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Abstract—As machine learning (artificial neural network) and 
system modeling optimization each has individual advantages and 
disadvantages, some functions are complemented and can make 
up different shortcomings, so integrated using them may achieve 
performance revenues in system optimization and management. 
In the Energy Internet (EI) managing and control domain, we 
sequentially using ELM (extreme learning machine) for machine 
learning and PSO (particle swarm optimization) for system 
modeling optimization which should obey inherent operation 
constraints, to solve the system optimizing problem. This 
algorithm is tested in EI with one day before operation, and its 
performance is compared with that of pure PSO algorithm. The 
results show great running time reduction and negligible running 
performance degradation, and can be effectively used in cloud-
edge collaboration of EI system.  

Keywords—machine learning, system modeling, PSO, ELM, 
Energy Internet, cloud-edge collaboration 

I. INTRODUCTION  

With the developing of machine learning and system 
modeling optimization, their combination becomes necessary 
and inevitable. Machine learning algorithms, represented by 
deep learning neural network, treating the whole system as a 
black box, so it can’t clearly explain the inner running schemes 
and the obtained results may not obey the running constraints. 
System modeling, usually need the human defined related 
parameters, so it become impractical in some dynamic unsteady 
systems, and the deducing time maybe long due to complex 
mathematical computing, so it is not suited for the real time 
operating systems such as cloud-edge collaboration. 

There are three means to combine machine learning with 
system modeling: “before”, “in” and “after”. In the “before” 
situations, sample data first pass the system modeling to check 
the system running constraints, if all related constraints are 
satisfied, the data example are trained in machine learning to set 
up related neural network models, so the result have a large 
probability of satisfying the running constraints, which has 
certain application potentials and need further innovations. In 
the “in” situation, the neural network model is built by injecting 
the sampled data and related constraints for model training at the 
same time, in this way, we should consider the computing data 
proceeding and logical state proceeding at the same time, so the 
related constraints can be satisfied timely and explicitly. In the 
“after” situation, we should first train and build up the neural 
network, then the tested results should pass a filter or local 
search function liked model to correct the results which ensures 

that they obey the specific running constraints. As in industry 
manufacturing, its running constraints should be strictly 
satisfied, so peoples usually consider the “in” and “after” related 
algorithms. Here we choose the “after” means as the research 
target. 

In order to verify the performance of combined machine 
learning and system modeling optimization, we proposed an 
innovation algorithm for the operation and control tasks in EI. 
Corresponding innovations lies in effective using both 
techniques of PSO and ELM to make running time largely 
shortened while ensure EI’s entire performances in the situation 
of existing many running constraints, whose performance is 
comparable to traditional algorithms such as gene algorithm and 
PSO. So, the algorithm can be real-time fulfilled and edge 
equipment affordable. It will give the EI application scenes a 
new technique realization means, which has broad application 
prospects and deserves further researches. 

The following structure of this paper is as follows. In chapter 
II, we introduce the technique background; in chapter III, we 
propose designed algorithm; in chapter IV, we analyze the 
simulation results; in chapter V, we discuss further research 
directions; in chapter VI, we make the conclusion. 

II.  TECHNIQUE BACKGROUND 

A. PSO 

PSO is an advanced and popularly used intelligent data 
searching algorithm, which adopt the idea of swarm wisdom in 
bird eating proceedings, and can find the target quickly and 
robustly. In the operating proceeding, related system parameters 
can be adaptively changed to promote its searching precision 
and optimize the search time, which is still a hot research point. 
In [1], the author observed that the BP neural network is being 
trapped in local minima and has slow convergence speed 
problem, and quantum particle swarm can realize energy saving. 
In another paper, [2] proposed a new methodology named 
Signaled Particle Swarm Optimization (SiPSO) to address the 
energy resources management problem in the scope of smart 
grids, with intensive use of DER. 

B. ELM 

Deep learning neural network largely prompt the cognitive 
ability in the system operation by simulating the thinking way 
of human. But in order to reach the cognitive and deducing 
ability like human, the related models usually need high amount 
data for training and adopt a very complex network model, 

National Key Research and Development Program of China under Grant 
2022YFE0140600. 



whose parameter level is at the billion level or higher, which 
greatly hurdles its research in laboratory. 

To overcome this situation difficulties, ELM network is 
introduced in this paper, which is shown in Fig. 1. Though MSE 
(mean square error) and pseudo-inverse technique, which can 
largely reduce the training time and get comparable results with 
traditional neural networks. 

 
Fig.1. ELM network 

In paper [3], Geng Z et al. proposed an integrated extreme 
learning machine approach for energy optimization in chemical 
processes. Following paper [4] proposed a novel load curve 
clustering method based on dimension reduction, which utilized 
ELM to embed original load sequence data set into low-
dimensional space. At the same time, [5] proposed a new 
stochastic framework for optimal energy/power management of 
the interconnected MGs based on the Internet of Things (IoT) 
approach, which using a Generalized Extreme Learning 
Machine to make a model of its parameters. 

C. Energy Internet Control Scheme 

Through “source-network-load-storage” coordination and 
multi-energy complemented utilization, EI can largely promote 
the energy utilizing efficiencies, the energy utilizing revenue, 
the energy system safety, and reduce the whole operation cost of 
EI. The authors’ related research on EI can be found in [6-8]. 

Year 2018 to 2021 can be seen as the hot research years of 
EI optimal control. In year 2018, [9] proposed a combined 
electricity-gas-heat Energy Internet scheduling method, whose 
technologies were discussed. [10] proposed a mixed energy 
utilization mode in regional EI. [11] proposed the concept of 
Integrated Energy Network, which realized the coordination and 
complementarity of multiple energy sources. With a large 
technique progress, [12] utilized ordinary differential equations 
(ODEs) and stochastic differential equations (SDEs) to realize 
stochastic optimal control. 

As researches ongoing, [13] proposed five kinds of energy 
efficiency evaluation indexes from the energy sections of 
production, transmission, consumption, storage, and conversion 

based on the second law of thermodynamics. In [14], authors 
applied EI in agricultural engineering. [15] proposed an overall 
architecture of integrated energy management and control 
system with four layers, which was tested in the industrial park. 
Following the research of [12], [16]and [17] improved the 
optimal control performance of EI using deep reinforcement 
learning etc. techniques. 

With the mature of EI, [18] introduced the intelligent 
management concept into EI. And the regional integrated energy 
system (RIES) is studied in [19]. [20] created a new EI scene: 
Energy-Use Internet to promote energy efficiency. In [21], 
author applied Non-Intrusive Load Monitoring in demand side 
energy management. 

The viewpoint of EI control is extended gradually. To meet 
global energy demand, [22] scheduled the corresponding 
roadmap. [23] solved the system synergy challenges through 
matching analysis. [24] considered power consumption and air 
pollution in EI management. In [25], the synergetic development 
level of the energy Internet industry system should be evaluated 
and promoted. [26] adopted compressive sensing to handle the 
nonlinear energy storage management problem.  

D. Proposed Research Direction 

Though above research, the control and management 
performance are gradually promoted in EI, but generally, high 
performance scene realization usually need complex algorithm’s 
support, which may not satisfy the low time delay or local 
computing sources demand. So, in this paper, we proposed a 
mixed algorithm combining machine learning (ELM) and 
system modeling (PSO), which aims to reduce the data handle 
time delay and can be affordable for common lab research, so 
the demand of many real time scenes can be fulfilled, especially 
for the scenes of cloud-edge collaboration system in EI control 
and operation. 

III. PROPOSED ALGORITHMS 

A. Running Schemes 

The simulated EI is composed of several parts, e.g., the 
distributed renewable energy sources (DES) like wind and PV, 
the energy store equipment, the user load, and the main grid, like 
in Fig. 2. Though DES, we can generate green power used 
locally and efficiently, through energy store equipment, we can 
ensure demand and supply balance all the time, and reduce the 
risk for power outage. The main grid with a robust power source 
can also ensure higher quality power supply and participate with 
systematic source-network-load-storage collaboration. 

The load can be roughly predicted and can be seen as 
unchangeable in devised scene without demand side 
management. The generated power of DES heavily relied on 
weather change, which can’t be randomly controlled in spirit, 
but the charge and discharge state of energy store can be 
humanly intervened, and when there is lack or surplus of grid 
power, system can interact with main grid to sell or buy 
electrical power in real time. So, the only changeable data items 
in this scene should be the charge/discharge state (rate) of power 
storage equipment. 

We set one day as a simulate period and two hours as one 
basic time interval, so there will produce 12 charge and 



discharge data in one period. At the beginning and end time 
point of the one-day period, the storage capacity should reach 0, 
this constraint along with max and min charge rate and max 
storage capacity requirements can be seen as the constraints of 
running EI. 

Main grid

PV

Wind

Storage

Controllable device

transformer

DC bus

Load

 
Fig. 2. Typical EI topology 

The max benefit (revenue minus cost) can be seen as the 
optimal value of PSO, which will be used in the performance 
evaluating and comparison with pure PSO algorithms. 

B. Algorithm Proceedings 

We sequentially using PSO algorithms and ELM model, 
which is represented as PSO+ELM. 

As in Table I, to obtain the raw data for ELM input, we 
random generate the input data for PSO, and use PSO to search 
their optimal result with inherent constraints. When enough data 
samples and related optimal results are collected, we train the 
ELM model to obtain the relationship between input data with 
the optimal control value, which are then used for new data 
sample estimation, and the obtained value will be checked for its 
related constraints. If the constraints can’t be fulfilled, a local 
search with PSO will be executed to update the found results. 
Through this means, a near optimal result satisfying related 
constraints can be obtained. 

TABLE I.  THE PROCEEDING OF PSO-ELM ALGORITHM   

Step 1 Randomly generate raw sample data and select related 
parameters. 

Step 2 Using sample data to obtain optimal value in PSO which 
should fulfill the inner constraints. 

Step 3 Training the ELM with PSO output. 

Step 4 Using ELM to predict the optimal value of test examples. 

Step 5 Check the constraints of test result. 

Step 6 If the constraints are satisfied, go to step 8, otherwise step 
7. 

Step 7 Local search optimal value with PSO. 

Step 8 Compare the result with pure PSO algorithm, with the 
computing time and predict performance. 

C. Technique Details 

In step1, the positive value of charge vector represents 
charge rate in one time interval, the negative ones represent 
discharge rate in one time interval. The capacity should obey 
below equation: 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + max(𝑐ℎ𝑎𝑟𝑔𝑒, 0) ∗ 𝑟𝑎𝑡𝑖𝑜
+ min(𝑐ℎ𝑎𝑟𝑔𝑒, 0) /𝑟𝑎𝑡𝑖𝑜 

In step 1, for the initial data sample generation, we first 
randomly generate 40 samples for first PSO handling, and 
generate 10 examples for testing. The generated samples satisfy 
uniform distribution in the designed data range.  

In step2 and following steps, the detailed expression of 
optimal evaluation target is: 

𝑠𝑒𝑙𝑙_𝑙𝑜𝑎𝑑 = 𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
+ 𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
− 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
− 𝑙𝑜𝑎𝑑(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1); 

𝑓𝑎𝑐𝑡𝑜𝑟1 = 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡(1) ∗ 𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
+ 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡(2)
∗ 𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
+ 𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
∗ 𝑚𝑎𝑥(−𝑠𝑒𝑙𝑙_𝑙𝑜𝑎𝑑, 0) + 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡(4)
∗  𝑎𝑏𝑠(𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙 (ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)) ;  

𝑓𝑎𝑐𝑡𝑜𝑟2 = 𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1) ∗ 𝑚𝑎𝑥(𝑠𝑒𝑙𝑙_𝑙𝑜𝑎𝑑, 0)
+ 𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1)
∗ 𝑙𝑜𝑎𝑑(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟, 1); 

𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 + 𝑓𝑎𝑐𝑡𝑜𝑟1 − 𝑓𝑎𝑐𝑡𝑜𝑟2; 

Where  𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒  represents the PV generating power 
profile, 𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒 represents the wind generating power 
profile,  𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙  represents the charge/discharge rate of 
energy storage, 𝑙𝑜𝑎𝑑  represents the power profile of load 
consuming. While 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡  is the cost of different power 
generating type, 𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒 is the price of buying power from 
main grid, 𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 is the price of selling power to main grid. 
And ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟  is related time point. The smaller the 
𝑡𝑜𝑡𝑎𝑙_𝑣𝑎𝑙𝑢𝑒, its performance is better. 

In step 2, the element of charge vector should fulfill the 
physical constraints of energy store equipment, such as the max 
and min charge/discharge rate, the max and min storage capacity 
limit, and the begin and end time point zero storage capacity 
constraints, such as shown below: 

𝑥 ≤ 𝑐ℎ𝑎𝑟𝑔𝑒 ≤ 𝑥  

0 ≤ 𝑐𝑎𝑝𝑎𝑝𝑐𝑖𝑡𝑦 ≤ 𝑦  

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 0 𝑤ℎ𝑒𝑛 𝑡 = 0 𝑜𝑟 𝑁 

In order to satisfy the latter two constraints, we designed a 
compensate function module. Its basic idea is, if the capacity 
passes the max value, we need do more discharge operation or 
less charge operation. If the capacity is below the min value, we 
need do more charge operation or less discharge operation. The 
operation is iterated until all constraints are satisfied. In the 
proceedings of increase or decrease the charge rate, the charge 



and discharge efficiency ratio should be considered, and 
preliminarily set as 0.95. 

The related parameters are shown in below Table II. 

TABLE II.  SIMULATION PARAMETER SETTING 

Sample 
dimensions 

12*N ELM 
training sample 
number 

40 

PSO 
swarm number 

30 ELM 
simulation 
sample number 

10 

PSO 
learning rate 

1.5 Max PSO 
velocity 

25 

Energy rate 
range 

[-255,255] Sample 
distribution 
model 

Uniform 
distribution 

Energy 
store capacity  

4*255 Buy 
price/sell price 

1.25 

IV. SIMULATION RESULTS 

A. Simulation Conditions 

This simulation is executed in windows 7 with intel i5, the 
memory is 4GB with 4 cores, and the simulation software adopts 
MatLab 2014a. There are two simulation algorithms, “pure PSO” 
represents the PSO only algorithm as the reference algorithm, 
“PSO-ELM” represent our proposed algorithm. The initial data 
is fetched from corresponding web site. 

B. Simulation Analysis 

 Component performance analysis 

The performance of PSO is showed in Fig. 3. From this 
figure we can see, as the iteration runs, its performance is 
gradually decreasing (becoming better), and finally reach the 
performance floor.  

For one turn of iteration, we can get the optimal vector as: 

The best solution obtained by PSO for one sample is: 
[255,255,193.4174,255,-106.6255,-255,0.7196922,1.19026,-
0.3315107,-250.817,-255,0]. The best optimal value of the 
objective function found by PSO is: -1229.1473. 

From this result we can see, at the begin time of simulation, 
as the capacity of energy store equipment begins with zero, and 
the buy price of that time period is low, so the system will charge 
the energy form the main grid. When the time period in the 
middle range, system charge and discharge the energy according 
to the optimal minimize cost target and demand and supply 
balance. At the end of the simulation period, the store equipment 
needs to clear the capacity, the system begins to discharge the 
energy, but at the last interval, as the energy is totally discharged, 
system don’t charge and discharge at the final time point. 

In the proceeding of PSO, designed compensate function 
may change the distributions of particle samples, so that 
proposed algorithm may not always point to the best possible 
location area to find the best target, whose entire performance 
may be curtailed and need more carefully technique handling, 

which will be one of future research directions in this related 
work.  

 

Fig. 3. The convergence performance of PSO. 

 
Fig. 4. The performance of ELM 

Fig. 4 showed the performance of ELM, where 𝑟  represents 
that of real value, 𝑒  represents that of estimated value. In this 
simulation, its training MSE (mean square error) accuracy value 
is 46.3030, whose error precision is about 10.3% (52.6141/510). 
Although the difference between real value and estimated value 
looks a little large for some time points of some samples, 
especially at the beginning time points, but the final result of the 
whole algorithm can be accepted, as shown in below figures. 

 Executing time analysis: 

For a sample of 30 iterations of local PSO search in pure 
PSO, its executing time of pure PSO is 207 seconds with total 
50 running samples, and the test time of pure PSO is 38.59375 
seconds with 10 test samples, the train time of PSO-ELM is 
207.7656 seconds, its test (predict) time is 1.828125 seconds. 
From this result we can see, the total running time of PSO-ELM 
is a little larger than that of pure PSO, but its executing time is 
far less than that of pure PSO for the same sample number, so 
the computing complexity at the user side can be largely reduced 
through cloud-edge coordination. With the increasing of test 
samples (*100 or *1000), the total time of PSO-ELM will also 
become less than pure PSO. 

 Optimize performance analysis 

The result is shown in Fig. 5, where the local search turns of 
PSO is changed with iteration value [30,40,50,60], from the 



figure we can see, all the function value of PSO-ELM is 
approaching that of pure PSO, which verified our intuition and 
that the performance of this algorithm is acceptable (max 
performance degradation of 1.6% for optimal value). In some 
time points, the performance of PSO-ELM is even superior to 
that of pure PSO, which may due to that PSO can’t always find 
the optimal value through random search, and local search may 
prompt its performance effectively. And as turn number changes, 
the results do not show very regular results. 

We also compare the performance of one typical gene 
algorithm(NSGA-II) with our algorithm, where the adopted 
performance indexes of NSGA-II include cost, revenue and 
carbon emission, whose performance is better when the value of 
three indexes being less, and finally we choose the sample with 
least value of cost minus revenue as the algorithm output. From 
Fig. 6 we can see, the performance of Gene algorithm is far less 
than the proposed PSO-ELM algorithm, which preliminarily 
verified our hypothesis. And the reason of inferior performance 
with NSGA-II may due to that it considers many complex 
constraints in sample searching, to compensate this condition , 
it needs more irregular samples, which potentially cut down the 
searching efficiency and make optimization harder.  

From Table III we can see, in this simulation, 4 in 10 samples 
satisfy the system constraints, and other samples should perform 
local search further. For the constraints check passed samples, 
the performance of PSO-ELM is usually worse than that of pure 
PSO(except sample 2). And for other local search samples, pure 
PSO also shows better performance in most samples (about 3 in 
6). From more simulations, we could get that local search with 
turns number 60 usually have better performance than that with 
turns number 30 in some simulations. 

 
Fig. 5. The performance of pure PSO and PSO-ELM 

V. FURTHER RESEARCH DIRECTIONS 

A. Higher Performance Neural Networks with Affordable 
Complexity. 

As so far, the performance of ELM may be inferior to large 
scale deep learning neural network, which may reduce the whole 
performance of proposed algorithm, but the result is convincing. 
So, in order to improve system performance, laboratory 
affordable low complexity neural network model deserves more 

researched, especially for multi-input and multi-output neural 
network.  

 

Fig. 6. The performance of gene algorithm (NSGA-II) and PSO-ELM 

TABLE III.  THE RUNNING RESULTS OF TWO ALGORITHMS IN OPTIMAL 
TARGET VALUE 

tur
ns 

(Optimal value) results*1000 

30 -
1.2
391 

-
1.2
250 

-
1.2
617 

-
1.2
523 

-
1.2
339 

-
1.2
433 

-
1.2
303 

-
1.2
607 

-
1.2
909 

-
1.2
701 

40 -
1.2
391 

-
1.2
250 

-
1.2
628 

-
1.2
504 

-
1.2
339 

-
1.2
380 

-
1.2
291 

-
1.2
646 

-
1.2
909 

-
1.2
695 

50 -
1.2
391 

-
1.2
250 

-
1.2
646 

-
1.2
533 

-
1.2
339 

-
1.2
454 

-
1.2
321 

-
1.2
591 

-
1.2
909 

-
1.2
760 

60 -
1.2
391 

-
1.2
250 

-
1.2
529 

-
1.2
498 

-
1.2
339 

-
1.2
375 

-
1.2
319 

-
1.2
671 

-
1.2
909 

-
1.2
666 

Pu
re-
PS
O 

-
1.2
442 

-
1.2
197 

 

-
1.2
656 

-
1.2
565 

-
1.2
530 

-
1.2
309 

-
1.2
363 

-
1.2
656 

 

-
1.2
989 

-
1.2
757 

B. Adapting Adjust the Related Parameters to Improve the 
System  

In PSO and ELM, there are large number of parameters 
which need to be quantified, and their influences to the proposed 
algorithm are still unclear and can’t be theoretic analyzed and 
can only be manually modified, which need further technique 
and theory innovations for parameter adjusting techniques. 

C. A More Mature EI Systems 

As the domain of EI is not limited to electrical power, the 
further simulations of EI should also consider hot, cold and gas, 
and related influence on EI operation. The related model should 
be more comprehensive and collaborated. To set up 
corresponding model, the robust of energy supply should be 
firstly considered, while considering the influences of energy 
trade and demand side management at the same time, and also 
set the whole revenue and operation cost as the final target. 

VI. CONCLUSIONS  

In order to reduce the execution time and the algorithm’s 
complexity, and utilize the advanced performance of machine 



learning and system modeling optimization, we combinedly 
using PSO and ELM to optimize the operation and control of EI 
through charge and discharge control for energy store equipment. 
In this way, the execution time delay can be largely reduced, 
while the optimal precision is comparable with traditional PSO 
algorithm, which is suited for cloud-edge collaboration liked 
tasks, and will become further broadly applied in EI control and 
management. 
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