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Abstract 

Grid workflows are becoming a mainstream paradigm for implementing complex grid 
applications. In addition to existing grid enabling techniques, various grid ensuring 
techniques are emerging, e.g. workflow analysis and temporal reasoning, to probe 
potential pitfalls and errors and guarantee quality of services (QoS) at a design phase. 
A new state π calculus is proposed in this work, which not only enables flexible 
abstraction and management of historical grid system events, but also facilitates 
modeling and verification of grid workflows. Some typical patterns in grid workflows 
are captured and both static and dynamic formal verification issues are investigated, 
including structural correctness, specification satisfiability, logic satisfiability and 
consistency. A grid workflow modeling and verification environment, GridPiAnalyzer, 
is implemented using formal modeling and verification methods proposed in this work. 
Performance evaluation results are included using a grid workflow for gravitational 
wave data analysis. 

1 Introduction 

1.1 Grid workflow QoS 

Advance in technology has made collections of internet-connected computers a viable 
computational platform. Grids connecting geographically distributed resources have 
become a promising infrastructure for solving large problems. The definition of Grids 
has been redefined over time. Initially Grids were defined as an infrastructure to 
provide easy and inexpensive access to high-end computing [1]. Then, it was refined 
in [2] as an infrastructure to share resources for collaborative problem solving. More 
recently, in [3] the Grid definition evolves into an infrastructure to virtualize resources 
and enable their use in a transparent fashion. 
 
Grid workflows [4], a composition of various grid services according to prospective 
processes, have become a typical paradigm for problem solving in various e-Science 
domains [5], e.g. gravitational wave data analysis [6]. With increasing complexity of 
e-Science applications, how to implement reliable and trustworthy grid workflows 
according to specific scientific criteria is becoming a critical research issue. In 
addition to existing grid enabling techniques, e.g. job scheduling, workflow 
enactment and resource locating, various grid ensuring techniques are developed [7], 
e.g. data flow analysis and temporal reasoning. 
 



Issues of quality of service (QoS) are of increasing importance to the success of those 
Grid-based applications. As defined by I. Foster in the three point checklist of the 
Grid [8], the Grid has to deliver to nontrivial qualities of service, relating for example 
to response time, throughput, availability, and security, and/or co-allocation of 
multiple resource types to meet complex user demands. This requirement is especially 
pronounced in experimental science applications such as the National Fusion 
Collaboratory [9] and NEESgrid [10]. Enabling such interactions on the Grid requires 
two related efforts: (1) the development of sophisticated resource management 
strategies and algorithms and (2) the development of protocols enabling structural 
negotiation for the use of those resources. 
 
Most of existing research on grid workflow QoS is related to task scheduling. In the 
work described in [11], application performance prediction is coupled with genetic 
algorithms for workflow management and scheduling with consideration of 
makespans and job deadlines. QoS guided min-min heuristic for grid task scheduling 
is also proposed in [12]. Similar work can also be found in [13] and [14] for QoS 
aware grid workflow scheduling using performance prediction and optimization. In 
the grid standard organization, Global Grid Forum, a WS-Agreement model is 
proposed and defined in [15]. This provides an infrastructure to agreement-based 
application like [16] and [17], within which QoS can be negotiated and obtained. 
 
While all of above in common is that they show how task can be scheduled to 
improve efficiency of grid workflows, this work is dedicated to ensuring mechanisms 
on workflows as a whole. All of services in a workflow are guaranteed without 
redundancy and collision. Also how to make sure all services in a workflow is 
reachable and terminatable is another concern in this work. All these issues are 
modeled, verified and finally implemented using our environment, GridPiAnalyzer. 

1.2 Grid workflow verification 

As mentioned above, it is significant for grids to implement large scale heterogeneous 
resource sharing and accessing. How to ensure the correctness of design and 
implementation of grid workflows is a critical task. Though it is widely recognized 
that corporation of grid workflows are important, most of those research work are 
focused on grid enabling techniques, e.g. automatic execution, service binding and 
transaction processing. In the field of grid workflows, formal semantics, business 
logic verification and improving of verification performance needs to be solved. 
Obviously, these formal verification techniques can ensure the correctness of 
workflows as a whole and guarantee the fulfilling of users’ demands. 
 
These intrinsic characteristics provide several challenges to formal verification: 

 Difference in professional domains 
 Complexity of applications 
 Non-formalism semantics of grid workflows 
 Diversity in grid workflows models 
 Uniqueness of grid workflow criteria 
 Dynamicity of grid environments 

 
IEEE defines correctness as: “……free from faults, meeting of specified requirements, 
and meeting of user needs and expectations” [18], and formal verification as: “it is 



mathematical verification methods to test whether those system model can meet 
requirements” [19]. Requirements here can be interpreted from two aspects. It can be 
restraints from the system model or business logics of users’ expectations. According 
to definitions mentioned above, the article includes four aspects: 

 Structure verification 
 Verification of semantic restraints in grid workflows 
 Verification of users’ demands 
 Consistent verification of business logics 

 
The following problems have to be solved to verify above issues: 

 Formal theory and methods for grid workflow criteria 
 Formal semantics for existing grid workflow criteria 
 Dynamic/static verification methods 
 Implementation of a grid workflow modeling and analysis environment 

1.3 Grid workflow modeling 

Many models are introduced as grid workflows become indispensable component of 
grid networks. Different models have different descriptions and semantics. From 
different application domains, grid workflows can be categorized as follows: 

 XML-based tags, e.g. GridAnt [20], BPEL4WS [21] and Gridbus workflows [22]. 
 Visual languages, e.g. Triana [23], JOpera [24] and BPEL visual modeling. 
 Customized script languages, e.g. Condor [25] DAGMan and Glue [26]. 

 
Different model specifications increase the complexity among various grid workflows. 
The integration of web and grid technologies is a clear trend since web service 
standards, e.g. Web Services Resource Framework (WSRF), are emerging. What’s 
more, as BPEL4WS is gradually becoming the standard web execution language, 
more work is being related to the extension of BPEL4WS based on WSRF. 
 
The motivation of our work is not to redefine a new model for grid workflows but 
rather try to find and propose a formal modeling and verification tool that works well 
with grid workflows. And hopefully the following can be achieved: 

 Define critical characteristics and operations of grid workflows as well as bring 
out exact execution semantics of service interactions. 

 Propose a uniform semantic basis as a bottom line for typical grid workflows. 
 Verify grid workflows completely, automatically and effectively. 

2 State π calculus 

2.1 Introduction to π calculus 

π calculus [27] was initially introduced by Milner’s work for modeling state/action 
hybrid systems since it is intrinsically mobile and combinable. Nowadays, this tool is 
efficiently used in the description of open communication systems and web/grid 
workflows as described in [28] and [29]. The syntax of π calculus is as follows: 
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The fundamental concept of π calculus is the names, which are used to express atomic 
interactive actions in a system. A system in π calculus evolves through the operators 
including composition ‘|’, choice ‘+’, guard ‘.’, match ‘[]’, restriction ‘new’ and 
replication ‘!’. 

 An output action ( x y< > .P): This means outputting  through y x  with system 
behaviors evolved into P. For example, in a communication system x  can be 
considered as an output port and  the output data. y

 An input action ( .P): Intuitively, it means inputting  through x with 
system behaviors evolved into P. 

( )x y y

 A silent action (τ.P): The system behavior evolves into P with internal actions 
instead of interactions with the environment. 

 A composition (P|Q): Processes P and Q are independent, or synchronize with 
each other via an identical port. 

 Choice (P+Q): Unpredictable execution of P or Q. 
 March ([x=y]P): If x matches y, the system behavior evolves into P. Otherwise no 

actions happen. 
 Restriction ((new x) P): x is a new name within the process P. 
 Replication (!P): An infinite composition of process P. 

 
Process algebras like π calculus have an explicit description of system behaviors and 
interactions, but state models are implicitly. For life-cycle management of system 
states, it is needed to enable modeling of: 

 creation and destruction of states; 
 access and update of states; 
 association of states with system behaviors. 

2.2 State π calculus: models and operations 

To address issues mentioned above, state π calculus is proposed in this work where a 
state S is defined as a finite set of system propositions PROP. 
 
Definition 1 (system proposition). A system proposition PROP=(ident, set) ranged 
over a universe D is a pair, where ident is a unique identifier of PROP and set is the 
set of all valuations that make PROP to be true(set∈D). 
 
Consequently, a state is S= {p1, …, pn}, where pi (i=1,…, n) is the system proposition 
PROP ranged over D. To enhance the capability for the states to express their 
relations among different components in a system, in state π calculus the identifier 
ident is defined by the following hierarchical structure: ident::=atom | atom.ident. 
Here atom indicates a symbolic constant value and ‘.’ indicates a separator for the 
atoms. Consequently, a prefix/suffix relation is used to define the hierarchical 
structure of ident: 
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For example, a state S={(AvailableSrv, {Srv1, Srv2}), (Srv1.Status, {Active}), 
(Srv2.Status, {Input_Pending})} can be used to indicate that in state S, there are two 
available services Srv1 and Srv2 in the system, where Srv1 is running and Srv2 is 
waiting for its input. The identifier Status is the suffix of Srv1 and Srv2. To complete 
the static semantics of states and system propositions, three functions are further 
defined: 

 range: PROP set returns the set of all constants that make PROP true; 
 eval: PROP×valueset {true, false} determines whether PROP is true for a given 

set of values; 
 proposition: S×ident {p1, …, pm} returns corresponding system propositions 

given an identifier. Since semantics of range and eval are quite straightforward, here 
we focus on the implementation of proposition. Note that due to the hierarchical 
structure of identifiers ident, the function of proposition should also be able to get all 
system propositions identified by the prefix of an ident. 
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Besides static definition of system states and proposition, dynamic operational 
semantics of the creation, destruction and update of states based on system actions 
have also to be defined. Different from original π calculus, a group of state operators 
are introduced into the syntax of state π calculus. State π calculus aims to create 
dynamic association between states and actions in π calculus via state operators. 
Creation, destruction and update of states can thus be enabled by integrating 
operational semantics of original π calculus and semantics of state operators. 
Therefore, state π calculus reuse existing properties and analysis techniques in π 
calculus instead of revising the core of π calculus. 
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As shown above, in state π calculus each input/output action can be associated with 
multiple state expressions StateExpr. StateExpr depicts possible state operations 
StateOp that a system action can do to a state. The choice operator ‘?’ is also support 
in StateExpr. Consequently, the expression [ConditionExpr]StateExpr?StateExpr 



describes that when the condition ConditionExpr is (not) satisfied, a system action 
will be associated with the state expression of the former (latter) StateExpr. Four state 
operators are provided in state π calculus: state creation (+), state destruction (−), state 
association (++), and state removal (−−). An additional operation of state updates is 
also included in the state creation (+) operator. To be more intuitive, each state 
operator can be regarded as an association relation between states: ℜ: 
SysState×StateOp×S SysState. That is, a new system state is determined by the 
current system state (SysState) and the target state operation (StateOp×S). In state π 
calculus, a system state is the set of all existing states and their values in the system. 
Therefore, semantics of state operators are very essential to state π calculus, which 
define the association between system actions and states and life-cycles of system 
states. 
 
Definition 2 (irrelevant states and conflict states). Two states S1 and S2 are conflict 
(S1◊S2) if ∃p1=(ident1,set1)∈S1 and p2=(ident2,set2)∈S2 s.t. ident1=ident2. Meanwhile 
system propositions p1 and p2 are overlapped (p1◊p2); S1 and S2 are irrelevant (S1∇S2) 
if they are not conflict. 
 
Definition 3 (state preordering). For any two nonconflict states S1 and S2, S1≺S2 if 

∀p=(ident,set)∈S1, ∃p’=(ident’,set’)∈S2, s.t. ident=ident’ and set⊂set’; S1=S2 if S1≺ 

S2 and S2≺ S1. 
 
Definition 4 (well-formed states). A state S is well-formed, iff the following two 
conditions are satisfied: (1) ∀p1, p2∈S, there is no p1◊p2; (2) ∀p=(ident,set)∈S, set is 
not empty. 
 
Two propositions in a well-formed state do not conflict and each proposition in the 
state is not always false. Given the current system state SysState={p11,…,p1n}, and the 
state associated with the state operator StateOp S={p21,…,p2m}, formal semantics of 
each state operator is provided as follows, defined over well-formed states. 

 
1. State Creation (+): Define a new state and overwrite the existing one in the current 
system;  
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2. State Destruction (−): Remove a specific state from current system states;  
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3. State Association (++): Insert a state in current system states;  
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4. State Removal (−−): Remove the specific propositions from a state in the current 
system states;  
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As previously mentioned, above semantics form a basis for implementation of the 
state relation ℜ, i.e., 

ℜ : SysState × StateOp × S  SysState’ 
ℜ : (SysState, StateOp, S) = SysState’ 

, where SysState’ is determined by the above 9 semantic rules. 

2.3 State π calculus: extended operational semantics 

In this section we integrate state operators with operational semantics of original π 
calculus, which leads to extended operational semantics for state π calculus. This 
interprets how system states and actions are mutually operated. Traditionally the 
behavior of π calculus is modeled using a standard Labeled Transition System (LTS). 
However, for modeling and reasoning of state/action hybrid systems, LTS should be 
extended to model both system actions (i.e. transition labels) and system states (i.e. 
state labels). Typical examples of these extensions can be found in the Labeled Kripke 
Structures [30] and the Doubly Labeled Transition Systems [31]. A State Label 
Transition System (SLTS) is proposed in this work for interpreting behaviors of state π 
calculus. 
 
Definition 5 (state labeled transition system). An SLTS 

 consists of a set SP of state/process pairs, a set M of 
transition labels, and a set  of transitions  
where . 

{ }( , ,{ | })a StateExprS M a M⎯⎯⎯⎯⎯⎯⎯⎯→ ∈
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In an SLTS, a transition is represented as { }( , ) ( ', ')a StateExprP SysState P SysState⎯⎯⎯⎯⎯⎯⎯⎯→ . This 
means the current process and state of the system is P and SysState, and by executing 
the action a associated with the state expression of StateExpr, the system process 
evolves to P’ and the system state is updated to SysState’. According to SLTS, a static 
association transState can be defined between the system state SysState and its 
possible modification (StateExpr): 
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Consequently, the extended operational semantics of state π calculus is defined below 
based on the early transitional semantics [32] of π calculus. 
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In above semantics, ϕ and δ are shortcut notations for StateExpr and SysState 
respectively; α denotes an arbitrary action in state π calculus; fn and bn are used to 
indicate the set of all free names and bounded names. Note that state π calculus does 
not tend to change the fundamental definition of Structural Congruence in π calculus, 
and reduction rules can also be extended similarly for state π calculus. Therefore, 
above operational semantics in state π calculus can be regarded as a further extension 
to the ones in π calculus for integrating system states with actions and management of 
these states. 

2.4 State bi-simulation 

Bi-simulation analysis is an important tool in process algebras to define process 
equivalence. In state π calculus, system states and their changes need to be further 



considered into the original strong (weak) bi-simulation relation in π calculus to 
define (observable) behavior equivalence between state/action hybrid systems. Denote 
⇒τ to be a transition sequence triggered by invisible action τ. Denote ⇒a and ⇒τ to 
be a transition sequence triggered by arbitrary action a where a≠τ and a=τ 
respectively; Denote ⇒ to be either ⇒a or ⇒τ and ⇒a to be the abbreviation 
for . A hybrid bi-simulation is defined below as a bi-simulation relation 
which considers both system states and actions. 

a
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Definition 6 (hybrid Bi-simulation). A symmetric binary relation R is a strong (weak) 
hybrid bi-simulation relation, iff for any (P, SysStateP)R(Q, SysStateQ) and substitution 
σ: If (Pσ , SysStateP) a

⎯⎯⎯→ (P’, SysStateP’) (bn(a)∉fn(Pσ , Qσ)),∃Q’ s.t. (Qσ , SysStateQ) 
a

⎯⎯⎯→ (Q’, SysStateQ’),(P’, SysStateP’)R(Q’, SysStateQ’) and SysStateP’= SysStateQ’. 
 
As an independent dimension for system description, we can also exclusively follow 
the lead of states to define equivalence between systems. 
 
Definition 7 (state simulation). A symmetric binary relation R is a state simulation 
relation, iff (P, SysStateP)R(Q, SysStateQ) and any substute σ, if (Pσ , 
SysStateP) a

⎯⎯⎯→ (P’, SysStateP’) (bn(a)∉fn(Pσ , Qσ)), ∃Q’ s.t. (Qσ , SysStateQ)⇒(Q’, 
SysStateQ’) and SysStateP’ ≺ SysStateQ’. 
 
Definition 8 (state bi-simulation). A symmetric binary relation R is a state 
bi-simulation relation, iff R and its reverse are both state simulation relations. 

3 Formal semantics of grid workflows 

3.1 Formalism of services 

 
Figure 1 Job State Abstractions for Grid Services 

 
As shown in Figure 1, each service can be pended for staging in required input data. 
After the service is executed (i.e. being active), it stages out the results and cleans any 
unnecessary data, or otherwise the execution of service can fail. Therefore, based on 
state π calculus the service formalism in grid workflows is as follows: 
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In the above formalism for a service A, ‘#STATE’ is a reserved word for state 
declarations. According to the syntax of state π calculus, when no state declaration is 
predefined, states can also be alternatively defined in the declaration of actions. Free 
names port, set and get are channels for interaction of services and variables (their 
definition will be given in the next section). Since there are cases in grid systems 
when concurrent access to expensive resources is not desired, nested process 
definition is used in the formalism of ServiceA. The purpose is to allow the creation of 
a new instance of process ServiceA only when the old instance of ServiceA is finished. 
When multiple instance of a service is desired, the nested position of process ServiceA 
should be changed as follows: 
 

( , , , , , )
( ( ){( , ), ( , )}.(...... | )

ServiceA port execute set get succ fail
new ack port v srvpending execsrv ServiceA

=
+ ++

 

3.2 Formalism of activities 

Grid workflows adopt four basic activities from BPEL4WS: Receive, Send, Invoke 
and Assign. In BPEL4WS, data interactions between activities can be realized by 
sharing of variables. Consequently, activities of Receive and Send can be used to 
model data passing in a grid workflow and the activity of Assign can be used to model 
specific data reproduction. Their formal definitions are provided as follows: 
 



1 2 1 2

2

2 2 2

( , , , , )  . ( : ). : . ( ).

( , , , )

{ ,{ ,{ }}}. ( : ){--,{ ,{ }}}. : .

( ,

def

def

Invoke start get port port done start get v t port v t port s done

Receive start port set done

start msgPort port port v t msgPort port set v t done

Reply start get

= < >

=

++ < >

1 1

1 2 1 2

0

0 1

, , )  . ( : ). : .

( , , , )  . ( : ). : .

( , )  .

 ( , ) 

( , )  ( : ){ ,{

def

def

def

V def V

V def

port done start get v t port v t done

Assign start get set done start get v t set v t done

Empty start done start done

Var Var set get

Var set get set x t V

= < >

= < >

=

=

= ++ 1 1 1

1 1 2 2 2 2 1 2

1 1 1 0

1

. ,{ }}}. ( , , )

( , , )  ( : ){ ,{ . ,{ }}}. ( , , , ) 

                             : {--,{ . ,{ }}}. ( , )
......

( , ,

V

V def V

V

V n

bSize x Var set get x

Var set get x set x t V bSize x Var set get x x

get x t V bSize x Var set get

Var set get x

= ++ +

< >

1 1,..., )  : {--,{ . ,{ }}}. ( , , ,..., )n def n n n V n n 1x get x t V bSize x Var set get x x− −= < >

 

 
Here the value access and assignment in Variables are realized by channels get and 
set. The Variable process implements a variable stack with arbitrary depth. In a real 
grid workflow, the definition of Variable can also be simplified as follows if its depth 
is 1. 
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V def V
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Moreover, all the above activities use the channel of port to trigger the execution of a 
desired service and obtain its result. Note that in BPEL4WS, ‘link name’, ‘partner 
name’ and ‘operation name’ are three elements in its activities to define the access of 
a service. A service in grid workflows can thus be first defined as an abstract one and 
later refined to an executable one by using a service mapping/selection mechanism, as 
described in [33] and [34]. Therefore the port channel here is used to indicate both an 
abstract service interface (e.g. an abstract functional definition of the service), and a 
concrete service invocation interface (e.g. via WS-Addressing). The service mapping / 
selection in grid workflows is further discussed in the next section.  

3.3 Service selection 

There are often scenarios when multiple candidate services are available to implement 
a desired abstract function. Semantics of service selection need to be formally defined. 
A simple way to define interaction with one of candidate services is direct 
composition of their corresponding state π calculus processes. For the invocation of 
1-out-of-n services, the implementation is as follows: 

1| | ...... | nClosedInvocation Invoke Service Service=  

 
The above processes of Invoke, Service1, …, Servicen share the same port channel. In 
this way multiple services compete for a single Invoke activity. The competition is 



resolved by a non-deterministic choice from n services. However, when a specific 
service selection strategy needs to be explicitly modeled, an addition process for 
service selection should be implemented: 
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The process of Selection stores all port channels for the desired abstract function. It 
selects these ports sequentially by their orders in a queue. The order of the ports, on 
the other hand, can be decided by the performance of different corresponding services 
such as QoS, execution time, etc. Moreover, the new invocation process Invoke’ no 
longer interacts directly to a specific service by the given port. It queries the Selection 
process first to get what exact service it should invoke by the naming passing 
capability of π calculus. The interaction between Invoke’ and the target service can 
thus be dynamically formed. 

3.4 Formalism of workflows 

Grid workflows adopt six BPEL4WS control structures: Sequence, While, Flow, 
Switch, Pick and Link. The formalism of these structures is as follows. 
 
The Sequence structure defines sequential relations among execution in a grid 
workflow: 
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The While structure defines repeat invoking of one or a group of services in a grid 
workflow under certain conditions: 
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The Flow structure defines synchronization of parallel execution and completion 
among service activities and structures in a grid workflow: 
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The Switch structure defines a conditional choice structure in a grid workflow: 
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The Pick structure defines execution selection among different services and structures 
in a grid workflow based on message trigger: 
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On the other hand, the Link structure imposes synchronization constraints on activities 
in a grid workflow. Each Link has a source and target activity, which restricts that the 
target activity can only be executed after the source activity is done. Besides, when a 
‘death-path’ is detected in a grid workflow (e.g. if a branch in a Switch to which the 
activity A belongs is not selected), negative tokens should be propagated through all 
outgoing Links of A (i.e. A is the source activity of these Links). The semantics are 
also known as the Death-Path Elimination in BPEL4WS. The formalism of Link is 
given in the following: 
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In the above state π calculus process, ActivityWithLinks indicates the implementation 
of the four types of activities introduced in Section 3.2 when Link is considered. 
ActImpl is a shortcut notation for detailed formalism of Receive, Send, Assign, Invoke 
activities in Section 3.2. In Activity-WithLinks, the start of an activity is subject to 
completion of its previous activity (donepreceding) and incoming Links (donelinks). 
The process then starts to evaluate execution conditions for the corresponding activity 
(evalJoin). The activity will be normally executed if all conditions are satisfied, or 
otherwise a JoinFailure exception is thrown by the ThrowAct process (see its 
implementation in the next section) and the exception is recorded into the Exception 
variable in a grid workflow. Note that in the above Link processes, for each received 
negativein token, it will pass the information via the deathpath channel such that the 
negativeout token can continue to be propagated to outgoing Links of the 
corresponding activity. 

3.5 Formalism of handling exceptions and compensations 

Due to the existence of dynamic interactions and long-running services in grid 
applications, handling of exceptions and compensations is a critical issue in grid 
workflows. To correctly depict this aspect of semantics in grid workflows, the Invoke 
activity needs to be further implemented as follows: 
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When the invocation of a service returns a failure ([u=fail]), the ThrowAct process 
throws an invokeFailure exception and records it into the state Exception. On the 
other hand, the FaultHandling process is responsible for capturing and processing the 
corresponding exceptions. The channel fault is used to receive the exception that 
ThrowAct throws out. If the received exception type can be processed by 
FaultHandling (here type1, …, typen can be the previously mentioned invokefailure, 
joinfailure, or other user customized exceptions), corresponding Activity is executed 
to deal with the exception (detailed implementation of Activity is omitted here). 
Otherwise FaultHandling sequentially invokes compensation activities to compensate 
the failure caused by the exception. This is defined in grid workflows as: 
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3.6 Formalism of global termination 

It is required to terminate all service activities that are being (or waiting to be) 
executed when certain conditions become true (e.g. abnormality in the executing). 
Different from the Cancellation Patterns proposed by Puhlmann [35], it requires all 
activities monitor termination signals but rather withdraw the waiting for the service 
invoke. Meanwhile, another global termination signal is required to ensure proper 
termination of all activities. Formalism of global termination is described in the 
following: 
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The condition φ equals to eval(Exception, {}). Based on the semantics of state π 
calculus, the process behavior is null(0) when the condition is not satisfied. 
Termination of a process is easily achieved via global management of state π calculus. 

4 Formal verification of grid workflows 

4.1 State labeled transition system (SLTS) 

Management of actions and behaviors with state π calculus are achieved via the state 
label transition system. The application of SLTS leads to complete reasoning of grid 
workflow behaviors in its state space. 
 
The first critical step is the transform from state π calculus formal semantics to the 
corresponding SLTS. This step is used not only to complete analysis of proposition 
properties of grid workflows, but also to enable existing model checking techniques 
incorporated into the framework of state π calculus seamlessly. 
 
In previous sections, it is mentioned that basic π calculus can be interpreted using a 
general label transition system. In Ferrari [36] and Pistore’s [37] work, it is proven 
that any finite π calculus process can be transformed to its equivalent general label 
transition system via pre-transition semantics. This is actually a transformation from a 
name-based to nameless formal theory. For state π calculus, although its operational 
semantics is also based on pre-transition semantics (see Section 2.3), additional 
extensions to SLTS have to be processed, e.g. creating and managing state labels 
when action labels are created as processes evolve. This is the dual label character of 
SLTS (action labels + state labels). Some critical rules of SLTS are summarized in 
Figure 2. Operational semantics in Figure 2 are already introduced in Section 2.3. 
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Figure 2 SLTS Semantic Transformation Rules 

 
A complete transformation algorithm is illustrated in the flowchart of Figure 3. 
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Figure 3 Flowchart for SLTS Transformation 

4.2 Structural verification 

Structural verification is a fundamental stage in formal verification of grid workflows. 
Reachability and terminatability are two aspects considered in structural verification. 
More specifically, given the context of a grid workflow, reachability checks whether 
there is some service that cannot be arrived due to restraints in the given service set; 
terminatability checks whether a given termination condition can be met. 
 
Definition 9 (execution). A tuple (α,β) is defined as an execution of state π calculus 
(P,S), if: 

 α is an ordered finite state π calculus action sequence α={π1{StateExpr1}, 
π2{StateExpr2},…,πn{StateExprn}}; 

 β is a finite state sequence β={S1, S2,…, Sn} corresponding to α; 
 , in 

which (Pi, Si) ≠ (Pj, Sj), (1≤ i≤ n, 1≤ j≤ n, i ≠ j） 

1 1 2 2  { } { }  { }
1 1 2 2( , ) ( , ) ( , )...... ( , )n nStateExprStateExpr StateExpr

n nP S P S P S P Sππ π⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

 
Here we call P and S initial processes and states, Pn and Sn end processes and states. 
 
Definition 10 (acceptable execution). A tuple (α,β) is an acceptable execution of 
state π calculus process (P,S), if: 

 (α,β) is an execution of (P,S); 
 There is no other execution (α’,β’), where α⊂α’ and β⊂β’. 

 
So here in state π calculus, an accepted execution of (P,S) is the longest transition 
process without looping in its corresponding SLTS. 



 
Definition 11 (strong state assertation). For (P,S)  ⎡Sc⎦(P’,S’), ∀(α,β), which are 
acceptable executions of (P,S), ∀(P,S) α*(P*,S*), where α*⊂α, if P*≡P’ and S* S’, 
there is S* Sc. In this situation, the state π calculus process (P,S) satisfies a strong 
state assertation Sc defined on the targeting process (P’,S’), (P,S) ⎡Sc⎦(P’,S’). 
 
Definition 12 (weak state assertation). ∃(α,β), which are acceptable executions of 
(P,S), ∃(P,S) α*(P*,S*), where α*⊂α, if P*≡P’ and S* S’, there is S* Sc. In this 
situation, the state π calculus process (P,S) satisfies a weak state assertation Sc 
defined on the targeting process (P’,S’), (P,S) 〈Sc〉(P’,S’). 
 
Definition 13 (reachability). Given a state π calculus of a grid workflow SrvFlow 
and its initial state SysStateinit, a set of service SRV={Srv1,…, Srvn} is reachable, if 
∀Srv∈SRV, (SrvFlow, SysStateinit) 〈Srv.Status=Exit〉(Φ, true). 
 
Definition 14 (terminability). Given a state π calculus of a grid workflow SrvFlow 
and its initial state SysStateinit, SrvFlow is terminatable under termination conditions 
TC, if (SrvFlow, SysStateinit) ⎡Tc⎦ (Φ, true). 

4.3 Semantic restraint verification 

Semantic restraint verification of grid workflows are used to ensure that the model we 
use is not contradictory to related restraints. Some of these restraints can be checked 
by its intuitive syntax (for example, in BPEL4WS Link structure can’t form into a 
loop). In this work, two types of semantic restraints that cannot be directly verified 
from its syntax are focused, message competitive confliction and variable garbage 
collection. 
 
More specifically, it’s explicitly announced in BPEL4WS that any service instance 
shouldn’t trigger two or more receiving activities to monitor one event sent from a 
same port to avoid message conflictions. Variable garbage collection means in the 
execution process of grid workflows, all temporary variables should be null at the end 
to ensure no extra message and data. 
 
Definition 15 (message competitive confliction). Given a state π calculus of a grid 
workflow SrvFlow and its initial state SysStateinit, no message competitive confliction 
exists during its execution, if ∀msgPort during transitions of SrvFlow, 
(SrvFlow,SysStateinit)  ⎡|range(*.msgPort)|=0 ∨ |range(*.msgPort)|=1⎦(⎯, true). 
 
Definition 16 (variable garbage collection). Given a state π calculus of a grid 
workflow SrvFlow and its initial state SysStateinit, no variable garbage exists during its 
execution, if ∀bSize during transitions of SrvFlow, (SrvFlow,SysStateinit)  
⎡|range(*.bSize)|=0⎦(Φ, true). 



5 GridPiAnalyzer 

As discussed in previous sections, the correctness and reliability assurance is a critical 
task for QoS supports of grid workflows. More specifically, the correctness of a grid 
workflow refers to that it must satisfy all the desired properties and constraints from 
users; the reliability of a grid workflow refers to that it will loyally fulfill users’ 
requirements without any exceptions during the execution. Based on the formal 
method for grid workflow QoS proposed in this work, a system implementation is 
introduced in this section, followed by a detailed case study. 

5.1 System implementation 

Briefly speaking, model checking consists of three steps: system modeling, property 
specification and property verification. State π calculus is used as a formal language 
for modeling grid workflows in this work, and the Linear Temporal Logic (LTL) is 
used as the property specification language. An automatic verification prototype, 
namely the GridPiAnalyzer, for grid workflows models is implemented. State π 
calculus semantics of grid workflows are transformed in GridPiAnalyzer and 
verification is actually carried out using a mainstream open source engine NuSMV2 
[38]. Final results are also additionally encapsulated in GridPiAnalyzer. User 
interfaces based on the Eclipse platform are illustrated in Figure 4. 
 

 
Figure 4 GridPiAnalyzer User Interfaces 

 
JavaCC is used in GridPiAnalyzer to check the syntax and model compiling. 
Correspondently, when it finished compiling, GridPiAnalyzer caches grid workflows 
state π calculus semantics in the meta-model included in Figure 5. 



 
Figure 5 The Meta-Model of State π Calculus Syntax 

 
SLTS transferring, state ascertaining and formal verification are then carried out. 
Different output results are encapsulated in XML files. It includes criteria of grid 
workflow models to be tested, process logics to be tested, final results and counter 
examples. 

5.2 A case study – gravitational wave data analysis 

5.2.1 Application background 

Gravitational Waves (GW) are produced by the movement of energy in mass of dense 
material which fluctuate space-time structure. The analysis of unknown mass 
movement and formulation in the universe is stemmed from its detection. But the 
difficulty is that the detection and analysis of them relates to multiple tasks and 
massive data. 
 
LIGO (Laser Interferometer Gravitational-Wave Observatory) includes three most 
sensitive GW detectors in the world, jointly built by Caltech and MIT. LIGO 



Scientific Collaboration (LSC) includes over 500 research scientists from over 50 
institutes all over the world who are working hard on LIGO data analysis for GW 
detection. LIGO produces one terabyte of data per day and LIGO data analysis require 
large amount of CPU cycles. The LIGO data grid [6] provides such a computing 
infrastructure to integrate petabytes of data storage capability and thousands of CPUs 
and enable research collaboration cross multiple institutes. 
 
A typical example of a grid workflow for LIGO data analysis can be found in [26]. 
Figure 6 includes a Condor DAGman script for inspiral GW search and its 
visualization. 
 
JOB initdata initdata.sub
RETRY initdata 0
JOB tmpltbankl1 inspiral_pipe.tmpltbank.sub
RETRY tmpltbankl1 0
VARS tmpltbankl1 macroframecache="cache/L-791592854-791607098.cache" macrochannelname="L1:LSC-AS_Q" macrocalibrationcache="cache_files/
calibration.cache" 
JOB tmpltbankh1 inspiral_pipe.tmpltbank.sub
RETRY tmpltbankh1 0
VARS tmpltbankh1 macroframecache="cache/H1-791592855-791607099.cache" macrochannelname="H1:LSC-AS_Q" macrocalibrationcache="cache_files/
calibration.cache" 
JOB tmpltbankh2 inspiral_pipe.tmpltbank.sub
RETRY tmpltbankh2 0
VARS tmpltbankh2 macroframecache="cache/H2-791592856-791607100.cache" macrochannelname="H2:LSC-AS_Q" macrocalibrationcache="cache_files/
calibration.cache" 
JOB inspirall1 inspiral_pipe.inspiral.sub
RETRY inspirall1 0
VARS inspirall1 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="L1-TMPLTBANK-791592862-2048.xml" macrochannelname="L1:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/L-791592854-791607098.cache" macrosnrthreshold="7.0"
JOB trigbankh11 inspiral_pipe.trig.sub
RETRY trigbankh11 0
VARS trigbankh11 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H1:LSC-AS_Q" 
JOB trigbankh12 inspiral_pipe.trig.sub
RETRY trigbankh12 0
VARS trigbankh12 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H1:LSC-AS_Q" 
JOB inspiralh11 inspiral_pipe.inspiral.sub
RETRY inspiralh11 0
VARS inspiralh11 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="H1-TMPLTBANK-791592863-2049.xml" macrochannelname="H1:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H1-791592855-791607099.cache" macrosnrthreshold="7.0"
JOB inspiralh12 inspiral_pipe.inspiral.sub
RETRY inspiralh12 0
VARS inspiralh12 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="H1-TMPLTBANK-791592864-2050.xml" macrochannelname="H1:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H1-791592855-791607099.cache" macrosnrthreshold="7.0"
JOB sincalih1 inspiral_pipe.sinca.sub
RETRY sincalih1 0
VARS sincalih1 macroframecache="cache/L-791592854-791607098.cache, cache/H1-791592855-791607099.cache"
JOB thincalih1 inspiral_pipe.thinca.sub
RETRY thincalih1 0
VARS thincalih1 macroframecache="cache/L-791592854-791607098.cache, cache/H1-791592855-791607099.cache"
JOB trigbankh21 inspiral_pipe.trig.sub
RETRY trigbankh21 0
VARS trigbankh21 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H2:LSC-AS_Q" 
JOB trigbankh22 inspiral_pipe.trig.sub
RETRY trigbankh22 0
VARS trigbankh22 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H2:LSC-AS_Q" 
JOB trigbankh23 inspiral_pipe.trig.sub
RETRY trigbankh23 0
VARS trigbankh23 macrocalibrationcache="cache_files/calibration.cache" macrochannelname="H2:LSC-AS_Q" 
JOB InspVeto inspiral_pipe.veto.sub
RETRY InspVeto 0
VARS InspVeto macrocalibrationcache="cache_files/calibration.cache" macrochannelname="L1:LSC-AS_Q" 
JOB inspiralh21 inspiral_pipe.inspiral.sub
RETRY inspiralh21 0
VARS inspiralh21 macrocalibrationcache="cache_files/calibration.cache" macrobankfile="H2-TMPLTBANK-791592865-2051.xml" macrochannelname="H2:LSC-
AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H2-791592856-791607100.cache" macrosnrthreshold="7.0"
JOB inspiralh22 inspiral_pipe.inspiral.sub
RETRY inspiralh22 0
VARS inspiralh22 smacrocalibrationcache="cache_files/calibration.cache" macrobankfile="H2-TMPLTBANK-791592866-2052.xml" 
macrochannelname="H2:LSC-AS_Q" macrochisqthreshold="20.0" macroframecache="cache/FData-H2-791592856-791607100.cache" macrosnrthreshold="7.0"
JOB thinca2lih1 inspiral_pipe.thinca2.sub
RETRY thinca2lih1 0
VARS thinca2lih1 macroframecache="cache/L-791592854-791607098.cache, cache/H1-791592855-791607099.cache"
JOB thinca2lih2 inspiral_pipe.thinca2.sub
RETRY thinca2lih2 0
VARS thinca2lih2 macroframecache="cache/L-791592857-791607101.cache, cache/H1-791592855-791607099.cache"
JOB returnres returnres.sub
RETRY returnres 0

PARENT initdata CHILD tmpltbankl1 tmpltbankh1 tmpltbankh2
PARENT tmpltbankl1 tmpltbankh1 tmpltbankh2 CHILD inspirall1
PARENT inspirall1 CHILD trigbankh11 trigbankh12 thincalih1
PARENT trigbankh11 CHILD inspiralh11
PARENT trigbankh12 CHILD inspiralh12
PARENT inspirall1 inspiralh11 inspiralh12 CHILD sincalih1
PARENT sincalih1 CHILD thincalih1 trigbankh21
PARENT thincalih1 CHILD trigbankh22 returnres
PARENT trigbankh21 CHILD inspiralh21
PARENT trigbankh22 CHILD inspiralh22
PARENT inspiralh21 inspiralh22 CHILD thinca2lih1
PARENT thinca2lih1 thincalih1 CHILD returnres  



 

Figure 6 An Example Grid Workflow for GW Search 

5.2.2 Grid workflow modeling 

In this section, an example of state π calculus semantics for modeling GW data 
analysis workflows is provided in Figure 7. It is a simplified segment of the workflow 
described in Figure 6. 
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Figure 7 An Example State π Calculus Semantics for GW Data Analysis 

Workflows 

 



5.2.3 Logic verification for grid workflows 

The analysis of GW data involves multiple tasks and large amount of data. Because of 
the large scale scripts produced by LIGO data analysis tasks which in general may run 
from days to months, ensuring correctness and effectiveness of workflow structures 
and logics become critical which can be implemented using GridPiAnalyzer. 
 
The GW detection is a complex task. To distinguish potential GW signals from noises, 
the whole process can be categorized into four critical logics. Model checking in state 
π calculus is used to verify these logics. As previously mentioned, model checking is 
a formal verification tool to analyze expected sequential logics be true or not in finite 
state system model. Structural verification and formal semantics restraints description 
of the four groups of LTL logics are listed below. 
 
Logic 1 (Operations after creation of template banks): In any circumstances, once 
a template bank (TmpltBank) is created, two critical following steps: Matching with 
expected waves (Inpiral) and optimizing the matching (TrigBank) should be 
conducted to ensure effectiveness of data analysis. 
1)  G ( _ 1. ((F _ 1. ) (F _ 1. )))TmpltBank H Exit TrigBank H Exit Inspiral H Exit→ ∧
2) G ( _ 2. ((F _ 2. ) (F _ 2. )))TmpltBank H Exit TrigBank H Exit Inspiral H Exit→ ∧  
 
Logic 2 (Working state restraints of interferometers): Because of different 
sensitivity of different interferometers, two interferometers in Handford (H1 and H2) 
are working simultaneously (InitData_H1H2), it is required that the process of 
matching with the expected wave of H2 (Inspiral_H2) should be suspended, until 
both the data in H1 and H2 pass the contingency analysis (sInca_L1H1 and 
thInca_L1H1). 
G (( _ 1 2. ) ((  _ 2.  U _ 1 1. )
                                                        (  _ 2.  U _ 1 1. )))

InitData H H Active Inspiral H Exit sInca L H Active
Inspiral H Exit thInca L H Active

→ ¬ ∧
¬  

 
Logic 3 (Integrity of contingency analysis): The data collected by three 
interferometers have to pass all contingency analysis (sInca, thInca and thIncall) to 
minimize noise signal in final analysis. What’s more, sInca and thInca should be done 
before thIncall. 
((F _ 1 1. ( _ 1 1.  U _ 1 1. ))
(F _ 1 1. ( _ 1 1.  U _ 1 1. )))

F _ 1 1.

 sInca L H Active thIncaII L H Exit sInca L H Active
thInca L H Active thIncaII L H Exit thInca L H Active
thIncaII L H Exit

∧ ¬ ∨
∧ ¬

∧
 

 
Logic 4 (Inevitability of contingency analysis): In any circumstance, once the 
process of matching with expected waves is done or template banks are created, 
contingency analysis should be done finally. 
1) G ( _ 1.   (F _ 1 1. ))Inspiral H Exit thIncaII L H Exit→  
2) G ( _ 2.   (F _ 1 1. ))Inspiral H Exit thIncaII L H Exit→  
3)  G ( _ 1.   (F _ 1 1. ))TmpltBank H Exit thIncaII L H Exit→
4)  G ( _ 2.   (F _ 1 1. ))TmpltBank H Exit thIncaII L H Exit→
 
Reachability: (SrvFlow, SysStateinit) 〈Srv.Status=Exit〉(Φ, true),  in which 
Srv∈{initData_H1H2, tmpltBank_L1, tmplt Bank_H1, tmplt Bank_H2, Inspiral_L1, 
Inspiral_H1, Inspiral_H1, TrigBank_H1, TrigBank_H2, sInca_L1H1, thInca_L1H1, 



thIncaII_L1H1, thIncaII_L1H2, InspVeto, ReturnRes}; 
Terminatability: (SrvFlow, SysStateinit) ⎡ReturnRes.Status=Exit⎦(Φ, true); 
Message competitive conflicts: no such restraints in this case study; 
Variable garbage collection: (SrvFlow, SysStateinit) ⎡

 Ti

|range(*.bSize)|=0⎦(Φ, true). 
 
In logics described above, Inspiral_H1.Exit is the abbreviation for 
Inspiral_H1_1.Exit Inspiral_H1_2.Exit. This also applys to Inspiral_H2.Exit, 
TrigBank_H1.Exit and TrigBank_H2.Exit. After the transition process with SLTS 
mentioned above in GridPiAnalyzer, the number of reachable states in the final SLTS 
of above GW search’s state π calculus semantics is 932(29.8642), the total number of 
state proposition is 26, including 20 status variables of service activities. The total 
time and memory usage of the above logic formulas and specific performance is 
included in Table 1. 

∨

 
Table 1 Performance Evaluation of Logic Verification Using GridPiAnalyzer 

 
me (ms) Memory usage (MB) 

Formalism of sta π calculus 78 N/A te  

Calculating reachable states 1750 N/A 

V 2297 N/A 

creating an 1339 N/A 

Verificatio 2125 37.237 

Verifica 2688 37.412 

Veri 40 36.512 

Verifica 3156 37.410 

V 2328 37.352 

Verifica 25 37.389 

Verificatio 2313 36.887 

Ve 23 37.837 

erification of state assertation 
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tion of Logic 1.2 

fication of Logic 2 

tion of Logic 3 

94 

erification of Logic 4.1 

tion of Logic 4.2 

n of Logic 4.3 

00 

rification of Logic 4.4 59 
 
The final (InitData, TmpltBank, Insp  
TrigBank, TrigVeto, ll, ReturnRes) IGO GW orkflow are 
reachable, and under the condition TC = “ReturnRes.Status = Exit”, is terminatable. 
This means the final analysis can be completed without variable garbage. Regarding 
four grou ts m d above, in the LIGO GW search 
workflow, Logics 1, 3 and 4 can be met, though the verification result shows that 
there are anti-cases for Logic 2 which includes 51 state transitions. The workflow can 
then be fu anti-cases and meet requirements of Logic 2. 
This indi orkf ification. eneral it will 
take long time and resources to execute thes ows, form tion could be 
used to provide information in advance and improve grid workflow QoS. 
 

 result shows that all services 
thInca

iral, sInca, thInca,
 search win the L

ps of designated logic constrain entione

rther improved to avoid these 
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 Since in g
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6 Conclusions 

In this w is proposed, which facilitates modeling and 
verifying al p  grid workflows are captured and 
both static and dyn formal verifica ues are d, including 
structural correctness, ication satisfiability, logic satisfiability and consistency. 
A grid rification environment, GridPiAnalyzer, is 
implemen d ve n methods proposed in this work 
and validated using a grid workflow for gravitational wave data analysis. 
 
As shown valuation results, time and memory usage of 
GridPiAnalyzer is still quite high. ance 
optimization of grid flow verification using GridPiA  
development of new formal methods for workflow decomposition based on standard 
regions. Using regional analysis, complex
dramatically b tes and p  each relaxed 
region. 
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