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Abstract—To build the controller for Buck type DC/DC 

converters under uncertainty, a Super Twisting Algorithm (STA) 

based on homogeneity theory extension is proposed to achieve 

robust control with finite time stability. The Super Twisting 

Algorithm is extended to second-order systems, and its finite time 

stability is demonstrated based on the theory of homogeneity. 

Finally, simulation experiments and comparisons with 

homogeneous second-order sliding mode and ordinary sliding 

mode control methods indicate the superiority of the proposed 

method in combating uncertainty.  

Keywords—buck, sliding mode, homogeneity theory, Super 

Twisting Algorithm, extended  

I. INTRODUCTION 

Owning to the fluctuation and intermittency characteristics 
in the supply of renewable energy, processing of control 
technology and power electronic conversion technology are 
indispensable in its development and construction where 
DC/DC converters play a pivotal role in power electronic 
conversion. In-depth research on DC/DC converter control 
strategies is of great significance for the stable operation and 
the improvement of power efficiency [1]. 

In the real world, DC/DC converters are influenced by their 
internal uncertainties and external disturbances. When 
significant changes occur in loads or parameters, the 
performance of existing classical control methods may not 
meet the requirements. The sliding mode control method has 
incomparable strong points including fast dynamic response 
and high stability when dealing with uncertainty [2-3]. Reference 
[4] reconstructed a discrete voltage model with concentrated 
disturbances, designed a globally robust discrete integral 
sliding mode voltage controller, and improved the dynamic 
performance and disturbance resistance of the output voltage. 
Reference [5] proposed sliding mode controller for 
bidirectional DC/DC under non ideal conditions, and 
separately designed sliding mode current and voltage 
controllers to effectively control the stability of the 
bidirectional system. Reference [6] constructed a novel fixed 

time sliding mode surface and sliding mode convergence law 
which improved the convergence rate when moving away from 
the system origin and ensured the stability of the system within 
a fixed time. In reference [7], a second-order sliding mode 
controller was adopted for the Buck to reduce the use of 
inductance current sensors and simplified it to only retain the 
load terminal voltage sensors, which saves the cost of control 
equipment. 

Classical sliding mode control methods have drawbacks of 
chattering and relative order constraints while the emergence 
of high-order sliding mode control methods has overcome 
these drawbacks. Reference [8] proposed a fixed time output 
voltage regulation algorithm based on variable gain second-
order sliding mode control. A sliding mode variable with a 
relative order of 2 was constructed based on the obtained 
mathematical model, and a novel gain variable sliding mode 
control algorithm was proposed to achieve a fixed time output 
voltage control with convergence time independent of the 
initial system value. Reference [9] proposed a novel dual Buck 
full bridge grid connected inverter topology, which uses fewer 
components and has a simple structure adopting a dual second-
order sliding mode control strategy with capacitor voltage and 
inductor current. 

STA is the only continuous and applicable algorithm 
among existing second-order sliding mode control methods 
for first-order systems, which can significantly reduce 
chattering. But what restricts its development is its limitation 
on the relative order, which can only be used for systems with 
sliding mode surfaces of relative order 1. How to extend the 
idea of this method to second-order or even higher-order 
systems is a worthwhile question. In addition, the difficulty in 
proving its finite time stability also impedes the expansion of 
this method. This article proposes an extended STA method 
based on homogeneity theory for Buck type DC/DC 
converters with uncertainty. Firstly, the STA method is 
extended to second-order systems, and finite time stability 
proof is provided based on homogeneity theory. By comparing 
with homogeneous second-order sliding mode and ordinary 
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sliding mode control methods, the superiority of the proposed 
extended STA in combating uncertainty is demonstrated. 

II. DIGITAL MODELING 

According to reference [10], the main circuit structure of 
the Buck converter is shown in Figure 1. Where, 𝐷  is the 
freewheeling diode, 𝑅is the output load resistance, and 𝑆𝑤  is 
the power switch transistor, 𝐶 is the circuit output capacitor, 𝐿 
is the power inductor, and 𝑖𝐿 is the inductive current, 𝑖𝐶is the 
capacitance current, 𝑉𝑜  is the output voltage, 𝑉𝑖𝑛  is the input 
voltage, 𝑢 is the controller input which is the duty cycle of the 
switching transistor 𝑆𝑤  satisfying 𝑢 ∈ [0,1] . The Buck type 
step-down transformer achieves output voltage convergence to 
the reference voltage and maintains stability by adjusting the 
duty cycle 𝑢 of the power switch 𝑆𝑤. 
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Fig. 1. Main circuit structure of Buck converter. 

The state space model of Buck converter in continuous 
conduction mode can be represented as: 

 {
𝑉�̇� =

1

𝐶
𝑖𝐶

𝑖̇�̇� =
𝑢𝑉𝑖𝑛−𝑉𝑜

𝐿
−

𝑉�̇�

𝑅

   () 

Define 𝑉𝑟𝑒𝑓 as the expected reference output voltage, and 

the state variable selected is the sliding surface 𝑠 = 𝑉𝑜 − 𝑉𝑟𝑒𝑓 

also known as the output voltage error, �̇� = 𝑖𝐶  is the output 
capacitor current, then: 

 [
�̇�
�̈�

] = [
0 1

−
1

𝐿𝐶
−

1

𝑅𝐶

] [
𝑠
�̇�

] + [
0

−
𝑉𝑖𝑛

𝐿𝐶

] 𝑣 + [
0

𝑉𝑟𝑒𝑓

𝐿𝐶

]  () 

III. CONTROLLER DESIGN 

Based on the theory of homogeneity, an extended STA to 
second-order systems and its finite time stability proof is given 
below.  

The most important property of a control system is whether 
it is stable. Unstable systems are generally unusable and also 
pose risks. The Lyapunov direct method, as the most classic 
criterion for stability analysis of nonlinear systems, is the most 
important tool for nonlinear system analysis and design. The 
advantages of this method are evident, as it only requires 
constructing a relevant positive definite energy function for the 
system, taking the derivative of this function, and based on the 
information of the derivative, one can determine whether the 
system is stable, exponentially stable, or globally 
asymptotically stable. This method clearly and intuitively 
demonstrates the concept of stability. And there is no need to 

linearize or perform various transformations on the system, and 
this method can also be directly used for controller design. 

Lemma 1 : (Lyapunov theorem for global stability)[11]: 

Assuming the existence of a scalar function 𝑉 with state x, 
which has a first-order continuous partial derivative and 

(1) 𝑉(𝑥) positive definite; 

(2)  �̇�(𝑥)Negative definite; 

(3) When ‖𝑥‖ → ∞, 𝑉(𝑥) → ∞; 

So the origin as the equilibrium point is globally 
asymptotically stable. 

The previous methods of control analysis and synthesis 
belong to infinite time stable control problems. From the 
perspective of control time optimization, the control method 
that makes the closed-loop system finite time stable is the time 
optimal and has important theoretical and practical research 
significance. 

Consider the following system: 

 �̇� = 𝑓(𝑥)   𝑓(0) = 0 () 

where 𝑥 ∈ 𝑅𝑛 , 𝑥(0) = 𝑥0 , 𝐷 → 𝑅  continuous with respect to  
𝑥 within an open area neighborhood D containing the origin 
𝑥 = 0. 

Definition 1: For system (3), if there exists an open 
neighbourhood 𝑈 ⊆ 𝐷  containing the origin 𝑥 = 0   and a 

function 𝑇𝑥: 𝑈\{0} → (0,∞) , such that for the existence of 

𝑥0 ∈ 𝑈 , when 𝑡 ∈ [0, 𝑇(𝑥0)), 𝑥(𝑡, 𝑥0)is defined and unique in 

forward time, satisfying equation lim
𝑡→𝑇𝑥(𝑥0)

𝑥(𝑡, 𝑡0) = 0, then the 

equilibrium point 𝑥 = 0  of the system is finite time stable; 
When 𝑡 > 𝑇(𝑥0), there is 𝑥(𝑡, 𝑥0) = 0. The equilibrium point 
𝑥 = 0 is finite time stable if and only if it is Lyapunov stable, 
and if 𝑈 = 𝐷 = 𝑅𝑛 , then the equilibrium point 𝑥 = 0  is 
globally finite time stable. 

Lemma 1: Assuming that a vector field can be divided into 
several vector fields, i.e. 𝑓 = 𝑔1 + ⋯ + 𝑔𝑘. For each𝑖 = 1, … 𝑘, 
the vector field is continuous and has a negative degree of 
homogeneity  𝑚𝑖. And 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘. If in the vector 
field  𝑔1 the origin is a finite time stable equilibrium point, then 
in the vector field 𝑓  the origin is a finite time stable 
equilibrium point[12]. 

Lemma 2: (Finite time stability theorem for homogeneous 
systems) [13]: If a system is globally asymptotically stable and 
has negative homogeneity, i.e. 𝑑 < 0 , then the system is 
globally finite time stable. 

Consider a type of second-order nonlinear system as 
follows:  

 {
�̇�1 = 𝑥2

𝑚

�̇�2 = 𝑢   
  () 

where 𝑥1 and 𝑥2 are system states, 𝑚 is a positive odd number, 
the control objective is to control the input 𝑢  to make the 
system converge to the origin within a finite time. 



 

Here, the following second-order sliding mode control 
inputs based on homogeneity theory are adopted: 

 𝑢 = −𝑙1sgn(𝑥1)|𝑥1|𝛼1 − 𝑙2sgn(𝑥2)|𝑥2|𝛼2  () 

where 𝑙1 > 0, 𝑙2 > 0, 0 < 𝛼 < 1/𝑚, 𝛼2 =
(𝑚+1)𝛼1

1+𝛼1
.  

Theorem 1: For a class of second-order nonlinear systems 
(4), when the control input satisfies equation (5), the system (4) 
converges to the origin in finite time. 

Proof: The proof of Theorem 1 involves two steps, first 
proving the asymptotic stability of the system. 

Substitute the control law (5) into the system (4) to obtain 
the following closed-loop system equation: 

 {
�̇�1 = 𝑥2

𝑚                                                               

�̇�2 = −𝑙1sgn(𝑥1)|𝑥1|𝛼1 − 𝑙2sgn(𝑥2)|𝑥2|𝛼2
  () 

Take Lyapunov function as:  

 𝑉(𝑥1, 𝑥2) =
𝑙1|𝑥1|𝛼1+1

𝛼1+1
+

|𝑥2|m+1

𝑚+1
   () 

Taking the derivative of (7) yields:  

 �̇� = −𝑙2|𝑥2|𝑚+𝛼2 ≤ 0  () 

Obviously, �̇�  negative semidefinite, 𝑉  is non increasing 
and has a finite limit. 

So state 𝑥1  and  𝑥2  are bounded. At this point ,take the 

derivative of �̇� can lead to  

 �̈� = −𝑙2(𝑚 + 𝛼2)|𝑥2|𝑚+𝛼2−1sgn(𝑥2)  () 

Because of  𝑚 + 𝛼2 − 1 > 0, 𝑥2  is bounded, hence  �̈�  is 
bounded. 

Then �̇� uniform continuity, from Barbarat's  lemma �̇� → 0, 
then 𝑥2 → 0. 

Then �̇�1 and �̇�2 are bounded, hence 𝑥1 and 𝑥2 are uniform 
continuity. 

Take function 𝑔 = 𝑥1𝑥2 , Due to  𝑥1  is bounded, 𝑥2 → 0, 
then there is a finite limit of 0 for 𝑔. 

 �̇� = −𝑙1|𝑥1|𝛼1+1 − 𝑙2𝑥1|𝑥2|𝛼2sgn(𝑥2) + 𝑥2
2 = 𝑔1 + 𝑔2 () 

where 𝑔1 = −𝑙1|𝑥1|𝛼1+1, 𝑔2 = −𝑙2𝑥1|𝑥2|𝛼2sgn(𝑥2) + 𝑥2
2 , 

�̇�1 = −𝑙1(𝑎1 + 1)|𝑥1|𝑎1 ,  �̇�1  is bounded, therefore 𝑔1  is 
continuous, then �̇�  is continuous, therefore according to 
Barbarat's lemma �̇� → 0. And because of 𝑥2 → 0,  so 𝑔2 → 0 , 
and then 𝑔1 → 0,  𝑥1 → 0. 

It can be seen that the closed-loop system is asymptotically 
stable. 

Next, verify that the system has negative homogeneity. 

Define vector field: 

  𝑓 = [𝑓1(𝑥1, 𝑥2), 𝑓2(𝑥1, 𝑥2)]𝑇  () 

where 𝑓1(𝑥1, 𝑥2) = 𝑥2
𝑚 , 𝑓2(𝑥1, 𝑥2) = −𝑙1sgn(𝑥1)|𝑥1|𝛼1 −

𝑙2sgn(𝑥2)|𝑥2|𝛼2 

Homogeneous expansion: 

 ∆k: (𝑥1, 𝑥2) → (𝑘𝑥1, 𝑘
𝛼1+1

𝑚+1 𝑥2)  () 

then 

  𝑓1 (𝑘𝑥1, 𝑘
𝛼1+1

𝑚+1 𝑥2) = 𝑘
𝑚(𝛼1+1)

𝑚+1 𝑥2
𝑚  

 = 𝑘1+
𝑚𝛼1−1

𝑚+1 𝑥2
𝑚 = 𝑘1+

𝑚𝛼1−1

𝑚+1 𝑓1(𝑥1, 𝑥2)  () 

 𝑓2 (𝑘𝑥1, 𝑘
𝛼1+1
𝑚+1 𝑥2) 

= −𝑙1sgn(𝑘𝑥1)|𝑘𝑥1|𝛼1 − 𝑙2sgn (𝑘
𝛼1+1
𝑚+1 𝑥2) |𝑘

𝛼1+1
𝑚+1 𝑥2|

𝛼2

 

  = 𝑘
𝛼1+1

𝑚+1
+

𝑚𝛼1−1

𝑚+1 𝑓2(𝑥1, 𝑥2)   () 

Because of 0 < 𝛼 < 1/𝑚, so 𝑘 = (𝑚𝛼1 − 1)/(𝑚 + 1) <
0.  

It can be verified, take 𝑟1 = 1, 𝑟2 = (𝛼1 + 1)/(𝑚 + 1) and 
parameter values satisfying 0 < 𝛼1 < 1/𝑚 , 𝛼2 =
(𝑚 + 1)𝛼1/(1 + 𝛼1), the homogeneity of the system is  𝑘 =
(𝑚𝛼1 − 1)/(𝑚 + 1) < 0 , the system is globally 
asymptotically stable and has negative homogeneity, 
According to Lemma 2, the system is globally finite time stable. 

Theorem 2: Consider a class of second-order systems: 

 {
�̇�1 = 𝑥2

�̇�2 = 𝑢
   () 

where 𝑥𝑖 ∈ 𝑅, 𝑢 ∈ 𝑅 are the system state and control inputs, 
respectively. 

The controller: 

 {
𝑢 = −𝜆1|𝑥1|𝑎sgn(𝑥1) − 𝜆2|𝑥2|𝑏sgn(𝑥2) + 𝑥3

�̇�3 = −𝛼sgn(𝑥2)                                                        
  () 

can make the system states  𝑥1 and 𝑥2 converge to the origin 
simultaneously in finite time. 

where 𝜆1 , 𝜆2  and 𝛼  are all positive constants, 𝑏 =
2𝑎

1+𝑎
, 0 <

𝑏 <
1

2
. 

Proof: Substitute (16) into (15) to obtain the system as: 

 {

�̇�1 = 𝑥2                                                                        

�̇�2 = −𝜆1|𝑥1|𝑎sgn(𝑥1) − 𝜆2|𝑥2|𝑏sgn(𝑥2) + 𝑥3

�̇�3 = −𝛼sgn(𝑥2)                                                       

  () 

The vector field f on the right side of equation (17) can be 
regarded as the sum of two homogeneous vector fields: 

 𝑓 = 𝑔1 + 𝑔2  () 

where 

 𝑔1 = [𝑥2, −𝜆1|𝑥1|𝑎sgn(𝑥1) − 𝜌𝜆2|𝑥2|𝑏sgn(𝑥2), 0]  () 

   𝑔2 = [0, −(1 − 𝜌)𝜆2|𝑥2|𝑏sgn(𝑥2), −𝛼sgn(𝑥2)]  () 

First, for the finite time stability property of the vector field 
𝑔1, take the Lyapunov function: 

 𝑉(𝑥1, 𝑥2) =
𝜆1|𝑥1|𝑎+1

𝑎+1
+

|𝑥2|2

2
   () 

Taking the derivative of equation (21) yields: 



 

      �̇� = 𝜆1|𝑥1|𝑎�̇�1sgn(𝑥1) + 𝑥2�̇�2 

        = 𝜆1|𝑥1|𝑎𝑥2sgn(𝑥1) + 𝑥2[−𝜆1|𝑥1|𝑎sgn(𝑥1) −
𝜌𝜆2|𝑥2|𝑏sgn(𝑥2)] 

 = −𝜌𝜆2|𝑥2|𝑏+1  () 

Obviously, �̇� is Negative semidefinite; 𝑉 is non increasing 
and has a finite limit. 

So states  𝑥1 and 𝑥2 are bounded. At this point, taking the 

derivative of �̇� leads to 

 �̈� = −𝜌𝜆2(𝑏 + 1)|𝑥2|𝑏sgn(𝑥2)   () 

Since 0 < 𝑏 <
1

2
 and 𝑥2 is bounded, �̈� is bounded. 

So �̇� is uniformly continuous, and according to Barbarat's 

lemma, �̇� → 0, then 𝑥2 → 0. 

Select function 𝑚 = 𝑥1𝑥2, since 𝑥1 is bounded and 𝑥2 → 0, 
𝑚 has a finite limit 0. 

 �̇� = −𝜆1|𝑥1|𝑎+1 − 𝜌𝜆2𝑥1|𝑥2|𝑏sgn(𝑥2) + 𝑥2
2 = 𝑚1 + 𝑚2() 

where 𝑚1 = −𝜆1|𝑥1|𝑎+1, 𝑚2 = −𝜌𝜆2𝑥1|𝑥2|𝑏sgn(𝑥2) + 𝑥2
2 , 

�̇�1 = −𝜆1(𝑎 + 1)|𝑥1|𝑎 , �̇�1  is bounded, therefore 𝑚1  is 
continuous, then �̇�  is continuous. Therefore according to 
Barbarat's lemma  �̇� → 0. Since 𝑥2 → 0, 𝑚2 → 0, then  𝑚1 →
0, therefore 𝑥1 → 0. 

It can be seen that the closed-loop system is asymptotically 
stable. 

Let's take another look at the homogeneity of the vector 
field 𝑔1, let's make the vector field: 

 𝑔1 = [ℎ1(𝑥1, 𝑥2, 𝑥3), ℎ2(𝑥1, 𝑥2, 𝑥3), ℎ3(𝑥1, 𝑥2, 𝑥3)]𝑇   () 

where, 

  ℎ1(𝑥1, 𝑥2, 𝑥3) = 𝑥2 () 

 ℎ2(𝑥1, 𝑥2, 𝑥3) = −𝜆1|𝑥1|𝑎sgn(𝑥1) − 𝜌𝜆2|𝑥2|𝑏sgn(𝑥2) () 

  ℎ3(𝑥1, 𝑥2, 𝑥3) = 0  () 

Homogeneous expansion: 

 ∆k: (𝑥1, 𝑥2, 𝑥3) → (𝑘𝑥1, 𝑘
𝑎+1

2 𝑥2, k𝑥3)  () 

Then 

 ℎ1 (𝑘𝑥1, 𝑘
𝑎+1

2 𝑥2, k𝑥3) = 𝑘
𝑎+1

2 𝑥2 = 𝑘1+
𝑎−1

2 ℎ1(𝑥1, 𝑥2, 𝑥3) () 

 ℎ2 (𝑘𝑥1, 𝑘
𝑎+1

2 𝑥2, 𝑘𝑥3) = −𝜆1sgn(𝑘𝑥1)|𝑘𝑥1|𝑎 −

𝜌𝜆2sgn (𝑘
𝑎+1

2 𝑥2) |𝑘
𝑎+1

2 𝑥2|
𝑏

= 𝑘
𝑎+1

2
+

𝑎−1

2 ℎ2(𝑥1, 𝑥2) () 

 ℎ3 (𝑘𝑥1, 𝑘
𝑎+1

2 𝑥2, k𝑥3) = 0 = 𝑘1+
𝑎−1

2 ℎ3(𝑥1, 𝑥2, 𝑥3)   () 

Because 0 < 𝛼 < 1, then  
𝑎−1

2
< 0. 

Therefore, the system is asymptotically stable and has 
negative homogeneity. According to Lemma 2, the system is 
globally finite time stable. The system is stable for a limited 
time [𝑥1, 𝑥2, 𝑥3] = [0,0, 𝑥3(0)].  

Vector field  𝑔2  is equivalent to the Super-twisting 
algorithm, which makes the system finite time stable at 
[𝑥1𝑓, 0,0]. Its stability proof can be seen in reference [14] and 

[15]. 

Make vector field: 

  𝑔2 = [ℎ4(𝑥1, 𝑥2, 𝑥3), ℎ5(𝑥1, 𝑥2, 𝑥3), ℎ6(𝑥1, 𝑥2, 𝑥3)]𝑇   () 

where, 

 ℎ4(𝑥1, 𝑥2, 𝑥3) = 0    () 

 ℎ5(𝑥1, 𝑥2, 𝑥3) = −(1 − 𝜌)𝜆2|𝑥2|𝑏sgn(𝑥2)   () 

 ℎ6(𝑥1, 𝑥2, 𝑥3) = −𝛼sgn(𝑥2)   () 

Homogeneous expansion: 

 ∆𝑘: (𝑥1, 𝑥2, 𝑥3) → (𝑘𝑥1, 𝑘𝑥2, k1−b𝑥3)   () 

Then 

  ℎ4(𝑘𝑥1, 𝑘𝑥2, 𝑘1−𝑏𝑥3) = 0 = 𝑘1+(𝑏−1)ℎ4(𝑥1, 𝑥2, 𝑥3) () 

 ℎ5(𝑘𝑥1, 𝑘𝑥2, 𝑘1−𝑏𝑥3) = −(1 − 𝜌)𝜆2|𝑘𝑥2|𝑏sgn(𝑘𝑥2)  

 = k1+(𝑏−1)ℎ5(𝑥1, 𝑥2)  () 

  ℎ6(𝑘𝑥1, 𝑘𝑥2, 𝑘1−𝑏𝑥3) = −𝛼sgn(𝑘𝑥2)  

 = 𝑘1−𝑏+(𝑏−1)ℎ6(𝑥1, 𝑥2, 𝑥3)  () 

Because 0 < 𝑏 < 1, so 𝑏 − 1 < 0. 

Therefore, the system is asymptotically stable and has 
negative homogeneity. According to the finite time stability 
theorem of homogeneous systems, 𝑔2 makes the system stable 
at a finite time [𝑥1, 𝑥2, 𝑥3] = [𝑥1𝑓, 0,0]. 

According to Lemma 1, when the homogeneity of 𝑔1   is 
less than that of 𝑔2 , let 𝑥3(0) = 0. The algorithm proposed 
here ensures that the system is finite time stable at the origin. 

IV. SIMULATION ANALYSIS 

 
Fig. 2. Simulation results. 

In the simulation, the parameters of the Buck converter 
model are taken as the input voltage 𝑉𝑖𝑛 = 17V , reference 
output voltage 𝑉𝑟𝑒𝑓 = 5V , rated resistance R=10 Ω, rated 

inductance L=100 𝜇H and the rated capacitance C=1000 𝜇F. 



 

Initial values of system states variable 𝑉𝑜(0) = 0 , 𝑖𝐶 = 0 . 
Firstly, compared with the homogeneous second-order sliding 
mode control method [13] and these two controllers take the 
same parameters: 𝜆1 = 10, 𝜆2 = 10, 𝛼 = 0.2. 

The simulation results are shown in Figure 2.  

If disturbances were added at the beginning of the system 
operation, simulation results are shown in Figure 3: 

 
Fig. 3. Simulation results under disturbances at the beginning. 

It can be seen that our proposed extended STA  has a lower 
overshoot than the homogeneous method. 

If disturbances occur in the plateau period of operation, the 
simulation results are shown in Figure 4: 

 
Fig. 4. Simulation results under disturbances during operation. 

From Figure 4, it can be seen that our proposed extended 
STA performs better than the homogeneous method. 

Next, compared our extended STA with traditional sliding 
mode control methods, sliding mode control exhibits chattering 
in the system due to its inherently discontinuous switching 
characteristics. According to the traditional definition of sliding 
mode control, select the sliding mode surface: 𝑠1 = 𝑠 + 𝑘�̇�  ̇. 
The system control law is 𝑣1 = −𝜀1sgn(s1) − 𝑘1𝑠1 . Take 

control parameters in simulation, 𝑘 = 1, 𝜀1 = 500, 𝑘1 = 1000. 
The proposed extended STA controller parameters are: 𝜆1 =
18, 𝜆2 = 16, 𝛼 = 0.2. The simulation results are shown below: 

 
Fig. 5. Simulation results. 

At the beginning of the system operation, disturbances 
were added, and the simulation results are shown in Figure 6: 

 
Fig. 6. Simulation results under disturbances at the beginning. 

 
Fig. 7. Simulation results under disturbances during operation. 



 

It can be seen that the original sliding mode control 
algorithm is divergent, our proposed extended STA can still 
maintain good performance. 

If disturbances occur in the plateau period of operation, the 
simulation results are shown in Figure 7: 

From Figure 7, it can be seen that the proposed method 
performs better than the traditional sliding mode control 
method while the original method diverges. 

V. CONCLUSION 

To improve the dynamic performance and robustness of 
Buck circuit control systems, a finite time robust control 
method for Buck circuits based on high-order sliding mode 
control is proposed and it not only rapidly stabilizes the output 
voltage within a limited time, but also has a certain degree of 
robustness to system uncertainty. The simulation results have 
verified the effectiveness and advantages of the proposed 
method by comparing it with traditional sliding mode control 
and second-order homogeneous sliding mode control methods, 
especially, in its obvious superiority in combating uncertainty. 
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