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Abstract 
 

While a grid represents a computing infrastructure 
for cross domain sharing of computational resources, 
the cyberinfrastructure, proposed  by the US NSF Blue 
– Ribbon advisory panel, is expected to revolutionizing 
science and engineering by including more computer 
integrated resources, e.g. telescopes and 
observatories. As a part of the China national 
cyberinfrastructure for education and research, 
resource sharing of expensive scientific instruments is 
discussed in this work. A layered model of instrument 
pools is introduced and the process from submitting a 
job to instrument pools to obtaining results is 
analyzed. Fuzzy random scheduling algorithms are 
proposed in instrument pools when a job is submitted 
to one of instruments within a pool. The randomness 
lies in the probability which instrument could be 
chosen for an experiment and the fuzziness origins 
from vagueness of users’ feedback opinions on 
experimental results. Users’ feedback information is 
utilized to improve overall quality of service (QoS) of 
an instrument cyberinfrastructure. Several algorithms 
are provided to increase utilization of instruments 
providing higher QoS and decrease utilization of those 
with poor QoS. This is demonstrated in details using 
quantitative simulation results included in this paper. 
 
1. Introduction 
 

Grid computing, originally motivated by wide-area 
sharing of computational resources [4], has evolved to 
be mainstream technologies for enabling large-scale 
virtual organizations [5].  Especially, entering the new 
century, the cyberinfrastructure vision [1], proposed by 
the US NSF Blue – Ribbon advisory panel, provides a 
blueprint of future infrastructure in cyberspace for 
revolutionizing science and engineering. Grid 
technologies are potential to be utilized for cross-

domain sharing of much more computer integrated 
resources, e.g. telescopes and observatories [11]. 

Current situation in China is that on one hand some 
organizations have expensive scientific instruments 
with high maintenance costs but low utilization ratios. 
On the other hand, many universities cannot obtain 
necessary experimental facilities supporting academic 
experiments and activities. As a part of the China 
national cyberinfrastructure for education and research, 
remote manipulation of geographically distributed 
scientific instruments and cross-organization sharing of 
high-quality education resources using grid 
technologies was discussed in [16, 17]. 

This work focuses on scheduling remote access of 
scientific instruments with consideration of quality of 
service (QoS) issues. A layered model of instrument 
pools is introduced. In our previous work the role of 
human was not taken into account and there was no 
QoS feedback mechanism to reflect whether users are 
satisfied with experimental results. In this paper the 
feedback information regarding instrument QoS is 
considered to be a fuzzy variable with one of the 
following linguistic values, terrible, bad, normal, good 
and excellent. The probability whether an instrument 
could be chosen for a job is dynamically adjusted 
according to users’ QoS feedback information. As a 
result, utilization of instruments providing higher QoS 
according to users’ feedback is increased so that QoS 
of an instrument cyberinfrastructure as a whole is 
dramatically improved. This is quantitatively 
illustrated using detailed modeling and simulation 
results included in this paper. 

Resource scheduling issues for clusters and grids 
has been discussed for many years. Especially, using 
historical QoS data to improve scheduling performance 
has been proved to be very effective. In a parallel and 
distributed computing environment, QoS data can be 
defined easily using quantitative values, e.g. job 
execution time [13], queue waiting time [14], data 



transfer time [3], CPU workloads [18], which can be 
modeled and analyzed using performance prediction 
technologies [15] and utilized to improve resource 
scheduling performance. However, it is difficult for 
users to characterize instrument performance 
quantitatively since various criteria (e.g. time, cost and 
precision) may play different roles in different 
experiments. In general, users can only provide an 
overall impression of instrument QoS. The fuzzy 
random theory is adopted here, which is suitable and 
straightforward when applied to the scheduling 
scenarios involved in an instrument 
cyberinfrastructure, though not necessarily providing 
the best scheduling solution. A similar work using 
fuzzy methods for grid scheduling can be found in [2], 
but the exact model and algorithms are different.   

 The rest of this paper is organized as follows. In 
Section 2, a layered model of instrument pools is 
introduced. In Section 3, we present the fuzzy random 
scheduling model and algorithms with consideration of 
users’ QoS feedback information. Simulation results 
are given in Section 4 and the paper concludes in 
Section 5. 
 
2. Scientific Instrument Sharing 

 
Figure 1. The process of invoking a service in an 

instrument cyberinfrastructure 
 
As shown in Figure 1, in an instrument 

cyberinfrastructure, similar instruments are organized 
into an instrument pool and different instrument pools 
constitute an instrument pool alliance. When a user 
wants to do experiment via the instrument 
cyberinfrastructure, he submits the job to the 
instrument pool alliance, which analyses the job and 
verifies whether it can be accomplished with existing 
pools within it. If the job can be fulfilled, the 
instrument pool alliance will submit it to the required 
instrument pools by order of the job’s inherent 

requirements. When an instrument pool receives a job, 
it will find an available instrument to do it. 

Every instrument in Figure 1 belongs to a certain 
instrument pool and can join and leave the pool 
dynamically. All instrument pools have their images in 
the instrument pool alliance and can also join and leave 
the pool alliance dynamically. When a user wants to do 
an experiment and submits it to the instrument pool 
alliance in Step 1, the instrument pool alliance will 
check whether the instrument cyberinfrastructure has 
the required instruments needed to fulfill the 
experiment. If not all resources needed are presented, 
the pool alliance will reply the user with refusal 
information in Step 2. Otherwise the alliance will 
decompose the experiment into parts and submit the 
related parts to corresponding pools in Step 3. All the 
related pools will find suitable resources and submit 
job parts to chosen instruments in Step 4. In Step 5, 
chosen instruments return results of the experiment to 
pools after the experiment was done and the pools 
return results to the pool alliance in Step 6. The pool 
alliance composes all middle results and returns a final 
result to the user in Step 7. In Step 8, the user feed 
back his opinion about the experimental result, which 
is important to improve QoS of the instrument 
cyberinfrastructure as discussed later. 
 
3. Fuzzy Random Scheduling 

 
As we mentioned before, instrument QoS can be 

hardly described using explicit parameters. In this 
section, we introduce a fuzzy random theory to 
characterize users’ feedback QoS information. 
 
3.1 Fuzzy random theory 

 
The fuzzy random theory is an emerging field in 

the uncertain theory, a branch of modern mathematics. 
It takes two aspects of uncertain factors, randomness 
and fuzziness, respectively, into account and has 
attracted many research interests. Some key concepts 
of the fuzzy random theory are given in this section. A 
detailed introduction can be found in [9]. 

A fuzzy random variable is a measurable function 
from a probability space to the set of fuzzy variables. 
In other words, a fuzzy random variable is a random 
variable taking fuzzy values. The notion of fuzzy 
random variable was first introduced by Kwakernaak 
in [7] and [8]. This concept was developed in [6], [10] 
and [12] by different requirements of measurability. 
Definition of fuzzy random variable is as follows [10]: 

A fuzzy random variable is a function ξ from a 
probability space (Ω, A, Pr) to the set of fuzzy 



variables such that Cr{ξ(ω) ∈ B} is a measurable 
function of ω for any Borel set B of R, the real number 
domain. Ω is a nonempty set, A is an algebra over Ω 
and Pr is a probability measure. Cr is the credit of a 
fuzzy variable, which is similar to the probability of a 
random variable. Definition of the expected value of a 
fuzzy random variable ξ introduced in [10] is as 
follows: 
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, providing that at least one of the two integrals is 
finite. 

From the definition above, expected value of a 
fuzzy random variable is a scalar value. In Equation 
(1), ( )ξ ω is a fuzzy variable and E in the left of the 
equation is the expectation of a fuzzy random variable, 
while E on the right is the expected value of a fuzzy 
variable. In most real world instances, the expectation 
calculation of a fuzzy random variable can be 
simplified. 
 
3.2 Scheduling models 
 

The fuzzy random scheduling model refers to the 
schedule process of Step 4 in Figure 1, which is an 
essential step in an instrument cyberinfrastructure for 
resource sharing. The scheduling model described in 
this work take users’ feedback information into 
account and try to satisfy user requirements better. 

Consider an instrument pool with N instruments in 
it, as shown in Figure 2. 

 
Figure 2. The job scheduling in an instrument pool 

When a new experiment is submitted to an 
instrument pool, the probability that the experiment 
runs on each instrument is pi ( [1, ]i N∈ ). It is obvious 
that the following equation holds: 
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When an experiment is submitted to any chosen 
instrument, there are many factors which have 
influence on users’ appraisals, for example the cost of 
experiment this instrument charges for, the execution 
time and waiting time, whether the result from this 
instrument is reliable and whether the precision of the 
instrument can satisfy the experiment requirement. All 
these factors differ with different instruments and can 
be looked as a virtual parameter of the instrument. In 
this paper, this parameter is named as QoS of 
instrument and denoted by q, and qi means the QoS of 
the ith instrument in an instrument pool according to a 
specific experiment. The QoS of the same instrument 
will be different when the users’ constrains changed. 
The pool adjusts the probability pi according to the 
user’s appraisal, Q, to the experiment after he received 
his result from the instrument cyberinfrastructure. Both 
variables q and Q are fuzzy variables because a user 
can not depict how he satisfied with a result accurately. 
Only vague linguistic values like terrible, bad, normal, 
good and excellent can express his appraisal towards 
the result from the instrument cyberinfrastructure. 

When a user submits a job with detailed 
experiment specifications to an instrument 
cyberinfrastructure, the instrument pool alliance will 
pass this job to corresponding instrument pools. If the 
experiment is submitted to the ith instrument in 
instrument pool, qi has the value as one of the 
following linguistic values, very bad, bad, normal, 
good and very good. In most cases, a qi with very good 
value has a large probability to receive excellent value 
of Q , good to good, normal to normal, bad to bad and 
very bad to terrible of Q. Because the value of q to a 
specific experiment is not known by instrument pool 
and can only be reflected by the user’s appraisal 
towards the total process of the experiment, the 
instrument pool will adjust pi to make the instrument 
with good or very good appraisal higher utilization 
ratio to satisfy users. In some urgent experiments, users 
may attach more importance on the time constrain. In 
such case the instrument with shorter job execution 
time and waiting time will more satisfied the users. 
While in some experiments, users may care more about 
the cost. 

This fuzzy random scheduling model is a close 
loop model, which takes the user’s response into 
account and is believed to be able to provide higher 
instrument QoS. Figure 3 is the system block of the 
model. 



 
Figure 3. The system block of an instrument 

cyberinfrastructure 
 

Many good scheduling strategies and algorithms 
can be designed on the basis of the fuzzy random 
model introduced above. Most importantly, users’ QoS 
feedback information is used in this model thus it 
complies with the users’ intention better. 

 
3.3 Scheduling algorithms 
 

The adjustment of pi from users’ appraisals is 
described in this section. In this work, the algorithm to 
adjust pi is proportional to the expected value of fuzzy 
random variable preqi, which is the prediction of the 
fuzzy value qi, as shown in Equation (3). The reason 
why the preqi is used in Equation (3) instead of qi is 
that the instrument pool has no information of qi and 
has to predict what the value it is through users’ 
appraisals. 
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In the following examples, the membership 
function of the fuzzy variable qi is shown in Figure 4. 

 
Figure 4. The QoS membership function 
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The distribution of preqi is as Equation (4). In 
Equation (4), prepk

i (1≤k≤5) means the probability that 
prepi equals to kth value in equation (4). The initial 
values of prepk

i are the same and equal to 0.2. Because 
preqi is a fuzzy random variable, we can calculate its 
expected value using Equation (1). 

In this example the expectation of preqi can be 
simplified to Equation (5). 

           
5
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, in which ci is defined to be the center of membership 
function and in this case, they are 17.5, 30, 50, 70 and 
82.5 respectively. It should be noted that when the 
membership function changed, the expected value of 
preqi will also be different. 

According to the users’ feedback information, the 
prepk

i will be adjusted by Algorithm 1. 
Algorithm 1: 
 switch ( appraisal ) 

{ 
case “very good”:  

for (i=1; i<=5; i++) 
{ prepk

i = prepk
i * (1– 4 * increment); } 

prep1
i = prep1

i + 4 * increment; 
break; 

case “good”: 
for (i=1; i<=5; i++) 
{ prepk

i = prepk
i * (1– 2 * increment); } 

prep2
i = prep2

i + 2 * increment; 
break; 

case “normal”: 
for (i=1; i<=5; i++) 
{ prepk

i = prepk
i * (1–  increment); } 

prep3
i = prep3

i + increment; 
break; 

case “bad”: 
for (i=1; i<=5; i++) 
{ prepk

i = prepk
i * (1– 2 * increment);} 

prep4
i = prep4

i + 2 * increment;  
break; 

case “very bad”: 
for (i=1; i<=5; i++) 
{ prepk

i = prepk
i * (1– 4 * increment); } 

prep5
i = prep5

i + 4 * increment; 
break; 

} 
In the above algorithm, the instrument that can 

satisfy users will have a higher probability to be used 
according to Equations (3) and (5). Parameter 
increment is a constant number. If a new instrument 
joins into the instrument pool, the following algorithm 
works. 
Algorithm 2: 

N = N + 1 ; 
pN = 1 / N ; 

     for ( i = 1; i < N; i++) 
     { pi = pi * ( N – 1) / N ;} 



In Algorithm 2, any new instrument joining into an 
instrument pool will have the average probability to be 
used. N is the existing number of instruments in a pool. 

When an instrument wants to leave the pool, the 
probabilities are adjusted according to Algorithm 3. In 
Algorithm 3, the kth instrument in an instrument pool 
is supposed to leave the pool. 
Algorithm 3: 

totalP=0 ; 
pk=0 ; 
for ( i=1; i<=N; i++ ) 

{ totalP = pi + totalP ; } 
for ( i=1; i<=N; i++ ) 

{ pi = pi / p ; } 
for (i = k; i<N; i++) 

{ pi = pi+1 ; } 
N = N –1; 
Algorithm 3 only allows the instrument without 

any experiment running on it at that time to leave. Any 
instrument with job running on it is not permitted to 
leave. If it leaves by some inevitable reasons, the pool 
will record the instrument as unstable and it will have 
trouble when next time it wants to join the pool. 
 
4. Performance Evaluation 
 

In this section three case studies are given to 
illustrate the fuzzy random scheduling model and 
algorithms introduced in Section 3. The programming 
language of the simulation environment is Java. 
 
4.1 Case study I 
 

A simple experiment, which requires only one 
instrument, is submitted to the pool alliance. An 
instrument pool with N instruments, which can run the 
experiment, is chosen by the pool alliance. Every 
instrument has the same initial probability to run the 
experiment. In this example N equals to 50, and 10 of 
them have very good QoS and may receive users’ 
feedback value of excellent, 10 good, 10 normal, 10 
bad and 10 terrible. Figure 5 is the result when QoS 
feedback information is used to adjust probabilities of 
instruments in 100,000 such experiments. The vertical 
axis represents the number of jobs and the horizontal 
axis represents users’ feedback information in terms of 
vague values. It is also the case in Figures 6, 8, 9, 10 
and 11. For the purpose of comparison, the result 
without probability adjustment is also given in Figure 
5. The parameter increment is a constant and in this 
example the values are 0.02% and 2%, respectively. 

As shown in Figure 5, when feedback information 
from users’ appraisals is considered, those instruments 

which can not satisfy users well will have fewer 
chances to be used. If the owners of these instruments 
want to have more chances for their instruments to be 
used, they should improve the QoS of their instruments, 
like decreasing the price their instruments charge for or 
shortening the execution time of their instruments.    

 
Figure 5. Results of users’ appraisals for 100,000 

experiments 
 
When the probability adjustment strategy is 

improved on the basis of Equation (3), better results 
can be obtained and the occurrence of excellent 
experiments will increased. 

There are more complicated scenarios for remote 
instrument access. For example, an experiment may 
involve multiple instruments, which is discussed in the 
case study II. Also serving more tasks will somehow 
decrease QoS levels of instruments, which is not 
considered in this case. For example, if task arrival rate 
is high enough to exceed processing capability of an 
instrument, responding delays will decrease QoS levels 
of users’ feedback information. This is discussed in the 
case study III using detailed simulation results. 
 
4.2 Case study II 
 

In this example, two instruments in two different 
instrument pools are required to complete an 
experiment. The numbers of instruments in the two 
pools are N1 and N2, respectively. Every instrument in 
each pool has the same initial probability to be used. 
The number of instruments with different QoS values 
in each pool is the same. The final QoS value of an 
experiment is qi

1Λqj
2 when the ith instrument in one 

pool works coordinately with the jth instrument in 
another pool. This means the appraisal to the overall 
experiment is the worse one of the two instruments. In 
this example N1 and N2 are both 50. The user’s 



feedback information will have the same impact on the 
two instruments used. 

Figure 6 includes simulation results when feedback 
information is used to adjust probabilities of both 
instrument pools. When feedback information is used, 
less bad or terrible experiments appeared. In 
comparison with Figure 5, no more excellent 
experiments are achieved and there is no obvious QoS 
improvement in this case. This is caused by that the 
two instruments are coupled in one experiment and the 
user can only provide feedback information on the 
whole experiment instead of each instrument. 

 
Figure 6. Results of users’ appraisals for 100,000 

experiments each involving 2 instruments 
 
4.3 Case study III 
 

In this example 100,000 similar experiment 
requests are submitted to the pool alliance and an 
instrument pool will be chose as the execution pool of 
these experiment requests. Similar to the case study I, 
there are 50 instruments in the chosen pool. Different 
from example 1, job execution times are taken into 
account. The execution time of the instruments with 
very good QoS complies with an exponential 
distribution and the expected value of the distribution 
is E1, E2 for good, E3 for normal, E4 for bad and E5 for 
very bad. For the purpose of illustration and simulation 
the five expected values from E1 to E5 in this example 
are 1/250, 1/180, 1/150, 1/120 and 1/100, respectively. 
The request arrival time is supposed to be a possion 
distribution with λ, where λ is the average arrival rate 
in a possion distribution. In this case study, two 
situations are considered. 

If experiment requests come beyond execution 
capabilities of an instrument pool, a queue is 
unavoidable. In this situation, instruments with high 
QoS feedback are chosen first and those with poor QoS 
feedback next. In the example, λ1 and λ2 are given 

according to this case.  λ1=5000 results in request 
arrivals far beyond a pool capability and λ2=1000 
corresponds to a situation that the request arrival is 
only slightly beyond a pool capability. The other 
situation is that experiment requests are within the 
capability of all instruments in a pool. Corresponding λ 
values are λ3=600 and λ4=100. The following 
simulation results are obtained using the flow chart 
described in Figure 7. 

 
Figure 7. The flow chart of simulations 

One thing we should bear in mind is that too long 
responding time, including waiting time in a queue and 
execution time on instruments, will degrade users’ 
appraisals towards the results they got. With 
consideration of this situation, additional rules are 
applied. 

• If T1 < RT < T2, the appraisal will degrade by 
one level.  

• If T2 < RT, the appraisal will degrade by two 
levels. 

In above rules, RT represents the total responding 
time to an experiment request. T1 and T2 are two time 
limits that users can bear. We suppose that T1 and T2 
are about ten to twenty times of execution time, thus T1 
=10 and T2 =20 in this example. 



Effects of these rules are also shown in Table 1, 
which describes relationships between users’ appraisals 
and the responding time. For example, a very good 
experiment in a user’s impression could be 
downgraded to be good if responding time is longer 
than T1 and normal if responding beyond T2. 

Table 1. RT and corresponding users’ appraisal 
    Level 
RT 

Very 
good Good Norm

al Bad Very 
bad 

< T1 
Very 
good Good Norm

al Bad Very 
bad 

[T1 ,T2] Good Norm
al Bad Very 

bad 
Very 
bad 

> T2 
Norm

al Bad Very 
bad 

Very 
bad 

Very 
bad 

In Figures 8 to 11, simulation results of the case 
study III are illustrated. In each figure, simulation 
results with probability adjustments algorithms 
described in Section 3.3 and those without probability 
adjustments are all given for the purpose of 
comparison. 

 
Figure 8. Results of users’ appraisals under λ1 

 
Figure 9. Results of users’ appraisals under λ2 

As shown in Figures 8, when request arrival speed 
is far beyond a pool’s processing capability, the 
probability adjustment algorithm does not work well to 
provide users with more excellent service, since bad 
services have to be utilized anyway. Also when 
requests arrive too fast and have to wait in a queue, a 
longer responding time will downgrade users’ 
appraisals even if an excellent service is supposed to be 
provided. The only way to still ensure high QoS for 
users is to let more similar instruments join the pool to 
increase the pool’s processing capability. The situation 
is improved when request arrival speed is lower in 
Figure 9. 

 
Figure 10. Results of users’ appraisals under λ3 

 
Figure 11. Results of users’ appraisals under λ4 

As shown in Figures 10 and 11, arrival requests are 
within a pool’s processing capability, more satisfactory 
appraisals will achieve through the adjustment of 
probability in an instrument pool. Since a queue 
seldom appears in these situations, requests do not 
have to be served with bad instruments and downgrade 
rules are not often applied. These results are conformed 
to those achieved in the case study I. 
 



5. Conclusions 
 

The contribution of this paper lies in the proposal 
of a fuzzy random scheduling model, which takes the 
users’ QoS feedback information into account to 
provide more satisfactory services for users in an 
instrument cyberinfrastructure. The QoS appraisals 
from users can not be represented in an accurate and 
quantitative way, since there are many factors in 
instrument QoS that have effects on users’ appraisals. 
In many real world scenarios, users’ feedback 
information is fuzzy and the fuzzy random model is 
suitable and straightforward when applied to the 
scheduling scenarios described in this work. 

The algorithms provided in this work to increase 
the utilization probability of some instruments with 
higher QoS and decrease usage of those with lower 
QoS, is proved to be effective in a cyberinfrastructure 
environment for scientific instrument sharing when 
pool capability is beyond experiment requests. In 
situations when request arrival speed is far beyond 
processing capability of an instrument pool, algorithms 
supposed to improve instrument QoS do not work, 
since long queuing time downgrades users’ appraisals 
and instruments with low QoS feedback have to be 
used anyway. 

When applying the work described in this paper 
into a real world situation, additional issues have to be 
considered besides resource management and 
scheduling. Ongoing work include an information 
service providing detailed instrument and experiment 
data, a workflow enactor to mange experiments 
involving multiple instruments, and a layered security 
mechanism for authentication and authorization of 
remote instrument access. 
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