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Abstract 
This paper presents AMREF, an Adaptive MapREduce 

Framework designed for an effective use of computational 
resources in data center networks to deal with real time 
data intensive applications. AMREF entails its adaptivity 
from adaptive splitter, adaptive mappers and adaptive 
reducers in a stochastic control manner. We use three 
methods, feedback control, stochastic learning with smooth 
filter and kalman filter to implement the framwork. 
Comparison among the three methods suggests they can be 
effectively and efficiently used to reduce the makspan in 
three different real-world workload scenarios. 
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1. Introduction 
1.1 Research Background  
 
 Cloud computing, from the inception of its concept, 
has wined much attention in industrial  [3] and academic 
institutions  [13]. Up to millions of interconnected servers, 
or called data center network  [8], should be fully leveraged 
in order to provide on line applications, collaborative 
gaming, key word searching and commercial transactions.  
 Infrastructure services, e.g., Mapreduce, Google File 
System  [6], and BigTable  [1] are recently proposed and 
proven useful in large scale parallel applications and can be 
scaled to thousands of hosts for consistent and fault 
tolerant services  [7]. As the increase of interconnected 
servers, how to organize a proper organization for parallel 
applications, say, the architectural structure of mapreduce 
applications, is very important. A good organization of the 
splitter nodes (splitters), map nodes (mappers) and reducer 
nodes (reducers), can not only shorten the execution time 
of data intensive applications, but also reduce running cost, 
say, the power consumption of the data center network. 
 AMREF, an Adaptive MapReduce Framework, is 
proposed in this paper to show our adaptive strategy that is 
used to effectively organize the splitter nodes (splitters), 
map nodes (mappers), reduce nodes(reducers). 
______________________ 
*Manuscript submitted to IEEE GCC 2010, on June 30, 
2010. All rights Reserved. Part of this work is performed 
when Fan Zhang is an intern student is IBM CDL 
sponsored by IBM Ph.d. Fellowship 2010-1011. 

1.2 Motivation 
 

 Though mapreduce is widely used and implemented 
in many open source applications, the number of workers 
that implement the map and reduce functionalities are 
statically written in configuration files. This is not so 
flexible since different applications, or even different 
stages of one application, require different number of 
works to perform as different roles. Resource over/under 
provisioning is a serious problem nowadays in large scale 
internet applications. A proper organization of splitters, 
mappers and reducers are fundamentally important in this 
application. 
 We discuss three scenarios later on to show our 
solutions to adaptively utilize all these resources. Further, 
we bring in three typical control methods, feedback control, 
stochastic learning with smooth filter and kalman filter to 
implement our framework. 

 
2. Related Work 
 MapReduce is a simple programming model for 
developing distributed data intensive application in cloud 
computing. Since it was proposed by Google for cluster of 
commodity machines, there have been many following 
projects. For instance, Hadoop  [15] is a Mapreduce 
framework developed by Apache, and Phonix is another 
implementation designed for shared memory architecture 
by Stanford University. 
 Many researchers have focused on the MapReduce 
framework and the application of it . For instance, Genetic 
Algorithms (GAs) naturally fit into an iterative style. Thus, 
parallelizing genetic algorithms have received many 
attentions [12].  
 To implement PGAs, many models have been 
proposed like MRPGA [9]. It is an extension to the 
MapReduce model featuring a hierarchical reduction phase. 
And it is designed on a .NET-based enterprise Grid system 
using the mapreduce framework as the name shows. 
Another implement using Hadoop, Virtual Workspaces to 
perform the Bioinformatic Applications via WAN is named 
CloudBLAST [10]. These attempts in Bioinfomatic extend 
the parallel computing into the mapreduce framework to 
get a better scalability and efficiency.  
 Semantic inferencing and querying across large-scale 
RDF triple stores is notoriously slow and a MapReduce-
based RDF molecular has been developed by several 
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scientist in The University of Queensland [11]. And in their 
research, the evaluate the benefits of MapReduce 
framework in the application that requires integration and 
querying across large-scale protein-protein interaction 
database. 
 The growth of data in Geographical Information 
Systems (GIS), has far outpaced the growth of the power of 
a single processor. To deal with this condition, a high 
performance workflow system MRGIS [2] is proposed to 
execute GIS applications efficiently.  
Another research in High Energy Physics data analyses and 
Kmesns clustering, with a CGL-MapReduce Model [5] to 
perform it even more efficently in Hadoop environment. 

 
3. Adaptive mapreduce framework 

 
We first introduce the principles of carrying out 

mapreduce applications, then we elaborate our application 
scenario which needs adaptive resource provisioning. 

 
3.1 Preliminaries of mapreduce 
 
 In a mapreduce framework, user firstly specify a map 
function, which is used to process a (key, value) pair to 
generate a set of intermediate (key, value) pairs. After that, 
A typical mapreduce framework is shown in figure 1. 
 

 
Figure 1. A mapreduce framework which splits the 

input file into m segments, and each segment 
corresponds to one map function. There are r reduce 

functions to generate r separate outputs. 
 

 While the open-source project called Hadoop 
developed by Apache  [14] using the same architecture but 
implemented in Java, which is used in our research. 
Programs written in this functional style are automatically 
parallelized and executed on a cluster of computers. In the 
MapReduce jobs in Hadoop, the masternode which is used 
to split a job is called jobtracker, while the data nodes to 
execute the job is called tasktrackers. A jobtracker spilts 
the data into pieces for tasktrackers to map, and the 
tasktracker stores the intermediate results of map functions 
in local disks. When the job is done, a tasktracker will 
continue to map another data section, until the final results 
are combined after all the map and reduce processes. To 
support the data storing, Hadoop has a distributed file 
system called Hadoop Distributed File System (HDFS). 

Like the Google File System(GFS), HDFS also replicates 
the data on datanodes so that the system has a good fault-
tolerance in storing and computing. Hadoop schedules the 
MapReduce computation jobs depending on the data 
locality and hence it improves the overall I/O throughput. 
This setup is well suited for an environment where Hadoop 
is installed in a large cluster of commodity machines. 
 
3.2 Problem formulation 

Generally, it is user’s duty to specify the number of 
splitters, mappers and reducers for data intensive 
applications. It is normally very difficult to optimally 
predefine the number in order to maximize the operation 
performance, e.g. makespan and cost, to run a program. On 
one hand, we should make full use of the nodes; on the 
other hand, we should balance the load to minimize the 
meaningless nodes’ waiting for an incoming event. We use 
a real time data intensive application in physics to show 
how our problem is formulated. 

Gravitational Waves (GW) are produced by the 
movement of energy in mass of dense material which 
fluctuate space-time structure. LIGO  [4] (Laser 
Interferometer Gravitational wave Observatory) embodies 
three most sensitive GW detectors in the world which are 
L1, H1, H2 (two in Hanford and one in Louisiana) jointly 
built by Caltech, MIT, etc. to detect GW. The detection is 
very useful for us to explore the mystery of space. 
Triggers are produced by  standard event trigger generators 
(e.g. Q-pipeline or Omega-pipeline which is used to search 
for significant transient events and write each event’s info 
as a record (triggers) into plain text file (trigger files)), 
which are used as an important evidence to show when and 
where can GW possibly exist. The trigger files currently 
have the following five column definitions: 
(1) central time [GPS Time] 
(2) central frequency [Hz] 
(3) duration [s] 
(4) bandwidth [Hz] 
(5) normalized energy [zero dimension] 

There are several physical properties that we need 
to clarify. Suppose T is a given timespan,  
(1)The number of triggers are generated during T(TNT); 
(2)The second  which has the maximum number of triggers 
during T(MaNT); 
(3) The second  which has the minimal number of triggers 
during T(MiNT); 
(4) The second  which has the maximum normalized 
energy during T(MaNE); 
(5) The second  which has the minimal normalized energy 
during T(MiNE); 

The triggers are generated in real time, which causes a 
big problem that how to properly allocate resources 
(number of splitters, mappers and reducers) dynamically 
and automatically in mapreduce programming. This is our 
major motivations in using adaptive framework to carry 
out this work. 
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4. Adaptive mapreduce framework 
 
4.1 Adaptive splitters 

 
 Splitter is used to split files awaiting for process 

into smaller blocks and serve each block to its 
corresponding mapper node. In the Hadoop application 
each splitter divides file evenly, which lacks of a proper 
scheduling mechanism to serve different amount of data 
based on the different processing capacity of mapper 
functions in each node. In cloud environment, mappers 
with variant processing capacity are in data centers. Also, 
there are many other reasons for this, such as network 
latency, availability, etc., which causes an unbalance 
workload in mappers. Taking the above details into 
account is the major concern of adaptive splitters. 

In other words, splitter should have a global view to 
see which mapper is faster, thus the files for that mapper is 
relatively more than other mappers. This is the basic idea 
of load balancing in order to reduce the makespan of  our 
whole application. 

 
Figure 2. Adaptive splitter. In stage 1, splitter distribute 

the input file evenly to the three mappers. In stage 2, 
different mapper with different processing capacity 
have different length of input files. In stage 3, a new 

input file is distributed to the three mappers according 
to their processing capacity. 

  
 Splitter adaptively partitions the input file into several 
segments of different length and serve them to the 
corresponding mapper. Based on the run time application, 
how to do this segmentation, especially how to balance the 
workload into different mappers will be introduced 
followed in adaptive mappers. 
 
4.2 Adaptive mappers 
 
Mappers are used to convert each (key, value) pairs into 
intermediate (key, value) pair. The number of mappers that 
are in a specific Hadoop application scenario is predefined 
by setting the function setNumMapTasks(int) before the 
application is started. This number is closely influenced by 
the total size of the inputs, namely the total number of 
blocks of the input files after the split step.  
 In real time scenario, the number of mappers 
initially set may be not/over enough for the dynamism of 
the application. Adaptive mapper lies in the automatically 
increase or decrease the mappers based on the run time 
application.  

 
Figure 3. An adaptive map task is adaptively added 

 
Figure 3 demonstrates that an adaptive mapper is increased 
because of either overburden of the other mappers, or an 
unbalanced workload between mappers and reducers. The 
newly created mapper should have a one-to-all connection 
with the reducers to perform consistent functionality. 
Similar rule can be applied to adaptively decrease a mapper 
when the system is idle for a relatively long time. How to 
define the “relatively long time” will be shown in our 
followed sections. 
 
4.3 Adaptive reducers 
  

 Reducers are used to reduce a set of intermediate 
values which share a key to a smaller set of values. For 
runtime multiple attribute applications, each reducer 
outputs its results related to one attribute. For example, in 
our LIGO application, each reducer outputs one of the five 
basic properties in real time. However, there are sometimes 
when the output of mappers of a specific attribute (one 
property result) are too fast that the number of reducers are 
not enough. Fig. 4. demonstrates an adaptive reducer which 
is parallelly and adaptively added and performs its r+1 
output. If it outputs the same attribute with one or many 
reducers, a further merge stage is needed to combine the 
outputs together. 
 

 
Figure 4. A parallel reduce task is adaptively added 

 
 There is another situation that a new reducer 
should be adaptively and sequentially added whose input is 
from the output of some or all the existing reducers. This 
happens when a combined result is needed. For example, if 
we want to output the statistical seconds between the time 
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span that has the maximum number of triggers and 
minimum, we should combine the output of the property (1) 
and (2) and calculate the time span. In this way, a 
sequential reducer is adaptively added whose input is the 
output of the first two reducers. Figure 5 demonstrate this 
scenario with details. 

 

 
 

Figure 5. A sequential reduce task is adaptively 
added. The inputs of this reduce task are generated 

from the first and second reduce task 
 

Until now, we have introduced the adaptive splitters, 
mappers and reducers individually in different scenarios. A 
common problem left open is the way we quantify the 
adaptivity. We move on in our controlling principles in 4.4 
and 4.5 to answer the question. 
 

4.4 Feedback based control 
Feedback control is a basic method in control theory. 

It uses a monitor to get the current status of the system, and 
usually carry a negative signal to the input according to the 
variation of the monitor. This is called negative feedback, 
which gives the system stability and randomness. 
 But in practice of our adaptive mapreduce, we use 
a positive feedback control which is a heuristic scheduling 
mechanism to balance the workload of all the servers. In 
this positive feedback loop, we measured the utilization of 
each queue in all the three process: splitting, mapping and 
reducing. If the utilization of the 95% servers or above in 
splitting stage surpass 90%, we’ll add one server more to 
release the workload in this stage. Similarly, If the 
utilization of the 95% servers or above in splitting stage 
lower than 20%, we’ll reduce one server. All these rules 
are applied to map and reduce stage. 
   In theory, the feedback control will be a perfect method 
when the scheduling is sensitive enough and all the cost in 
increasing or decreasing the mapreducers is not considered. 
But in simulation and future practice, we will certainly set 
the stability margin in a proper value to get a excellent 
result within our view. 

4.5 Stochastic learning based control 
Stochastic control is a new dynamic control method, 

it’s based on the former behavior of the status in system. In 
our adaptive model, it’s a learning mode for balancing the 

workload, and the performance is always impressive when 
handling with stochastic arrivals and disturbance.  

Stochastic control rely on the statistical data. With the 
data we have collected, the learning mode gives prediction 
of the incoming data, including the incoming time, the 
amounts, and traffic spikes, then the network will adjust 
itself to moderate the mutation of incoming data. 

For example, in a real-time adaptive mapreduce 
application, the mutation of incoming data is smooth in 
most time of a day with only some random noise and 
disturbances, but in a certain time, just like the rush hour, 
the data will flood in the system with a tremendous speed.  

But a system with stochastic control will perform 
perfectly with precise prediction collected. It gets a balance 
of cost and capability in the smooth period, and add 
mapreducer in advance to moderate the flood in rush hour, 
in this way, stochastic control will perform well in a real-
time data coming system with regularity.  
 
5. Experimental Studies 
 

We first discuss our settings in doing the simulation, 
then we compare three methods, feedback control, 
stochastic learning with smooth filter and stochastic 
learning with kalman filter to justify our work. 
 

5.1 Experimental Settings 
We conduct our simulation using SimEvents, which is 

a software toolkits in Matlab. All the splitters, mappers and 
reducers are simulated as a queuing network with each 
node as a queue. We assume that each queue is running 
under different service capacity, thus the queuing length is 
varying during the whole process, which entails our needs 
for adaptive splitters, mappers and reducers. 

We compare feedback based control with stochastic 
learning based method. In stochastic learning based control 
method, we use kalman filter and smooth filter to predict 
the workload based on the previous stages. We compare 
the above three methods in our experiment to derive their 
comparative advantages and disadvantages. 

Our workloads are generated based on a Web trace 
from the 1998 Soccer World Cup site [26]. This trace is an 
average arrival during each minute over sixty-minute 
duration as shown in Fig. 6(a), Fig. 7(a) and Fig. 8(a). We 
select three typical workloads: small, moderate and heavy, 
to do the simulation. They are different from each other in 
that the average arrival rate per minute. 

We analyze the makespan, which is defined as the 
execution time of a batch of jobs. This value should be 
minimized in order to improve the throughput. 

The experimental results are shown from Fig. 6 to Fig. 
8. 

5.2 Experimental Results 
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Figure 6. Comparison under light workload. (a) is the characteristics of the light workload, (b) is the workload and 
prediction comparison between smooth filter and kalman filter, (c) is the makespan to execute the above application 
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Figure 7. Comparison under moderate workload. (a) is the characteristics of the moderate workload, (b) is the 
workload and prediction comparison between smooth filter and kalman filter, (c) is the makespan. 
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Figure 8. Comparison under heavy workload. (a) is the characteristics of the heavy workload, (b) is the workload 
and prediction comparison between smooth filter and kalman filter, (c) is the makespan . 

 
Based on the above experimental results, several 

conclusions could be reached. 
(1)Smooth filter prediction is not a good enough choice 
compared with kalman filter prediction. Though there are 
lots of prediction algorithm choices, we use kalman as our 
representative example. 
(2)Prediction accuracy is closely related with the makespan 
of a batch of jobs. A good prediction of workload is useful 
in arranging proper resources, which is much better than 
static resource provisioning. 
(3)Feedback control based method is not efficient at the 
times the workload is relatively low compared with smooth 
filter. That disadvantage could be changed into advantage 
when the workload is relatively high. That’s because the 
prediction error of the smooth is too much, which affects 
the makespan of the work. 
(4)With a high prediction accuracy, the stochastic learning 
based method is advantageous than other methods 
whenever the workload is small or large. 
(5)Adaptive mapreduce framework, or AMREF, shows 
that it is widely applicable in different workload scenarios, 
which justify our motivation to carry out this work. 
 

6. Conclusions and Future Work 
 

We firstly conclude our major contributions in this 
work and then suggest two possible directions to extend 
this work. 

6.1 Research conclusions 
In this paper, we have extended the mapreduce 

algorithm from a static scheme to a dynamic one using a 
series of adaptivities, adaptive splitter, adaptive mapper, 
and adaptive reducers. Our original technical contributions 
are summarized below : 
(1)Proposing the adaptive scheme. This adaptivity lie in 
the three key stages of mapreduce algorithm, which not 
only can be used to improve the utilization of the servers, 
but also reduce the makespans in our work. 
(2)Comparing the workload prediction method and 
their influence on makespan. We compare the three 
methods in view of the adaptivity to compare the relative 
advantages, which is useful in practice to decide which 
method to adopt in specific scenario. 
 



 

 - 6 - 

6.2 Our Future Work 
  

For further research, we suggest to extend the work in 
the following two directions: 
(1) Implement the AMREF algorithm in real 
mapreduce applications. We have simulated and proved 
the advantage of using AMREF in our work, which is 
perfectly matched and properly used in large scale cloud 
applications. We’ll carry on this work by implementing  
real adaptive scenarios for our algorithm in Hadoop and 
Hive applications. 
(2) Building useful tools to serve for larger virtualized 
cloud platform. The matlab simulation to analyze optimal 
number of virtual resources in our experiment should be 
packaged into software toolkits in order to make it 
available for larger virtualized cloud platforms. Our 
experimental software can be tailed and prototyped toward 
this end. 
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