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Abstract. GEMSS is a European project that aims at providing high 
performance medical simulation services in a distributed and grid computing 
environment. The GEMSS grid middleware is designed using web services 
technologies and standards and provides support for authorization, workflow, 
security, Quality of Service aspects. In this work, one of the GEMSS 
applications, maxillo-facial surgery simulation, is described, which includes a 
complete chain of tools necessary for the entire process from geometric model 
generation from scan data to computer simulation and visualization. The Triana 
workflow environment is utilized to implement the application for uniform 
access of local processes (e.g. image pre-processing and meshing), interactive 
tools (e.g. mesh manipulation) and grid-enabled remote services (e.g. HPC 
finite element simulation). It is concluded that workflow provides benefits to 
flexibility, reusability and scalability and is potential to become a mainstream 
grid application enabling technology. 

1 Introduction 

The grid builds on the accessibility of the Internet to allow effective use of 
geographically distributed resources [13, 1]. Grid computing technologies will 
provide the basis for the next generation of Internet-enabled HPC solutions. GEMSS 
(Grid Enabled Medical Simulation Services) [14] is a European project that aims to 
create a grid testbed for medical computing. 

In GEMSS a grid middleware will be developed that can be used to provide 
medical practitioners and researchers with access to advanced simulation and image 
processing services for improved pre-operative planning and near real-time surgical 
support. The grid architecture is designed based on Web Services technologies and 
standards and supposed to meet various requirements from business, legal and social, 
security, performance and application aspects. Workflow specification, enactment and 
execution are essential supports of the GEMSS grid middleware for business process 
management, QoS negotiation and application enabling. 

Maxillo-facial surgery simulation [12] is one of the medical service applications 
included in the GEMSS test-bed, which provides a virtual try-out space for the pre-
operative planning of maxillo-facial surgery. The implementation of the maxillo-
facial surgery simulation requires a chain of tools necessary for the entire process 
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from geometric model generation from scan data to computer simulation and 
visualization. 

The work presented in this paper takes maxillo-facial surgery simulation as an 
example application and provides an initial demonstration of using workflow 
techniques to enable the application for uniform access of local processes (e.g. image 
segmentation and mesh generation), interactive tools (e.g. mesh manipulation) and 
remote web services for large-scale simulation (e.g. HPC finite element simulation). 
An existing open source problem solving environment, Triana [24], is utilized as a 
workflow manager for the application.  Triana is written in Java and provides 
abundant graphical user interfaces for both toolbox implementation and workflow 
construction. In this work, several Triana toolboxes and an example workflow model 
are developed and detailed information is provided on how to develop Java wrappers 
for various binaries and scripts, turn them into Triana toolboxes using the Triana unit, 
and set up web services for remote access of HPC resources. 

2 GEMSS 

The GEMSS middleware is built on existing web services technologies and standards 
and provides support for authorization, workflow, security, Quality of Service 
aspects. This section provides brief information on the GEMSS architecture and one 
of the six GEMSS applications, maxillo-facial surgery simulation. 

2.1 GEMSS Architecture 

The GEMSS architecture, shown in Fig. 1, uses a client/server topology employing a 
service-oriented architecture. Detailed information on individual modules is not 
provided below and can be found in [14]. 

The GEMSS client architecture is mainly a pluggable component framework, 
which aims to provide flexible support to various application scenarios by placing 
minimal demands upon the components themselves and providing sufficient means 
for them to interact. The component framework is used by applications as the entry 
point into the GEMSS grid middleware and hides the details of the grid as far as 
possible. 

A GEMSS service can be implemented using existing web services technologies. 
Application services provide generic interfaces for starting application, uploading and 
downloading files. Resource manager and data storage provide interfaces for services 
to access actual HPC resources. 

2.2 Maxillo-facial Surgery Simulation 

One of the GEMSS target applications deals with computing pre-operative 
simulations for maxillo-facial surgeries. In clinical practice treatment of patients with 
in-born deformations of the mid-face is performed by cutting ill-formed bones and 
pulling them into the “right” position. 
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Fig. 1. The GEMSS architecture is composed with the client side architecture and service 
provider architecture, which plays as middleware between grid applications and resources. 

A halo frame is mounted to the patient’s skull (see Fig. 2a). Distractors, mounted 
to the halo fixed at certain points in the midface, exert a force on a midface region, 
gently pulling it to a pre-defined position in order to achieve a medically and 
cosmetically pleasing result. The simulation of the process includes a complete chain 
of tools [12], which are partly described below. 

• Image segmentation. As shown in Figs. 2b, 2c and 2d, bone and soft tissue parts 
can be identified from the original CT image. This can be performed at the client as 
an image pre-processing step. 

• Mesh generation. The process allows the generation of meshes suitable for Finite 
Element simulation (see an example in Fig. 2e) and could be computation intensive 
if the mesh size is very large. In our initial implementation, this step is also 
considered as a client side process. 

• Mesh manipulation. This process provides the meshing model with initial and 
boundary conditions for simulation using a user friendly tool. An example of 
virtual bone cutting is shown in Fig. 2f. This is an interactive process and can be 
only carried out at the client side. 
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• Finite Element analysis. The Finite Element simulation capability is provided by a 
fully parallel program linked with a load balancing library. Example visualizations 
of simulation results are illustrated in Figs. 2g and 2h. In this case the simulation 
result shows that a better bone position can be achieved after the surgery. This is 
the part that required grid enabling to access remote HPC resources. 

 

Fig. 2. Maxillo-facial surgery simulation. (a) The halo device mounted on the head; (b) CT 
images; (c) Identification of substructures (bone, soft tissue and background); (c) Selection of 
bones from others; (e) Mesh of a skull; (f) Virtual bone cutting; (g) Visualization of the 
geometric face change I (before the surgery); (h) Visualization of the geometric face change II 
(after the surgery). 

3 Application Workflow 

Workflow techniques are utilized in the GEMSS project for multiple purposes. In this 
work, only application workflow is implemented using an existing workflow tool. 

3.1 Triana Environment 

The Triana software environment is intended to be flexible and can be used in many 
different scenarios and at many different levels. One of the Triana applications is 
described in [23], where Triana is equipped with P2P computing mechanisms for 
galaxy visualization. In another European grid project GridLab [17], Triana is 
integrated with grid environments via grid application toolkit (GAT) interfaces 

In this work, Triana is used as a management environment for the simulation 
application workflow. It provides an effective wizard to build high level toolboxes in 
a semi-visual way so that workflow activities are uniformly encapsulated and handled 
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by the Triana workflow. The Triana unit is the base class on which that all of 
toolboxes are built. The unit class provides abundant methods for each toolbox to 
handle inputs, outputs, parameters and even corresponding graphical input interfaces 
in a standard way. Fig. 3 provides a screenshot of the Triana implementation of 
maxillo-facial surgery simulation. Toolbox implementation and workflow 
construction are described below in separate sections. 
 

 

Fig. 3. Triana implementation of maxillo-facial surgery simulation, with a complete list of the 
GEMSS toolboxes in the left column and the example workflow in the main window. 

3.2 Toolbox Implementation 

There are three types of toolboxes used for building the maxillo-facial surgery 
simulation workflow: input, processing and output. The only input toolbox shown in 
Fig. 3 is the image loading toolbox. Main processing toolboxes include those for mesh 
generation, bone cutting and dragging, and Finite Element analysis. Output toolboxes 
are implemented for result visualization. 

• ImageLoading. This is the entry point of the simulation workflow. The user is 
required to input the image file name to start the workflow execution. 

• MeshGeneration. Since image processing and meshing described in Section 2.2 are 
both client-side local processes, a shell script is developed to describe the whole 
chain of the process. The toolbox is implemented via a Java wrapper to the script 
execution. The mesh generation toolbox takes input from the image loading and 
outputs a result mesh file for mesh manipulation. 

• Cut&Drag. The activity allows the user to define initial and boundary conditions 
for simulation via virtual bone cutting and dragging operations. The toolbox 
implements an iterative process so that the user can repeat the activity until a 
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satisfying result is obtained. It takes inputs from both the mesh file and the original 
image file and outputs an all-in-one model file ready for simulation. 

• HeadFEM.  The Finite Element simulation takes two inputs from the Cut&Drag 
toolbox and outputs two sets of files, one including detailed simulation data and the 
other including a ready input for visualization. In order to implement the toolbox, 
the HeadFEM service has to be set up for remote access of HPC resources. This is 
implemented using the Apache Tomcat and Axis. In the client side toolbox 
implementation, the JAX-RPC call provided by the Apache Axis library is used to 
access the HeadFEM service. 

• FileUpload and FileDownload.  These two toolboxes are necessary before and 
after the simulation activity and temporarily implemented using FTP. In the later 
GEMSS implementation, these will be supported by application services as well. 

• VMViewer, GMVViewer and DXViewer.  These output toolboxes are used in the 
workflow for result visualization. As shown in Fig. 3, the VM tool is used to 
display the original image file, the GMV tool for mesh visualization and the DX 
tool for the visualization of simulation results. The use of these tools during 
workflow execution is also illustrated in Fig. 4. 

• FileNameShow. This is an output toolbox that can be used to pop up a window and 
display the input file name. 

3.3 Workflow Construction 

Workflow construction is straightforward in the Triana environment given all 
toolboxes ready. The developer can drag and link toolboxes to directly construct a 
workflow ready for execution. The workflow developed for maxillo-facial surgery 
simulation is shown in Fig. 3. The screenshot of an example workflow execution is 
illustrated in Fig. 4. In this case the input is a CT image file shown in Fig. 4b. Output 
toolboxes in the workflow invoke different tools to visualize results (see Figs. 4b-4e). 

4 Related Work 

Apart from the GEMSS project, there are some other projects that are using grid 
computing for medical or biological application. These include European 
MammoGrid project for breast cancer screening [21], UK e-Science Programme 
MyGrid [22] and Swiss BioOpera [5] projects for bioinformatics, Japan BioGrid 
project [3], Singapore BioMed grid [4], and so on. 

Workflow techniques are also used in many other grid projects. Pioneering 
WebFlow project [2] uses workflow as high level mechanism for high performance 
distributed applications. Early grid projects Condor [8] and UNICORE [25] provide 
workflow capability to manage task dependencies. The Globus project [15] is also 
developing a grid service flow language (GSFL). Current other projects that involve 
workflow development include USA ASCI grid [6], UK MyGrid [22], European 
projects GRASP [16] and CrossGrid [9]. 
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Fig. 4. An example workflow execution given a CT image file. (a) The Triana software 
environment; (b) The VM tool for browsing the input image file; (c) The GMV tool for 
browsing the mesh file; (d) The DX tool for interactive virtual bone cutting and dragging; (e) 
The DX tool for simulation result visualization. (Note: The data set and guidance for placing 
the bone cuts was kindly provided by Dr. T. Hierl, University Clinic Leipzig.) 

There are also many grid-aware workflow environments and tools under 
development. IBM BPWS4J is a web services flow execution engine designed for 
BPEL4WS [10]. Symphony [20] focuses more on security issues. GridFlow [7] 
focuses more on workflow simulation and scheduling. In several most recent work, 
workflow techniques are used to address various interesting issues in grid 
environments, including failure handling [18], authorization [19], automatic workflow 
generation and grid mapping [11]. 

5 Conclusions 

There are many discussions in grid computing community on programming models 
for grid application development. According to our experiences on using the Triana 
workflow for building GEMSS applications described in this work, advantages of 
using workflow techniques are summarized as follows: 
• Flexibility. The application can be constructed at different levels easily and quickly 

using workflow mechanisms. 
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• Reusability. A toolbox once developed can be reused in multiple applications. 
• Scalability. Workflow-based applications can be constructed in a hierarchical way, 

which provides possibilities for applications to scale up in a grid environment. 
It is expected that workflow will become one of mainstream programming models 

for future grid application development. 
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