
CODIS: A New Compression Scheme for Bitmap Indexes
Wenxun Zheng

Department of Automation
Tsinghua University

Beijing, China
zhengwx15@mails.tsinghua.

edu.cn

Yin Liu
Department of Automation

Tsinghua University
Beijing, China

liuyin14@mails.tsinghua.edu
.cn

Zhen Chen
Fundamental Training

Center for Industry
Tsinghua University

Beijing, China
zhenchen@tsinghua.edu.cn

Junwei Cao
Research Institute of

Information Technology
Tsinghua University

Beijing, China
jcao@tsinghua.edu.cn

ABSTRACT
Bitmap indexing is a promising approach for indexing.However,
the huge space consumption hinders the wide adoption of bitmap
indexing,especially in memory-critical area such as packet
classification.To this end, a variety of compression scheme are
proposed to reduce the spaceconsumption and simultaneously
maintain the fast calculation which is afocused feature of bitmap
indexing.In this paper, a novel compression scheme, named
Compressing Dirty Snippet(CODIS), is proposed.It is based on
the Word-Aligned Hybrid(WAH) algorithm.The basic idea is to
trade some payload for flexibilityso that the probability of space
reduction is raised, whichachieves better compression.CODIS is
verified by experiments onpart of the network traffic data from
CAIDA 2016. The results show that, comparing to WAH, CODIS
increases the time for intersection at a rate of about 7% while
reduces 39% of the space consumption. Comparing to COMPAX,
it takes 11% more space but reduces 19% of time for intersection.
Comparing to PLWAH, it is better in both space consumption and
inter-bitmap operations. CODIS takes the least time to decode
bitmap indexes into integers.

CCS Concepts
• Information systems➝Data Structures➝Data
Compression• Information Retrieval➝Search engine
architectures and scalability➝Search engine indexing.

Keywords
Bitmap index; network traffic; data compression; indexing

1. INTRODUCTION
Bitmap indexing is becoming more and more popular in

databases or data storesthat support large scale data or real-time
stream data, such as Druid [16], FASTBIT [15] and Apache Spark.
Varies compression algorithms contribute to current development
of bitmap index technology. The main concerns of bitmap index
compression algorithm are space consumption and online-
operable features that allows executing inter-bitmap operations
without decompression.

1.1 Bitmap Indexes
Bitmap indexing could be regarded as a method for the storage of
posting list in inverted index, while it is also generalized beyond
inverted index. For convenience, we will introduce bitmap
indexing in the context of inverted index.
Posting listis a list of integers indicating the locations of records
which match the rule of current entry. For example, there could be
posting list {0, 7} indicating that the 0thand 7th records are related
to http request.
Verbatim bitmap index stores this list as bit string ‘1000 0001’,
that is, each ‘1’ bit represents a record. Practical operations such
as intersection and join are done by bit-wise AND/OR operation

between bitmap indexes. However verbatim bitmap index usually
takes up enormous space and demands compression.

2. Background
The first use of verbatim bitmap indexing in commercial database
is by P. O’Neil [1] with his database system Model 204. Since
then, varies of compression schemes are proposed to improve the
performance of bitmap indexing.
Byte-aligned Bitmap Compression (BBC) [2] and Word-aligned
Hybrid are based on run-length encoding [3]. The occupancy rate
of free bit in WAH is not satisfying, so that Position List WAH
(PLWAH) [4] and Compressed Adaptive index (COMPAX) [5]
are proposed, which both apply further compression based on the
result of WAH. Improvements on the path of WAH include
Compressed ‘n’ Composable Integer Set (CONCISE) [6], Scope-
Extended COMPAX (SECOMPAX) [7], PLWAH algorithm for
sorted data (SPLWAH) [8], Combining Binary And Ternary
encoding (COMBAT) [9]. Non-WAH-based algorithms include
Maximized Stride with Carrier (MASC) [10], Draggled Fills
WAH (DFWAH) [11] and Enhanced WAH (EWAH) [12].
Some researchers build up a framework that takes use of different
algorithms to optimize the performances. Such as Variable Length
Compression (VLC) [13] and Roaring Bitmap [14].
WAH algorithm is implemented in FASTBIT [15]. CONCISE
algorithm is applied in Druid. Roaring Bitmap isapplied in the
Apache Spark project.

3. CODIS
Compression in CODIS is considered as providing encoding
scheme to represent bit string in bitmap index with less bits while
keep efficiency of inter-bitmap operations. The result of CODIS
consists of 32-bit code words. Types of code word are identified
by several most significant bits in code word. All types are listed
in Fig. 1. Note that ‘32 bits’ are just for clarity and alignment.
A literal word is headed with ‘1’. It is decoded into 31 bits in
verbatim bitmap. Literal word does not compress the data but
increases the size by adding a tag ahead.
Other words are headed with ‘0’ and another four bits.One of the

four is calledflag and the other three are used for recording an
integer, length.
Iflengthis 0, this word is a filled word. The remaining 27 bits are
considered an integer, counter. A filled word is decoded into

Figure 1. Header of Different Code Words

31*counter‘0’ bits. However, if the flag in filled word is ‘1’, the
result of decoding should be flipped.
If length is larger than 0, this word is a carried word. Another
four bits are divided out as integer, position. In carried word, the
number of bits in dirt area is equal to 3*length. To decode a
carried word, first take dirt out and put it into a bit string consists
of 31 ‘0’ where the number of ‘0’ at the right of dirt should be
equal to 2*position. Such 31-bit string is the first part of the
decoding result. Then the position,lengthand dirt in the carried
word areall set toall ‘0’, which turnscarried word intofilled word.
The second part of decoding result is the decoding result of this
filled word.
It is obvious that the decoding result is aligned to 31 bits. Hence
the encoding process starts from grouping bitmap indexes by 31
bits. Then the groups are scanned sequentially and encodes them
in greedy paradigm.

4. Results
We implemented WAH, PLWAH, COMAX and CODIS
algorithm for experiments. The code is written in C++ compiled
in Release mode by Visual Studio 2012 under Windows 8. The
dataset is network traffic from CAIDA 2016, containing about 13
million headers of IP packets. Main concerns here are the size of
bitmap indexes and time for intersection/union operation between
bitmap indexes.
Only source and destination IP addresses are used. IP addresses
are divided into 8 bytes and indexed separately. Each byte
generates 256 bitmap indexes, which results in 2048 bitmap
indexes totally. The total size, encoding time, decoding time of all
bitmap indexes is shown in Tab. 1.

Table 1. Performance of encoding and decoding

Algorithm WAH PLWAH COMPAX CODIS
Size 88.7MB 61.2MB 48.2MB 53.4MB

Encoding 6.9s 7.2s 8.7s 8.3s

Decoding 1.9s 2.0s 2.1s 1.7s
When doing intersection/union, two bitmap indexes are randomly
picked out for further intersection/union operation. Time for
single operation is averaged over ten thousandsof operations,
which are shown in Fig. 2.

Results show that comparing to COMAPX, CODIS sacrifices 11%
more space consumption but reduces the inter-bitmap operation
time by 19%. Comparing to WAH, CODIS reduces 39% of space
consumption while increases 7% time for inter-bitmap operations.

5. REFERENCES
[1] O'Neil, et al. "MODEL 204 architecture and performance."

High PERFORMANCE Transaction Systems, International
Workshop, Asilomar Conference Center, Pacific Grove,
California, Usa, September 28-30, 1987, Proceedings DBLP,
1989:40-59.

[2] Antoshenkov, G. "Byte-aligned bitmap compression." Data
Compression Conference, 1995. DCC '95. Proceedings IEEE,
page 476, 1995.

[3] K. Wu, et al."Optimizingbitmap indices with efficient
compression". ACMTransactions on Database Systems,
31(1):1–38, 2006.

[4] Deli, et al."Position list wordaligned hybrid: optimizing
space and performance forcompressed bitmaps". In EDBT
2010, Lausanne, Switzerland, March 22-26,
2010,Proceedings, pages 228–239, 2010.

[5] F. Fusco, et al."Net-fli: On-the-fly compression, archiving
and indexing of streaming network traffic". Proceedings of
the VLDB Endowment, 3(2):1382–1393, 2010.

[6] A. Colantonio and R. D. Pietro. "CONCISE: Compresssed ’n’
composable integer set". Inform.process.lett, (16):644–650,
2010.

[7] Y. Wen, et al. "SECOMPAX: A bitmap index compression
algorithm". In International Conference on Computer
Communication and Networks, pages 1–7, 2014.

[8] J. Chang, et al. "SPLWAH: A bitmap index compression
scheme for searching in archival internet traffic". In IEEE
International Conference on Communications, 2015.

[9] Y. Wu, et al. "Combat: A new bitmap index coding
algorithm for big data". Journal of Tsinghua
University(Science and Technology), 21(2):136–145, 2016.

[10] Y. Wen, et al. "MASC: A bitmap index coding algorithm for
internet traffic retrieval". In IEEE International Conference
on Communications, 2016.

[11] Schmidt, et al. "DFWAH: A Proposal of a New Compression
Scheme of Medium-Sparse Bitmaps." DBKDA 2011.

[12] D. Lemire, et al. "Sorting improves word-aligned bitmap
indexes". Data and Knowledge Engineering, 69(1):3–28,
2009.

[13] F. Corrales, et al. "Variable Length Compression for Bitmap
Indices". Springer Berlin Heidelberg, 2011.

[14] S. Chambi, et al. "Optimizing druid with roaring bitmaps". In
International Database Engineering and Applications
Symposium, 2016.

[15] K. Wu, et al. "Fastbit: interactively searching massive data".
In Journal of Physics Conference Series, page 012053, 2009.

[16] Yang, Fangjin, et al. "Druid: a real-time analytical data
store." Acm Sigmod International Conference on
Management of Data 2014.

Figure 2. Time for Intersection/Union Operation

	INTRODUCTION
	Bitmap Indexes

	Background
	CODIS
	Results
	REFERENCES

