt Bank_H1, tmplt Bank_H2, Inspiral_L1,
Inspiral_H1, Inspiral_H1, TrigBank_H1, TrigBank_H2, sInca_L1H1, thInca_L1H1,

thIncaII_L1H1, thIncaII_L1H2, InspVeto, ReturnRes};
Terminatability: (SrvFlow, SysStateinit) ⎡ReturnRes.Status=Exit⎦(Φ, true);
Message competitive conflicts: no such restraints in this case study;
Variable garbage collection: (SrvFlow, SysStateinit) ⎡

 Ti

|range(*.bSize)|=0⎦(Φ, true).

In logics described above, Inspiral_H1.Exit is the abbreviation for
Inspiral_H1_1.Exit Inspiral_H1_2.Exit. This also applys to Inspiral_H2.Exit,
TrigBank_H1.Exit and TrigBank_H2.Exit. After the transition process with SLTS
mentioned above in GridPiAnalyzer, the number of reachable states in the final SLTS
of above GW search’s state π calculus semantics is 932(29.8642), the total number of
state proposition is 26, including 20 status variables of service activities. The total
time and memory usage of the above logic formulas and specific performance is
included in Table 1.

∨

Table 1 Performance Evaluation of Logic Verification Using GridPiAnalyzer

me (ms) Memory usage (MB)

Formalism of sta π calculus 78 N/A te

Calculating reachable states 1750 N/A

V 2297 N/A

creating an 1339 N/A

Verificatio 2125 37.237

Verifica 2688 37.412

Veri 40 36.512

Verifica 3156 37.410

V 2328 37.352

Verifica 25 37.389

Verificatio 2313 36.887

Ve 23 37.837

erification of state assertation

ti-cases

n of Logic 1.1

tion of Logic 1.2

fication of Logic 2

tion of Logic 3

94

erification of Logic 4.1

tion of Logic 4.2

n of Logic 4.3

00

rification of Logic 4.4 59

The final (InitData, TmpltBank, Insp
TrigBank, TrigVeto, ll, ReturnRes) IGO GW orkflow are
reachable, and under the condition TC = “ReturnRes.Status = Exit”, is terminatable.
This means the final analysis can be completed without variable garbage. Regarding
four grou ts m d above, in the LIGO GW search
workflow, Logics 1, 3 and 4 can be met, though the verification result shows that
there are anti-cases for Logic 2 which includes 51 state transitions. The workflow can
then be fu anti-cases and meet requirements of Logic 2.
This indi orkf ification. eneral it will
take long time and resources to execute thes ows, form tion could be
used to provide information in advance and improve grid workflow QoS.

 result shows that all services
thInca

iral, sInca, thInca,
 search win the L

ps of designated logic constrain entione

rther improved to avoid these
cates the motivation of grid w low ver

e workfl
 Since in g

al verifica

6 Conclusions

In this w is proposed, which facilitates modeling and
verifying al p grid workflows are captured and
both static and dyn formal verifica ues are d, including
structural correctness, ication satisfiability, logic satisfiability and consistency.
A grid rification environment, GridPiAnalyzer, is
implemen d ve n methods proposed in this work
and validated using a grid workflow for gravitational wave data analysis.

As shown valuation results, time and memory usage of
GridPiAnalyzer is still quite high. ance
optimization of grid flow verification using GridPiA
development of new formal methods for workflow decomposition based on standard
regions. Using regional analysis, complex
dramatically b tes and p each relaxed
region.

]. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, San Francisco, CA USA, 1998.

[2]. I. Foster, C. Kesselman and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Int. J. Supercomputer Applications, Vol. 15, No. 3, pp. 200-222, 2001.

[3]. I. Foster, C. Kesselman, J. M. Nick and S. Tuecke, “Grid Services for Distributed System

ual Data Grid
for Gravitational Wave Scientists”, in Proc. 11 IEEE Int. Symp. on High Performance

Virtual Control Room”, in Proc. 2 IEEE Int. Workshop on Challenges of Large
ications in Distributed Environments, pp. 4-11, 2004.

ork, a new state π calculus
of grid workflows. Some typic

amic
 specif

atterns in
tion iss investigate

workflow modeling and ve
ted using formal modeling an rificatio

 in Table 1 of performance e
Ongoing work is focused on perform

work nalyzer. These include

ity of workflow verification could be
ers of sta decreased due to smaller num rocesses in

Acknowledgement

This work is sponsored by Ministry of Education of China under the quality
engineering project for higher education “National Open Course Integrated Systems”,
and Ministry of Science and Technology of China under the national 863 high-tech
R&D program (grant No. 2006AA10Z237). This work is carried out in collaboration
with Prof. Erik Katsavounidis of LIGO (Laser Interferometer Gravitational-wave
Observatory) Laboratory at Massachusetts Institute of Technology.

References

[1

Organizations”,

Integration”, IEEE Computer, Vol. 35, No. 6, pp. 37-46, 2002.
[4]. J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, “GridFlow: Workflow Management for Grid

Computing”, in Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Tokyo,
Japan, pp. 198-205, 2003.

[5]. J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for Grid Computing”,
J. Grid Computing, Vol. 3, No. 3-4, pp. 171-200, 2005.

[6]. E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn, P. Ehrens, A.
Lazzarini, R. Williams and S. Koranda, “GriPhyN and LIGO, Building a Virt

th

Distributed Computing, Edinburgh, Scotland, pp. 225-234, 2002.
[7]. K. Xu, Y. Wang and C. Wu, “Ensuring Secure and Robust Grid Applications - From a Formal

Method Point of View”, Advances in Grid and Pervasive Computing, LNCS Vol. 3947,
Springer Verlag, pp. 537-546, 2006.

[8]. I. Foster, “What is the Grid? A Three Point Checklist”, GRIDToday, July 2002.
[9]. K. Keahey, M. E. Papka, Q. Peng, D. Schissel, G. Abla, T. Araki, J. Burruss, S. Feibush, P.

Lane, S. Klasky, T. Leggett, D. McCune, and L. Randerson, “Grids for Experimental Science:
the nd

Appl

[10]. L. Pearlman, C. Kesse
Hubbard, and C. Severa

lman, S. Gullapalli, B. F. Spencer, J. Futrelle, K. Ricker, I. Foster, P.
nce, “Distributed Hybrid Earthquake Engineering Experiments:

-451, 2003.
ing and Scheduling”,

in Proc. IEEE Information Technology: Coding and Computing, Vol. 2, pp. 35-39, 2004.
. Benkner, G. Engelbrecht, and R. Schmidt, “QoS Support for Time-Critical Grid
pplications”, in Proc. 1st IEEE Int. Conf. on e-Science and Grid Computing, pp.

[20].

[21]

[23]

[24].

[28]

Experiences with a Ground-Shaking Grid Application”, in Proc. 13th IEEE Int. Symp. on
High Performance Distributed Computing, pp. 14-23, 2004.

[11]. D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd, “Performance-aware Workflow
Management for Grid Computing”, The Computer J., Special Focus - Grid Performability,
Vol. 48, No. 3, pp. 347-357, 2005.

[12]. X. He, X. Sun, and G. von Laszewski, “QoS Guided Min-Min Heuristic for Grid Task
Scheduling”, J. Computer Science & Technology, Vol. 18, No. 4, pp. 442

[13]. S. Zhang, N. Gu, and S. Li, “Grid Workflow based on Dynamic Model

[14]. I. Brandic, S
Workflow A
108-115, 2005.

[15]. K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu, “Agreement-based Grid Service
Management (OGSI-Agreement)”, Global Grid Forum, GRAAP-WG Author Contribution,
2003.

[16]. K. Keahey, T. Araki, and P. Lane, “Agreement-Based Interactions for Experimental Science”,
in Proc. Euro-Par 2004 Parallel Processing, LNCS Vol. 3149, pp. 399-408, 2004.

[17]. H. Zhang, K. Keahey, and W. Allcock, “Providing Data Transfer with QoS as
Agreement-based Service”, in Proc. IEEE Int. Conf. on Services Computing, pp. 344-353,
2004.

[18]. J. Chen and Y. Yang, “Key Research Issues in Grid Workflow Verification and Validation”, in
Proc. 4th ACM Australasian Workshop on Grid Computing and e-Research, Vol. 54, pp.
97-104, 2006.

[19]. E. M. Clarke, Jr. O. Grumberg and D. A. Peled. Model Checking. Cambridge, Mass: MIT
Press, pp. 1-231, 1999.
 K. Amin, G. von Laszewski, and M. Hategan et. al., “GridAnt: A Client-Controllable Grid

thWorkflow System”, in Proc. 37 IEEE Annual Hawaii International Conference on System
Sciences, pp. 3293-3301, 2004.

. T. Andrews, F. Curbera, and H. Dholakia et al, “Business Process Execution Language for
Web Services”, Version 1.1, 2003.

[22]. J. Yu and R. Buyya, “A Novel Architecture for Realizing Grid Workflow using Tuple Spaces”,
in Proc. 5th IEEE/ACM Int. Workshop on Grid Computing, Pittsburgh, USA, pp. 119-128,
2004.

. I. Taylor, M. Shields, I. Wang, and R. Philp, “Distributed P2P Computing within Triana: A
thGalaxy Visualization Test Case”, in Proc. 17 IEEE Int. Parallel & Distributed Processing

Symp., Nice, France, 2003.
 W. Bausch, C. Pautasso, and G. Alonso, “Programming for Dependability in a Service-Based
Grid”, in Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and the Grid, Tokyo, Japan,
pp. 164-171, 2003.

[25]. M. Litzkow, M. Livny, and M. Mutka, “Condor - a Hunter of Idle Workstations”, in Proc. 8th
Int. Conf. on Distributed Computing Systems, pp. 104-111, 1988.

[26]. D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb, “A Case Study on
the Use of Workflow Technologies for Scientific Analysis: Gravitational Wave Data
Analysis”, in I. J. Taylor, D. Gannon, E. Deelman, and M. S. Shields (Eds.), Workflows for
e-Science: Scientific Workflows for Grids, Springer Verlag, pp. 39-59, 2007.

[27]. R. Milner, Communicating and Mobile Systems: The Pi Calculus, Cambridge University
Press, 1999.

. W. M. P. vander Aalst, “Pi Calculus versus Petri Nets: Let us Eat ‘humble pie’ rather than
Further Inflate the ‘Pi hype’”, BPTrends, Vol. 3, No. 5, pp. 1-11, 2005.

[29]. H. Smith, “Business Process Management - the Third Wave: Business Process Modeling
Language (BPML) and its Pi-calculus Foundations”, Information and Software Technology,
Vol. 45, pp. 1065-1069, 2003.

[30]. S. Chaki, E. M. Clarke, J. Ouaknine et al, “State / Event-based Software Model Checking”, in
E. A. Boiten, J. Derrick, G. Smith (Eds.), Integrated Formal Methods, LNCS Vol. 2999,
Springer Verlag, pp. 128-147, 2004.

[31]. icola and F. Vaandrager, “Three Logics for Branching Bisimulation”, J. ACM, Vol. 42,

[32].
s, 2001.

 1, No. 1, pp. 9-23, 2003.

-685, 2005.

CS Vol. 3649, pp. 153-168, 2005.

. 4, pp. 440-473, 2003.

[38]. E. Giunchiglia et al., “NuSMV2: an Open Source Tool for

 R. D. N
No. 2, pp. 458-487, 1995.
 D. Sangiorgi and D. Walker, The Pi-calculus: a Theory of Mobile Processes, Cambridge
University Pres

[33]. Z. Németh and V. Sunderam, “Characterizing Grids Attributes, Definitions, and Formalisms”,
J. Grid Computing, Vol.

[34]. T. Fahringer, J. Qin, and S. Hainzer, “Specification of Grid Workflow Applications with
AGWL: An Abstract Grid Workflow Language”, in Proc. IEEE Int. Symp. on Cluster
Computing and the Grid, pp. 676

[35]. F. Puhlmann and M. Weske, “Using the Pi-calculus for Formalizing Workflow Patterns”,
Business Process Management, LN

[36]. G. L. Ferrari, S. Gnesi, and U. Montanari et al., “A Model-checking Verification Environment
for Mobile Processes”, ACM Transactions on Software Engineering and Methodology, Vol.
12, No

[37]. U. Montanari and M. Pistore, “Checking Bisimilarity for Finitary Pi-calculus”, Concurrency
Theory, LNCS Vol. 962, Springer Verlag, pp. 42-56, 1995.
 A. Cimatti, E. Clarke, and
Symbolic Model Checking”, Computer Aided Verification, LNCS Vol. 2404, Springer Verlag,
pp. 359-364, 2002.

	From Enabling to Ensuring Grid Workflows
	Abstract
	Grid workflows are becoming a mainstream paradigm for implementing complex grid applications. In addition to existing grid enabling techniques, various grid ensuring techniques are emerging, e.g. workflow analysis and temporal reasoning, to probe potential pitfalls and errors and guarantee quality of services (QoS) at a design phase. A new state π calculus is proposed in this work, which not only enables flexible abstraction and management of historical grid system events, but also facilitates modeling and verification of grid workflows. Some typical patterns in grid workflows are captured and both static and dynamic formal verification issues are investigated, including structural correctness, specification satisfiability, logic satisfiability and consistency. A grid workflow modeling and verification environment, GridPiAnalyzer, is implemented using formal modeling and verification methods proposed in this work. Performance evaluation results are included using a grid workflow for gravitational wave data analysis.

	1 Introduction
	1.1 Grid workflow QoS
	1.2 Grid workflow verification
	1.3 Grid workflow modeling

	2 State π calculus
	2.1 Introduction to π calculus
	2.2 State π calculus: models and operations
	2.3 State π calculus: extended operational semantics
	2.4 State bi-simulation

	3 Formal semantics of grid workflows
	3.1 Formalism of services
	3.2 Formalism of activities
	3.3 Service selection
	3.4 Formalism of workflows
	3.5 Formalism of handling exceptions and compensations
	3.6 Formalism of global termination

	4 Formal verification of grid workflows
	4.1 State labeled transition system (SLTS)
	4.2 Structural verification
	4.3 Semantic restraint verification

	5 GridPiAnalyzer
	5.1 System implementation
	5.2 A case study – gravitational wave data analysis
	5.2.1 Application background
	5.2.2 Grid workflow modeling
	5.2.3 Logic verification for grid workflows

	6 Conclusions
	References

