
In Proceedings of 2nd International Workshop on Grid and Cooperative Computing (GCC
2004), Shanghai, China, Lecture Notes in Computer Science 3032, Springer Verlag, December
2003, pp. 34-41.

Implementation of Grid-enabled Medical Simulation
Applications Using Workflow Techniques

Junwei Cao, Jochen Fingberg, Guntram Berti, and Jens Georg Schmidt

C&C Research Laboratories, NEC Europe Ltd., Germany
cao@ccrl-nece.de

Abstract. GEMSS is a European project that aims at providing high
performance medical simulation services in a distributed and grid computing
environment. The GEMSS grid middleware is designed using web services
technologies and standards and provides support for authorization, workflow,
security, Quality of Service aspects. In this work, one of the GEMSS
applications, maxillo-facial surgery simulation, is described, which includes a
complete chain of tools necessary for the entire process from geometric model
generation from scan data to computer simulation and visualization. The Triana
workflow environment is utilized to implement the application for uniform
access of local processes (e.g. image pre-processing and meshing), interactive
tools (e.g. mesh manipulation) and grid-enabled remote services (e.g. HPC
finite element simulation). It is concluded that workflow provides benefits to
flexibility, reusability and scalability and is potential to become a mainstream
grid application enabling technology.

1 Introduction

The grid builds on the accessibility of the Internet to allow effective use of
geographically distributed resources [13, 1]. Grid computing technologies will
provide the basis for the next generation of Internet-enabled HPC solutions. GEMSS
(Grid Enabled Medical Simulation Services) [14] is a European project that aims to
create a grid testbed for medical computing.

In GEMSS a grid middleware will be developed that can be used to provide
medical practitioners and researchers with access to advanced simulation and image
processing services for improved pre-operative planning and near real-time surgical
support. The grid architecture is designed based on Web Services technologies and
standards and supposed to meet various requirements from business, legal and social,
security, performance and application aspects. Workflow specification, enactment and
execution are essential supports of the GEMSS grid middleware for business process
management, QoS negotiation and application enabling.

Maxillo-facial surgery simulation [12] is one of the medical service applications
included in the GEMSS test-bed, which provides a virtual try-out space for the pre-
operative planning of maxillo-facial surgery. The implementation of the maxillo-
facial surgery simulation requires a chain of tools necessary for the entire process

2 Junwei Cao, Jochen Fingberg, Guntram Berti, and Jens Georg Schmidt

from geometric model generation from scan data to computer simulation and
visualization.

The work presented in this paper takes maxillo-facial surgery simulation as an
example application and provides an initial demonstration of using workflow
techniques to enable the application for uniform access of local processes (e.g. image
segmentation and mesh generation), interactive tools (e.g. mesh manipulation) and
remote web services for large-scale simulation (e.g. HPC finite element simulation).
An existing open source problem solving environment, Triana [24], is utilized as a
workflow manager for the application. Triana is written in Java and provides
abundant graphical user interfaces for both toolbox implementation and workflow
construction. In this work, several Triana toolboxes and an example workflow model
are developed and detailed information is provided on how to develop Java wrappers
for various binaries and scripts, turn them into Triana toolboxes using the Triana unit,
and set up web services for remote access of HPC resources.

2 GEMSS

The GEMSS middleware is built on existing web services technologies and standards
and provides support for authorization, workflow, security, Quality of Service
aspects. This section provides brief information on the GEMSS architecture and one
of the six GEMSS applications, maxillo-facial surgery simulation.

2.1 GEMSS Architecture

The GEMSS architecture, shown in Fig. 1, uses a client/server topology employing a
service-oriented architecture. Detailed information on individual modules is not
provided below and can be found in [14].

The GEMSS client architecture is mainly a pluggable component framework,
which aims to provide flexible support to various application scenarios by placing
minimal demands upon the components themselves and providing sufficient means
for them to interact. The component framework is used by applications as the entry
point into the GEMSS grid middleware and hides the details of the grid as far as
possible.

A GEMSS service can be implemented using existing web services technologies.
Application services provide generic interfaces for starting application, uploading and
downloading files. Resource manager and data storage provide interfaces for services
to access actual HPC resources.

2.2 Maxillo-facial Surgery Simulation

One of the GEMSS target applications deals with computing pre-operative
simulations for maxillo-facial surgeries. In clinical practice treatment of patients with
in-born deformations of the mid-face is performed by cutting ill-formed bones and
pulling them into the “right” position.

Implementation of Grid-enabled Medical Simulation Applications Using Workflow
Techniques 3

Fig. 1. The GEMSS architecture is composed with the client side architecture and service
provider architecture, which plays as middleware between grid applications and resources.

A halo frame is mounted to the patient’s skull (see Fig. 2a). Distractors, mounted
to the halo fixed at certain points in the midface, exert a force on a midface region,
gently pulling it to a pre-defined position in order to achieve a medically and
cosmetically pleasing result. The simulation of the process includes a complete chain
of tools [12], which are partly described below.

• Image segmentation. As shown in Figs. 2b, 2c and 2d, bone and soft tissue parts
can be identified from the original CT image. This can be performed at the client as
an image pre-processing step.

• Mesh generation. The process allows the generation of meshes suitable for Finite
Element simulation (see an example in Fig. 2e) and could be computation intensive
if the mesh size is very large. In our initial implementation, this step is also
considered as a client side process.

• Mesh manipulation. This process provides the meshing model with initial and
boundary conditions for simulation using a user friendly tool. An example of
virtual bone cutting is shown in Fig. 2f. This is an interactive process and can be
only carried out at the client side.

Hosting Environment

Applications

Pluggable Component Manager

workflow enactor

service discovery

security encoding

service selection

QoS requirements

accounting

security credentials

login/logout

transport interfaces

Service Provider Firewall

Internet Client side

Server side

Web Server
WS security, WS policy and secure transfer

Services
account
services

QoS
negotiation

application
serives

…

conversation
authorization

certificate/
key store

logger intrusion
detection

resource
manager

error
recovery

data
storage

VNC …

HPC Hardware

4 Junwei Cao, Jochen Fingberg, Guntram Berti, and Jens Georg Schmidt

• Finite Element analysis. The Finite Element simulation capability is provided by a
fully parallel program linked with a load balancing library. Example visualizations
of simulation results are illustrated in Figs. 2g and 2h. In this case the simulation
result shows that a better bone position can be achieved after the surgery. This is
the part that required grid enabling to access remote HPC resources.

Fig. 2. Maxillo-facial surgery simulation. (a) The halo device mounted on the head; (b) CT
images; (c) Identification of substructures (bone, soft tissue and background); (c) Selection of
bones from others; (e) Mesh of a skull; (f) Virtual bone cutting; (g) Visualization of the
geometric face change I (before the surgery); (h) Visualization of the geometric face change II
(after the surgery).

3 Application Workflow

Workflow techniques are utilized in the GEMSS project for multiple purposes. In this
work, only application workflow is implemented using an existing workflow tool.

3.1 Triana Environment

The Triana software environment is intended to be flexible and can be used in many
different scenarios and at many different levels. One of the Triana applications is
described in [23], where Triana is equipped with P2P computing mechanisms for
galaxy visualization. In another European grid project GridLab [17], Triana is
integrated with grid environments via grid application toolkit (GAT) interfaces

In this work, Triana is used as a management environment for the simulation
application workflow. It provides an effective wizard to build high level toolboxes in
a semi-visual way so that workflow activities are uniformly encapsulated and handled

a b c d

f e h

g

Implementation of Grid-enabled Medical Simulation Applications Using Workflow
Techniques 5

by the Triana workflow. The Triana unit is the base class on which that all of
toolboxes are built. The unit class provides abundant methods for each toolbox to
handle inputs, outputs, parameters and even corresponding graphical input interfaces
in a standard way. Fig. 3 provides a screenshot of the Triana implementation of
maxillo-facial surgery simulation. Toolbox implementation and workflow
construction are described below in separate sections.

Fig. 3. Triana implementation of maxillo-facial surgery simulation, with a complete list of the
GEMSS toolboxes in the left column and the example workflow in the main window.

3.2 Toolbox Implementation

There are three types of toolboxes used for building the maxillo-facial surgery
simulation workflow: input, processing and output. The only input toolbox shown in
Fig. 3 is the image loading toolbox. Main processing toolboxes include those for mesh
generation, bone cutting and dragging, and Finite Element analysis. Output toolboxes
are implemented for result visualization.

• ImageLoading. This is the entry point of the simulation workflow. The user is
required to input the image file name to start the workflow execution.

• MeshGeneration. Since image processing and meshing described in Section 2.2 are
both client-side local processes, a shell script is developed to describe the whole
chain of the process. The toolbox is implemented via a Java wrapper to the script
execution. The mesh generation toolbox takes input from the image loading and
outputs a result mesh file for mesh manipulation.

• Cut&Drag. The activity allows the user to define initial and boundary conditions
for simulation via virtual bone cutting and dragging operations. The toolbox
implements an iterative process so that the user can repeat the activity until a

6 Junwei Cao, Jochen Fingberg, Guntram Berti, and Jens Georg Schmidt

satisfying result is obtained. It takes inputs from both the mesh file and the original
image file and outputs an all-in-one model file ready for simulation.

• HeadFEM. The Finite Element simulation takes two inputs from the Cut&Drag
toolbox and outputs two sets of files, one including detailed simulation data and the
other including a ready input for visualization. In order to implement the toolbox,
the HeadFEM service has to be set up for remote access of HPC resources. This is
implemented using the Apache Tomcat and Axis. In the client side toolbox
implementation, the JAX-RPC call provided by the Apache Axis library is used to
access the HeadFEM service.

• FileUpload and FileDownload. These two toolboxes are necessary before and
after the simulation activity and temporarily implemented using FTP. In the later
GEMSS implementation, these will be supported by application services as well.

• VMViewer, GMVViewer and DXViewer. These output toolboxes are used in the
workflow for result visualization. As shown in Fig. 3, the VM tool is used to
display the original image file, the GMV tool for mesh visualization and the DX
tool for the visualization of simulation results. The use of these tools during
workflow execution is also illustrated in Fig. 4.

• FileNameShow. This is an output toolbox that can be used to pop up a window and
display the input file name.

3.3 Workflow Construction

Workflow construction is straightforward in the Triana environment given all
toolboxes ready. The developer can drag and link toolboxes to directly construct a
workflow ready for execution. The workflow developed for maxillo-facial surgery
simulation is shown in Fig. 3. The screenshot of an example workflow execution is
illustrated in Fig. 4. In this case the input is a CT image file shown in Fig. 4b. Output
toolboxes in the workflow invoke different tools to visualize results (see Figs. 4b-4e).

4 Related Work

Apart from the GEMSS project, there are some other projects that are using grid
computing for medical or biological application. These include European
MammoGrid project for breast cancer screening [21], UK e-Science Programme
MyGrid [22] and Swiss BioOpera [5] projects for bioinformatics, Japan BioGrid
project [3], Singapore BioMed grid [4], and so on.

Workflow techniques are also used in many other grid projects. Pioneering
WebFlow project [2] uses workflow as high level mechanism for high performance
distributed applications. Early grid projects Condor [8] and UNICORE [25] provide
workflow capability to manage task dependencies. The Globus project [15] is also
developing a grid service flow language (GSFL). Current other projects that involve
workflow development include USA ASCI grid [6], UK MyGrid [22], European
projects GRASP [16] and CrossGrid [9].

Implementation of Grid-enabled Medical Simulation Applications Using Workflow
Techniques 7

Fig. 4. An example workflow execution given a CT image file. (a) The Triana software
environment; (b) The VM tool for browsing the input image file; (c) The GMV tool for
browsing the mesh file; (d) The DX tool for interactive virtual bone cutting and dragging; (e)
The DX tool for simulation result visualization. (Note: The data set and guidance for placing
the bone cuts was kindly provided by Dr. T. Hierl, University Clinic Leipzig.)

There are also many grid-aware workflow environments and tools under
development. IBM BPWS4J is a web services flow execution engine designed for
BPEL4WS [10]. Symphony [20] focuses more on security issues. GridFlow [7]
focuses more on workflow simulation and scheduling. In several most recent work,
workflow techniques are used to address various interesting issues in grid
environments, including failure handling [18], authorization [19], automatic workflow
generation and grid mapping [11].

5 Conclusions

There are many discussions in grid computing community on programming models
for grid application development. According to our experiences on using the Triana
workflow for building GEMSS applications described in this work, advantages of
using workflow techniques are summarized as follows:
• Flexibility. The application can be constructed at different levels easily and quickly

using workflow mechanisms.

a b c

d e

8 Junwei Cao, Jochen Fingberg, Guntram Berti, and Jens Georg Schmidt

• Reusability. A toolbox once developed can be reused in multiple applications.
• Scalability. Workflow-based applications can be constructed in a hierarchical way,

which provides possibilities for applications to scale up in a grid environment.
It is expected that workflow will become one of mainstream programming models

for future grid application development.

References

1. F. Berman, A. J. G. Hey, and G. Fox, Grid Computing: Making The Global Infrastructure
a Reality, John Wiley & Sons, 2003.

2. D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, etc., “WebFlow – a Visual Programming
Paradigm for Web/Java Based Coarse Grain Distributed Computing”, Concurrency:
Practice and Experience, Vol. 9, No. 6, pp. 555-577, 1997.

3. BioGrid. http://www.biogrid.jp/.
4. BioMed. http://bmg.bii.a-star.edu.sg/.
5. BioOpera. http://www.inf.ethz.ch/personal/bausch/bioopera/main.html.
6. H. P. Bivens, “Grid Workflow”, GGF Working Document, 2001.
7. J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “GridFlow: Workflow Management for

Grid Computing”, in Proc. of 3rd IEEE Int. Symp. on Cluster Computing and the Grid,
Tokyo, Japan, pp. 198-205, 2003.

8. Condor. http://www.cs.wisc.edu/condor/.
9. CrossGrid. http://www.crossgrid.org/.
10. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, S. Weerawarana,

“Business Process Execution Language for Web Services, Version 1.0”, July 2002.
http://www.ibm.com/developerworks/library/ws-bpel/.

11. E. Deelman, J. Blythe. Y. Gil, C. Kesselman, et. al., “Mapping Abstract Complex
Workflows onto Grid Environments”, J. Grid Computing, Vol. 1, No, 1, pp. 25-39, 2003.

12. J. Fingberg, G. Berti, U. Hartmann, and A. Basermann, “Head-Mechanical Simulations
with SimBio”, NEC Research & Development, Vol. 43, No. 4, 2002.

13. I. Foster, and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan-Kaufmann, 1998.

14. GEMSS. http://www.ccrl-nece.de/gemss/.
15. Globus. http://www.globus.org/.
16. GRASP. http://eu-grasp.net/.
17. GridLab. http://www.gridlab.org/.
18. S. Hwang, and C. Kesselman, “Grid Workflow: a Flexible Failure Handling Framework

for the Grid”, in Proc. of 12th IEEE Int. Symp. on High Performance Distributed
Computing, Seattle, USA, pp. 126-137, 2003.

19. S. Kim, J. Kim, S. Hong, and S. Kim, “Workflow-based Authorization Service in Grid”,
in Proc. of 4th IEEE Int. Workshop on Grid Computing, Phoenix, USA, 2003.

20. M. Lorch, and D. Kafura, “Symphony – A Java-based Composition and Manipulation
Framework for Computational Grids”, in Proc. of 2nd IEEE/ACM Int. Symp. on Cluster
Computing and the Grid, Berlin, Germany, pp. 136-143, 2002.

21. MammoGrid. http://www.healthgrid.org/.
22. MyGrid. http://www.mygrid.info/.
23. I. Taylor, M. Shields, I. Wang, and R. Philp, “Distributed P2P Computing within Triana:

A Galaxy Visualization Test Case”, in Proc. of 17th IEEE Int. Parallel & Distributed
Processing Symp., Nice, France, 2003.

24. Triana. http://www.triana.co.uk/; http://trianacode.org/.
25. UNICORE. http://www.unicore.de/.

