

 - 1 -

AMREF: An Adaptive MapReduce Framework for Real Time Applications*

Fan Zhang1, Junwei Cao2,3,*, Xiaolong Song1, Hong Cai4 and Cheng Wu1,3
1National CIMS Engineering and Research Center, Department of Automation

Tsinghua University, Beijing 100084, P. R. China
2Research Institute of Information Technology, Tsinghua University, Beijing 100084, P. R. China

3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R. China
4IBM China Development Laboratory

*Corresponding email: jcao@tsinghua.edu.cn

Abstract
This paper presents AMREF, an Adaptive MapREduce

Framework designed for an effective use of computational
resources in data center networks to deal with real time
data intensive applications. AMREF entails its adaptivity
from adaptive splitter, adaptive mappers and adaptive
reducers in a stochastic control manner. We use three
methods, feedback control, stochastic learning with smooth
filter and kalman filter to implement the framwork.
Comparison among the three methods suggests they can be
effectively and efficiently used to reduce the makspan in
three different real-world workload scenarios.

Key words: Adaptive mapreduce; Feedback control;
Stochastic learning control; Parallel Processing

1. Introduction
1.1 Research Background

 Cloud computing, from the inception of its concept,
has wined much attention in industrial [3] and academic
institutions [13]. Up to millions of interconnected servers,
or called data center network [8], should be fully leveraged
in order to provide on line applications, collaborative
gaming, key word searching and commercial transactions.
 Infrastructure services, e.g., Mapreduce, Google File
System [6], and BigTable [1] are recently proposed and
proven useful in large scale parallel applications and can be
scaled to thousands of hosts for consistent and fault
tolerant services [7]. As the increase of interconnected
servers, how to organize a proper organization for parallel
applications, say, the architectural structure of mapreduce
applications, is very important. A good organization of the
splitter nodes (splitters), map nodes (mappers) and reducer
nodes (reducers), can not only shorten the execution time
of data intensive applications, but also reduce running cost,
say, the power consumption of the data center network.
 AMREF, an Adaptive MapReduce Framework, is
proposed in this paper to show our adaptive strategy that is
used to effectively organize the splitter nodes (splitters),
map nodes (mappers), reduce nodes(reducers).

*Manuscript submitted to IEEE GCC 2010, on June 30,
2010. All rights Reserved. Part of this work is performed
when Fan Zhang is an intern student is IBM CDL
sponsored by IBM Ph.d. Fellowship 2010-1011.

1.2 Motivation

 Though mapreduce is widely used and implemented
in many open source applications, the number of workers
that implement the map and reduce functionalities are
statically written in configuration files. This is not so
flexible since different applications, or even different
stages of one application, require different number of
works to perform as different roles. Resource over/under
provisioning is a serious problem nowadays in large scale
internet applications. A proper organization of splitters,
mappers and reducers are fundamentally important in this
application.
 We discuss three scenarios later on to show our
solutions to adaptively utilize all these resources. Further,
we bring in three typical control methods, feedback control,
stochastic learning with smooth filter and kalman filter to
implement our framework.

2. Related Work
 MapReduce is a simple programming model for
developing distributed data intensive application in cloud
computing. Since it was proposed by Google for cluster of
commodity machines, there have been many following
projects. For instance, Hadoop [15] is a Mapreduce
framework developed by Apache, and Phonix is another
implementation designed for shared memory architecture
by Stanford University.
 Many researchers have focused on the MapReduce
framework and the application of it . For instance, Genetic
Algorithms (GAs) naturally fit into an iterative style. Thus,
parallelizing genetic algorithms have received many
attentions [12].
 To implement PGAs, many models have been
proposed like MRPGA [9]. It is an extension to the
MapReduce model featuring a hierarchical reduction phase.
And it is designed on a .NET-based enterprise Grid system
using the mapreduce framework as the name shows.
Another implement using Hadoop, Virtual Workspaces to
perform the Bioinformatic Applications via WAN is named
CloudBLAST [10]. These attempts in Bioinfomatic extend
the parallel computing into the mapreduce framework to
get a better scalability and efficiency.
 Semantic inferencing and querying across large-scale
RDF triple stores is notoriously slow and a MapReduce-
based RDF molecular has been developed by several

 - 2 -

scientist in The University of Queensland [11]. And in their
research, the evaluate the benefits of MapReduce
framework in the application that requires integration and
querying across large-scale protein-protein interaction
database.
 The growth of data in Geographical Information
Systems (GIS), has far outpaced the growth of the power of
a single processor. To deal with this condition, a high
performance workflow system MRGIS [2] is proposed to
execute GIS applications efficiently.
Another research in High Energy Physics data analyses and
Kmesns clustering, with a CGL-MapReduce Model [5] to
perform it even more efficently in Hadoop environment.

3. Adaptive mapreduce framework

We first introduce the principles of carrying out

mapreduce applications, then we elaborate our application
scenario which needs adaptive resource provisioning.

3.1 Preliminaries of mapreduce

 In a mapreduce framework, user firstly specify a map
function, which is used to process a (key, value) pair to
generate a set of intermediate (key, value) pairs. After that,
A typical mapreduce framework is shown in figure 1.

Figure 1. A mapreduce framework which splits the

input file into m segments, and each segment
corresponds to one map function. There are r reduce

functions to generate r separate outputs.

 While the open-source project called Hadoop
developed by Apache [14] using the same architecture but
implemented in Java, which is used in our research.
Programs written in this functional style are automatically
parallelized and executed on a cluster of computers. In the
MapReduce jobs in Hadoop, the masternode which is used
to split a job is called jobtracker, while the data nodes to
execute the job is called tasktrackers. A jobtracker spilts
the data into pieces for tasktrackers to map, and the
tasktracker stores the intermediate results of map functions
in local disks. When the job is done, a tasktracker will
continue to map another data section, until the final results
are combined after all the map and reduce processes. To
support the data storing, Hadoop has a distributed file
system called Hadoop Distributed File System (HDFS).

Like the Google File System(GFS), HDFS also replicates
the data on datanodes so that the system has a good fault-
tolerance in storing and computing. Hadoop schedules the
MapReduce computation jobs depending on the data
locality and hence it improves the overall I/O throughput.
This setup is well suited for an environment where Hadoop
is installed in a large cluster of commodity machines.

3.2 Problem formulation

Generally, it is user’s duty to specify the number of
splitters, mappers and reducers for data intensive
applications. It is normally very difficult to optimally
predefine the number in order to maximize the operation
performance, e.g. makespan and cost, to run a program. On
one hand, we should make full use of the nodes; on the
other hand, we should balance the load to minimize the
meaningless nodes’ waiting for an incoming event. We use
a real time data intensive application in physics to show
how our problem is formulated.

Gravitational Waves (GW) are produced by the
movement of energy in mass of dense material which
fluctuate space-time structure. LIGO [4] (Laser
Interferometer Gravitational wave Observatory) embodies
three most sensitive GW detectors in the world which are
L1, H1, H2 (two in Hanford and one in Louisiana) jointly
built by Caltech, MIT, etc. to detect GW. The detection is
very useful for us to explore the mystery of space.
Triggers are produced by standard event trigger generators
(e.g. Q-pipeline or Omega-pipeline which is used to search
for significant transient events and write each event’s info
as a record (triggers) into plain text file (trigger files)),
which are used as an important evidence to show when and
where can GW possibly exist. The trigger files currently
have the following five column definitions:
(1) central time [GPS Time]
(2) central frequency [Hz]
(3) duration [s]
(4) bandwidth [Hz]
(5) normalized energy [zero dimension]

There are several physical properties that we need
to clarify. Suppose T is a given timespan,
(1)The number of triggers are generated during T(TNT);
(2)The second which has the maximum number of triggers
during T(MaNT);
(3) The second which has the minimal number of triggers
during T(MiNT);
(4) The second which has the maximum normalized
energy during T(MaNE);
(5) The second which has the minimal normalized energy
during T(MiNE);

The triggers are generated in real time, which causes a
big problem that how to properly allocate resources
(number of splitters, mappers and reducers) dynamically
and automatically in mapreduce programming. This is our
major motivations in using adaptive framework to carry
out this work.

 - 3 -

4. Adaptive mapreduce framework

4.1 Adaptive splitters

 Splitter is used to split files awaiting for process

into smaller blocks and serve each block to its
corresponding mapper node. In the Hadoop application
each splitter divides file evenly, which lacks of a proper
scheduling mechanism to serve different amount of data
based on the different processing capacity of mapper
functions in each node. In cloud environment, mappers
with variant processing capacity are in data centers. Also,
there are many other reasons for this, such as network
latency, availability, etc., which causes an unbalance
workload in mappers. Taking the above details into
account is the major concern of adaptive splitters.

In other words, splitter should have a global view to
see which mapper is faster, thus the files for that mapper is
relatively more than other mappers. This is the basic idea
of load balancing in order to reduce the makespan of our
whole application.

Figure 2. Adaptive splitter. In stage 1, splitter distribute

the input file evenly to the three mappers. In stage 2,
different mapper with different processing capacity
have different length of input files. In stage 3, a new

input file is distributed to the three mappers according
to their processing capacity.

 Splitter adaptively partitions the input file into several
segments of different length and serve them to the
corresponding mapper. Based on the run time application,
how to do this segmentation, especially how to balance the
workload into different mappers will be introduced
followed in adaptive mappers.

4.2 Adaptive mappers

Mappers are used to convert each (key, value) pairs into
intermediate (key, value) pair. The number of mappers that
are in a specific Hadoop application scenario is predefined
by setting the function setNumMapTasks(int) before the
application is started. This number is closely influenced by
the total size of the inputs, namely the total number of
blocks of the input files after the split step.
 In real time scenario, the number of mappers
initially set may be not/over enough for the dynamism of
the application. Adaptive mapper lies in the automatically
increase or decrease the mappers based on the run time
application.

Figure 3. An adaptive map task is adaptively added

Figure 3 demonstrates that an adaptive mapper is increased
because of either overburden of the other mappers, or an
unbalanced workload between mappers and reducers. The
newly created mapper should have a one-to-all connection
with the reducers to perform consistent functionality.
Similar rule can be applied to adaptively decrease a mapper
when the system is idle for a relatively long time. How to
define the “relatively long time” will be shown in our
followed sections.

4.3 Adaptive reducers

 Reducers are used to reduce a set of intermediate
values which share a key to a smaller set of values. For
runtime multiple attribute applications, each reducer
outputs its results related to one attribute. For example, in
our LIGO application, each reducer outputs one of the five
basic properties in real time. However, there are sometimes
when the output of mappers of a specific attribute (one
property result) are too fast that the number of reducers are
not enough. Fig. 4. demonstrates an adaptive reducer which
is parallelly and adaptively added and performs its r+1
output. If it outputs the same attribute with one or many
reducers, a further merge stage is needed to combine the
outputs together.

Figure 4. A parallel reduce task is adaptively added

 There is another situation that a new reducer
should be adaptively and sequentially added whose input is
from the output of some or all the existing reducers. This
happens when a combined result is needed. For example, if
we want to output the statistical seconds between the time

 - 4 -

span that has the maximum number of triggers and
minimum, we should combine the output of the property (1)
and (2) and calculate the time span. In this way, a
sequential reducer is adaptively added whose input is the
output of the first two reducers. Figure 5 demonstrate this
scenario with details.

Figure 5. A sequential reduce task is adaptively
added. The inputs of this reduce task are generated

from the first and second reduce task

Until now, we have introduced the adaptive splitters,
mappers and reducers individually in different scenarios. A
common problem left open is the way we quantify the
adaptivity. We move on in our controlling principles in 4.4
and 4.5 to answer the question.

4.4 Feedback based control
Feedback control is a basic method in control theory.

It uses a monitor to get the current status of the system, and
usually carry a negative signal to the input according to the
variation of the monitor. This is called negative feedback,
which gives the system stability and randomness.
 But in practice of our adaptive mapreduce, we use
a positive feedback control which is a heuristic scheduling
mechanism to balance the workload of all the servers. In
this positive feedback loop, we measured the utilization of
each queue in all the three process: splitting, mapping and
reducing. If the utilization of the 95% servers or above in
splitting stage surpass 90%, we’ll add one server more to
release the workload in this stage. Similarly, If the
utilization of the 95% servers or above in splitting stage
lower than 20%, we’ll reduce one server. All these rules
are applied to map and reduce stage.
 In theory, the feedback control will be a perfect method
when the scheduling is sensitive enough and all the cost in
increasing or decreasing the mapreducers is not considered.
But in simulation and future practice, we will certainly set
the stability margin in a proper value to get a excellent
result within our view.

4.5 Stochastic learning based control
Stochastic control is a new dynamic control method,

it’s based on the former behavior of the status in system. In
our adaptive model, it’s a learning mode for balancing the

workload, and the performance is always impressive when
handling with stochastic arrivals and disturbance.

Stochastic control rely on the statistical data. With the
data we have collected, the learning mode gives prediction
of the incoming data, including the incoming time, the
amounts, and traffic spikes, then the network will adjust
itself to moderate the mutation of incoming data.

For example, in a real-time adaptive mapreduce
application, the mutation of incoming data is smooth in
most time of a day with only some random noise and
disturbances, but in a certain time, just like the rush hour,
the data will flood in the system with a tremendous speed.

But a system with stochastic control will perform
perfectly with precise prediction collected. It gets a balance
of cost and capability in the smooth period, and add
mapreducer in advance to moderate the flood in rush hour,
in this way, stochastic control will perform well in a real-
time data coming system with regularity.

5. Experimental Studies

We first discuss our settings in doing the simulation,
then we compare three methods, feedback control,
stochastic learning with smooth filter and stochastic
learning with kalman filter to justify our work.

5.1 Experimental Settings
We conduct our simulation using SimEvents, which is

a software toolkits in Matlab. All the splitters, mappers and
reducers are simulated as a queuing network with each
node as a queue. We assume that each queue is running
under different service capacity, thus the queuing length is
varying during the whole process, which entails our needs
for adaptive splitters, mappers and reducers.

We compare feedback based control with stochastic
learning based method. In stochastic learning based control
method, we use kalman filter and smooth filter to predict
the workload based on the previous stages. We compare
the above three methods in our experiment to derive their
comparative advantages and disadvantages.

Our workloads are generated based on a Web trace
from the 1998 Soccer World Cup site [26]. This trace is an
average arrival during each minute over sixty-minute
duration as shown in Fig. 6(a), Fig. 7(a) and Fig. 8(a). We
select three typical workloads: small, moderate and heavy,
to do the simulation. They are different from each other in
that the average arrival rate per minute.

We analyze the makespan, which is defined as the
execution time of a batch of jobs. This value should be
minimized in order to improve the throughput.

The experimental results are shown from Fig. 6 to Fig.
8.

5.2 Experimental Results

 - 5 -

0 10 20 30 40 50 6020

30

40

50

60

Time (Minute)

A
ve

ra
ge

 R
eq

ue
st

s
Pe

r M
in

Light Workload

0 10 20 30 40 50 600

10

20

30

40

50

60

Time (Minute)

A
ve

ra
ge

 R
eq

ue
st

s
Pe

r M
in

Prediction Comparison

Kalman filter
True value
smooth filter

1 2 3 4 5 60

5

10

15

20

Time (Minute)

M
ak

es
pa

n
(S

ec
on

ds
)

Makespan Comparison

Kalman
Smooth
Feedback

 (a) (b) (c)
Figure 6. Comparison under light workload. (a) is the characteristics of the light workload, (b) is the workload and
prediction comparison between smooth filter and kalman filter, (c) is the makespan to execute the above application

0 10 20 30 40 50 600

50

100

150

200

Time (Minute)

A
ve

ra
ge

 R
eq

ue
st

s
Pe

r M
in

Moderate Workload

0 10 20 30 40 50 600

50

100

150

Time (Minute)

A
ve

ra
ge

 R
eq

ue
st

s
Pe

r M
in

Prediction Comparison

Kalman filter
True value
smooth filter

1 2 3 4 5 60

10

20

30

40

50

Time (Minute)

M
ak

es
pa

n
(S

ec
on

ds
)

Makespan Comparison

Kalman
Smooth
Feedback

 (a) (b) (c)

Figure 7. Comparison under moderate workload. (a) is the characteristics of the moderate workload, (b) is the
workload and prediction comparison between smooth filter and kalman filter, (c) is the makespan.

0 10 20 30 40 50 600

200

400

600

800

1000

1200

Time (Minute)

A
ve

ra
ge

 R
eq

ue
st

s
Pe

r M
in

Heavy Workload

0 10 20 30 40 50 600

200

400

600

800

1000

1200

Time (Minute)

A
ve

ra
ge

 R
eq

ue
st

s
Pe

r M
in

Prediction Comparison

Kalman filter
True value
smooth filter

1 2 3 4 5 60

50

100

150

200

250

Time (Minute)
M

ak
es

pa
n

(S
ec

on
ds

)

Makespan Comparison

Kalman
Smooth
Feedback

 (a) (b) (c)

Figure 8. Comparison under heavy workload. (a) is the characteristics of the heavy workload, (b) is the workload
and prediction comparison between smooth filter and kalman filter, (c) is the makespan .

Based on the above experimental results, several

conclusions could be reached.
(1)Smooth filter prediction is not a good enough choice
compared with kalman filter prediction. Though there are
lots of prediction algorithm choices, we use kalman as our
representative example.
(2)Prediction accuracy is closely related with the makespan
of a batch of jobs. A good prediction of workload is useful
in arranging proper resources, which is much better than
static resource provisioning.
(3)Feedback control based method is not efficient at the
times the workload is relatively low compared with smooth
filter. That disadvantage could be changed into advantage
when the workload is relatively high. That’s because the
prediction error of the smooth is too much, which affects
the makespan of the work.
(4)With a high prediction accuracy, the stochastic learning
based method is advantageous than other methods
whenever the workload is small or large.
(5)Adaptive mapreduce framework, or AMREF, shows
that it is widely applicable in different workload scenarios,
which justify our motivation to carry out this work.

6. Conclusions and Future Work

We firstly conclude our major contributions in this
work and then suggest two possible directions to extend
this work.

6.1 Research conclusions
In this paper, we have extended the mapreduce

algorithm from a static scheme to a dynamic one using a
series of adaptivities, adaptive splitter, adaptive mapper,
and adaptive reducers. Our original technical contributions
are summarized below :
(1)Proposing the adaptive scheme. This adaptivity lie in
the three key stages of mapreduce algorithm, which not
only can be used to improve the utilization of the servers,
but also reduce the makespans in our work.
(2)Comparing the workload prediction method and
their influence on makespan. We compare the three
methods in view of the adaptivity to compare the relative
advantages, which is useful in practice to decide which
method to adopt in specific scenario.

 - 6 -

6.2 Our Future Work

For further research, we suggest to extend the work in
the following two directions:
(1) Implement the AMREF algorithm in real
mapreduce applications. We have simulated and proved
the advantage of using AMREF in our work, which is
perfectly matched and properly used in large scale cloud
applications. We’ll carry on this work by implementing
real adaptive scenarios for our algorithm in Hadoop and
Hive applications.
(2) Building useful tools to serve for larger virtualized
cloud platform. The matlab simulation to analyze optimal
number of virtual resources in our experiment should be
packaged into software toolkits in order to make it
available for larger virtualized cloud platforms. Our
experimental software can be tailed and prototyped toward
this end.

Acknowledgement

This work is supported by National Science Foundation

of China (grant No. 60803017) and Ministry of Science
and Technology of China under National 973 Basic
Research Program (grants No. 2011CB302505 and No.
2011CB302805) and National 863 High-tech R&D
Program (grants No. 2008AA01Z118 and No.
2008BAH32B03).

References

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes and R. E.
Gruber, Bigtable: A Distributed Storage System for
Structured Data, OSDI 2006: Seattle, WA, USA.

[2] Q. Chen, L. Wang, and Z. Shang, MRGIS: A
MapReduce-Enabled High PerformanceWorkflow
System for GIS, 3rd International Workshop on
Scientific Workflows and Business Workflow Standards
in e-Science (SWBES). Indianapolis, USA. IEEE Press,
2008.

[3] J. Dean and S. Ghemawat, Mapreduce: Simplified data
processing on large clusters, ACM Commun., vol. 51,
Jan. 2008, pp. 107-113.

[4] E. Deelman, C. Kesselman, et al, “GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave
Scientists”, Proc. 11th IEEE Int. Symp. on High
Performance Distributed Computing, pp. 225-234, 2002.

[5] J. Ekanayake, S. Pallickara and G. Fox, MapReduce for
Data Intensive Scientific Analyses, DOI
10.1109/eScience.2008.5

[6] S. Ghemawat, H. Gobioff, and S. Leung, The Google
File System, SOSP’03, October 19–22, 2003, Bolton
Landing, New York, USA.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C.
Tian, Y. Zhang and S. Lu, BCube: A High
Performance, Server-centric Network Architecture for
Modular Data Centers, SIGCOMM’09, August 17–21,
2009, Barcelona, Spain.

[8] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhangand S. Lu,
DCell: A Scalable and Fault-Tolerant Network Structure
for Data Centers, SIGCOMM’08, August 17–22, 2008,
Seattle, Washington, USA.

[9] C. Jin, C. Vecchiola and R. Buyya, MRPGA: An
Extension of MapReduce for Parallelizing Genetic
Algorithms, Fourth IEEE International Conference on
eScience, 2008, Indiana University, USA.

[10] A. Matsunaga, M. Tsugawa and J. Fortes,
CloudBLAST: Combining MapReduce and
Virtualization on Distributed Resources for
Bioinformatics Applications, Fourth IEEE
International Conference on eScience, 2008, Indiana
University, USA.

[11] A. Newman, Y. Li and J. Hunter, Scalable Semantics –
the Silver Lining of Cloud Computing, eScience, 2008.
eScience '08. IEEE Fourth International Conference on
(06 January 2009), pp. 111-118.

[12] M. Nowostawski and R. Poli, Parallel Genetic
Algorithm Taxonomy, KES’99, MAY 13, 1999.

[13] L. Youseff, M. Butrico and D. D. Silva, Toward a
Unified Ontology of Cloud Computing, Grid
Computing Environments Workshop, GCE08, held in
conjunction with SC08 , November, 2008.

[14] http://www.apache.org/
[15] http://hadoop.apache.org/

