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Abstract 
 
This paper presents an adjacent matrix based method for 

verifying and analyzing large scale workflows, which is used 
to find our three basic prosperities: sequential, parallel and 
simple mixing. Any workflow with the three characteristics 
can be grouped and deducted into smaller and even easier 
workflow. This reduction can also be used to figure out 
branches in complicated connected workflows. We exemplify 
our method using a real scientific workflow in our previous 
work. The analysis of reduced workflow can further facilitate 
the verification and validating process. 
 
Key words: Adjacent matrix, graph deduction, scientific 
workflow  

 
1. Introduction 
 

Cloud computing[1,2] is a buzzword in internet with its 
far-reaching vision to revolutionize the internet applications 
into large scale data centers with virtualization and 
visualization. In this way, the execution of applications, either 
operation system based or user based, are fully deployed and 
regulated in remote servers with experts and experienced 
works who are dedicated to ensure the service could satisfy 
different user’s demand. Workflow applications, which has 
long been proven to successfully organize and direct various 
applications, can be still useful for dynamic and complicated 
services. 

Scientific workflow[3,4,8] is emerging as a method to 
ensure large scale and complicated grid applications running 
smoothly, flexibly and reliably [5]. The functionalities of 
traditional grid workflow enabling technologies, such as job 
scheduling, dispatching, etc are thus enhanced. However, as 
the even more events and interoperations among multiple 
events, the organization of the resources, customers, and 
domain users are even more difficult.  

The performance of validating and verifying large scale 
workflows is still a difficult and error-prone work [7]. Since as 
the increase of the workflow scale, the uncertainties, 
unpredictabilities, and even more unregular connections make 
this work very difficult to follow. This problem becomes even 
worse in evolving and dynamic workflow with constrained to 
memory usage and network provision. 

To solve the above difficulties, there are many attempts to 
visualize the workflow structure and try to find some 
characteristics in common. Some researches focus on finding 
simple yet easy-to-figure-out ways [9], such as single 

connections between two large sub-workflows, to decompose 
a large one into several small ones. Along this line, many 
other researches [6] has proposed methods to cut and/or add 
branches between pairs of activities in order to find common 
structures.  

This paper proposes a novel and interesting algorithm to 
simplify the representation of a very complicated workflow. It 
uses Adjacent matrix to describe the relationship among 
activities and finds out the basic structures, such as sequential, 
parallel and simple mixing, of such workflows. Then we 
derive a small Adjacent matrix with more and better view of a 
complicated workflow. Besides that, our proposed can be used 
very easily to figure the branches in a workflow application, 
which thus can be used as an enhanced method to supplement 
the above related researches. 

The rest of the paper is organized as follows. In Section 2, 
We introduce some basic concepts and propositions. Section 3 
and 4 introduce that we decompose a large workflow Adjacent 
matrix into s small one and pick out its branches. The case 
study using a scientific workflow is implemented in section 5 
to exemplify our work. Section 6 concludes the paper. 

 
2. Preliminaries 

 
2.1 Basic Concepts 
 
All the abbreviations and symbols in the following definitions 
and based on figure 1. 

Begin 
Node

Grid Service 
Activity Node

Data Service 
Node

Grid Service 
Control Node

Transition Transition with 
Condition

Data 
Channel

……

……

……

……

……

……

……

……
=

=
……

……

……

……

……

……

……

……
=

……

……

……

……

(a) Visual Notations of Grid Workflow Elements

(b) Annotation Shortcuts for Grid Workflow Controls

End 
Node

SrvName Subflow
Node

SrvName SrvName

(Split) Grid Service 
Control Node (Join)

 
Figure 1. Visualization of grid workflow elements 

 
Definition 1 (Region): Two Srv&Ctrl nodes or Begin / End 
nodes Nhead and Ntail form a region in a grid workflow Γ, 
denoted by {Nhead, Ntail}, IFF: (1) ∃  Nhead N1 …Nm  
End where End is the End node of Γ, and Ni != Ntail (i=1,…,m); 
(2) ∃  Begin N1 …Nm  Ntail where Begin is the Begin 
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node of Γ, and Ni != Nhead (i=1,…,m). Nhead / Ntail are called 
Start Region / End Region respectively. 
 
Definition 2 (Maximized Region): Two Srv&Ctrl nodes or 
Begin / End nodes Nhead and Ntail form a maximized region in a 
grid workflow Γ, IFF ∀ Begin N1 …Nm  End where 
Begin, End are the Begin node and the End node of Γ, Nhead 
and Ntail are contained in the path and Nhead≠Ntail. Nhead / Ntail 
are called  Maximized Start Region / End Region respectively. 
 
Definition 3 (Decomposition): A maximized region {N1, N2} 
in Γ is said to be decomposable IFF: (1) there are more than 
one path N1 … N’ … N2 s.t. N1 can reach N2 in Γ and 
∃N’⊂{N1, N2}, s.t. {N1, N’} or {N’, N2} is a maximized region; 
or (2) there is only one path N1 … N’ … N2 s.t. N1 can 
reach N2 in Γ and for any N0  N1 and N2  N3, either {N0, 
N2}, {N1, N3} or {N0, N3} is a maximized region. Moreover, for 
nodes N’1, … N’m within region {N1, N2}, the set of 
maximized regions {{N’, N’’} | {N’, N’’}={N1, N’1} or {N’1, 
N’2} or … or{N’m, N2}} is said to be a total decomposition of 
{N1, N2} IFF all {N’, N’’}s are maximized regions and are not 
further decomposable. 
 
Definition 4 (Standard Region): A maximized region {Nstart, 
Nend} in Γ is a standard region IFF {Nstart, Nend} belongs to the 
total decomposition of Γ. Nstart / Nend are called  Standard Start 
Region / End Region respectively. 
 
2.2 Basic Propositions 
 
Proposition 1 (Sequential Combination): Two Srv&Ctrl 
nodes N1 and N2 form a Sequential Region  in a grid 
workflow Γ, denoted by Nstart – N1 - … - N2 - Nend, IFF: (1) 
Nstart / Nend are Standard Start / End Region ; (2) ∀  Ni in { N1, 
N2 }. OutDegree(Ni) = InDegree(Ni) = 1. 
 
This proposition makes sure all nodes within a standard region 
(exclude the Standard Start / End Region) can be sequentially 
ordered then generalized and replaced by a single node. Figure 
2 shows the detailed procedure of the simplification. 

 
Figure 2. Sequential Combination 

Prososition 2 (Parallel Combination): Two Srv&Ctrl nodes 
N1 and N2 form a Parallel Region  in a grid workflow Γ, 
denoted by Nstart – N1 / … / N2 - Nend, IFF: (1) Nstart / Nend 
are Standard Start / End Region ;(2) ∀  Ni  in  N1 –… - Ni  

- … - N2, there should one and only one node Ni ; (3) ∀  Ni 
in  N1 – Ni– N2. OutDegree(Ni) = InDegree(Ni) = 1. 
 
This proposition makes sure all nodes within a standard region 
(exclude the Standard Start / End Region) can be parallel then 
generalized and replaced by a single node. Figure 3 shows the 
detailed procedure. Notice should be made that in above 
constraint (2) in definition 2, Ni can be original Srv&Ctrl node 
or combination of nodes based on all these rules. 
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Figure 3. Parallel Combination 

 
Proposition 3 (Simple Mixing Combination): Two Srv&Ctrl 
nodes N1 and N2 form a Simple Mixing Region  in a grid 
workflow Γ, denoted by Nstart – (N1 / … / N2 ) - Nend, IFF: 
(1) Nstart / Nend are Standard Start / End Region ;(2) ∀  Ni  in  
N1 –… - Ni  - … - N2, there should one and only one 
node Ni ; (3) ∀  Ni in  N1 – Ni– N2. OutDegree(Ni) = 
InDegree(Ni) = 1. (4) One single connection exists between 
Nstart and Nend directly. 
 
This proposition make sure all nodes within a standard region 
(exclude the Standard Start / End Region) can be simply 
mixed and  then  replaced by a single node. Figure 4 shows the 
detailed procedure of the simplification. Notice that in above 
constraint (2) in definition 2, Ni can be original Srv&Ctrl node 
or combination of nodes based on all these rules. 

 
Figure 3. Simple Mixing Combination 
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3. Workflow Indexing, Laying and Deduction 
 
3.1 Workflow indexing and laying 

 
Topological Sort in directed acyclic graph is widely used 

nowadays to order all vertices to analyze the structure and 
components. Two typical commonly used methods are BFS 
(Breadth-First-Search) and DFS (Depth-First-Search). 
Neither of these methods is suitable for analyzing grid 
workflows since their adjacent matrices shows only one aspect 
of the intrinsic characteristic of the structure. BFS deals more 
with the horizontal information of one same layer while DFS 
concerns mainly on the hierarchical relationships among the 
nodes. In our proposed indexing and laying methods, we tend 
to combine the two analytical component together to better 
understand the inner information. Together with that, all these 
reorganizing and ordering are implemented within the scale of  
one region. Both advantages in the two traversing algorithms 
should be fully utilized and a better combination can give us 
more direct information of the graph.  

In order to standardize the structure of one graph, index of 
layers should be adopted firstly and properly calculated. Here 
is the algorithm we propose to index and lay one graph. 

 
Algorithm 1: graph indexing and laying 
Input: G = <N, A> , start   

//N = { n1 , n2 ,…, n|N|} A = {( ni , nj)} |i, j =1,…, |N| 

Output: Index of each node {1,2,…, |N| } 
Procedure: 
Queue Q ← null 

List N ← N 

Int index ← 0 
InQueue(start) 

while (NotNull (Q)) 
np = DeQueue (Q) 
np.index = index +1 
N  = N - np 

for all (node nt in N) do     // nt  parent node nk  son node 
if InEdge(nt, nk) && NotherPath(nt, nk)  
then InQueue(nk)  

end for 
for all (node nk in Q) // nd branch parent node 

for all (node nd in N) 
if InEdge(nd, nk)  
then  ns.index = index +1 

N  = N  - ns 

end for 
end for 

end while  
end 
 

 The algorithm shows the steps for re-indexing and laying 
for the original graph which is useful for us to better 
understand the horizontal and vertical relationships in the grid 
workflows. It paves the way for us to know the regions, 
maximized regions and standard regions easily and directly. 
Together with that, we could figure out the branch from its 
adjacent matrix introduced bellow and give further analysis of 
the ruled structure. 
 
3.2 Information from Adjacent Matrix 
 

After re-indexing and laying for all the nodes included in 
our grid workflows, the detailed structure and hierarchy can be 
easily derived.  We introduce adjacent matrix, AM = (mij) |N|
×|N| with respect to G , which is a |N|×|N| boolean matrix to 
show the relationship of all nodes. It is defined like this: iff (ni, 
nj) < A, mij = 1 or else mij = 0. 

From our proposed indexing and laying method, the 
adjacent matrix is more orderly arranged and reveals more 
information of the inner structure.  

 
Definition 4(Sub-diagonal matrix): A square matrix (SDM)k

×k is called one sub-diagonal matrix of square matrix (SM)n×n 
IFF: (1) ∃ t ∈{1,2,…,n-k}, ∀  i, j ∈  {1,2,…,k}, (SDM)(i,j) = 
(SM)(t+i,t+j). We denote the relationship as (SDM)k×k sdm∈ (SM)n

×n. 
 
Proposition 4 (Standard Region in adjacent matrix): Given 
the complete adjacent matrix (AM) |N|×|N|, (SDM)k×k  is called 
the standard region of AM  IFF: (1) SDM sdm∈  AM, (2)if 
(SDM)(i,j) = (SM)(t+i,t+j), t ∈ {1,2, … , |N|-k} and  i, j ∈  
{1,2,…,k}, matrix {(t+k, t+k+1),(t+k-1, |N|)} should be all 
zeros. Matrix{(a,b) ,(c,d)} denotes the rectangular matrix start 
from diagonal element (a,b) and end to diagonal element (c,d). 
 
Proposition 5 (Sequential Region in adjacent matrix): Flow 
Nstart – N1 – … – Nm – Nend form one sequential region iff the 
corresponding adjacent matrix  (SRM)(i,j) satisfy if j = i+1 
(SRM)(i,j) = 1 else (SRM)(i,j) = 0. i,j∈{0,1,…, m-1}.The related 
predefined indices are  Nstart.index = 0, Nt.index = t (t = 1,…, 
m)and Nend.index = m+1. These indices apply to Proposition 6 
and 7. 
 
Proposition 6 (Parallel Region in adjacent matrix): Flow 
Nstart – N1 / … / Nm – Nend form one parallel region iff the 
corresponding adjacent matrix  (PRM)(i,j) satisfy if i=0 and j∈  
{1,…, m } or j = m+1 and i∈  {1,…, m} (PRM)(i,j) = 1 else 
(PRM)(i,j) = 0.  
 
Proposition 7 (Simple Mixing Region in adjacent matrix): 
Flow Nstart – (N1 / … / Nm) – Nend form one simple mixing 
region iff the corresponding adjacent matrix  (SMRM)(i,j) 
satisfy if i=0 and j∈  {0,1,…,m+1} or j = m+1 and i∈  {0,1,…, 
m+1} (PRM)(i,j) = 1 else (SMRM)(i,j) = 0. 
 
Proposition 8 (Inter-Region Connected in adjacent matrix): 
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Suppose Sub-diagonal matrix of R (SDM)(i,j) = (SM)(t+i,t+j) and 
n is the dimension SDM , region R in grid workflow is called 
to be inter-connected iff  matrix{(t+n+1,t+1),(|N|,t+n-1)} is 
zero matrix. 
 
Proposition 9 (Intra-Region Connected in adjacent matrix): 
Suppose Sub-diagonal matrix of R1 (SDM)(i,j) = (SM)(t+i,t+j) , R2 
(SDM)(i,j) = (SM)(k+i,k+j) and n1 is the dimension SDM of  R1 and 
n2 is the dimension SDM of  R2. Two Regions R1 and R2 in 
grid workflow is called to be intra-connected iff  
matrix{(t+n+1,t+1),(|N|,t+n-1)} is zero matrix. 
 
3.3 Workflow Deduction 
  

In order to simplify complex grid workflows, especially 
those composed of large scale and frequently time variant 
structure, say, scientific workflows and so on, deduction is 
the primary concern we should take. It is impossible to 
make a unified deduction rule that apply to any structure. 
Instead, we fully utilized the three simple structure 
introduced in previous chapters to cluster similar and closed 
related workflow structure and merge them together to form 
a much smaller and more easily analyzable flow pattern. 

The primary work we have to do is renaming the new 
grouped element and record the history of deduction. Some 
symbols and denotations previously used are our choice to 
form a simple element in complex workflows.  The steps 
should be made recursively to form the most simple and 
undeductable workflow structure, it is called Base 
Workflow Structure (BWS). Mathematically, such BWS is 
isomorphic to numerous other structures that share the 
similar flow pattern. Similar analytical method can be 
adopted to implement those isomorphic workflows. 

Our algorithm firstly deduct all sequential regions and 
such deduction is recorded and replaced by one single 
sequential node, then all parallel regions are fully 
investigated to be deducted to similar single parallel node, 
notice should be made that parallel deduction utilize the 
nodes not only from original ones , but also those sequential 
or parallel nodes.  Simple mixing structure should be then 
deducted further. All these three steps are not necessary to 
be strictly ordered since their functionalities are almost the 
same. Several rounds of such deduction should be made to 
reach to the BWS, in which the general structure is 
unchangeable after another round of three types of 
deduction. The procedure is introduced in Algorithm 2. 

Algorithm 2: Workflow Deduction 
Input: G = <N, A> , start  

//N = { n1 , n2 ,…, n|N|} A = {( ni , nj)} |i, j =1,…, |N| 
Output: G = <N’, A’> , start  

//N’ = { n1 , n2 ,…, n|N’|} A = {( ni , nj)} |i, j =1,…, |N’| 
Procedure: 
Name ← null 
CurFlow ← G 
OldFlow ← G 
while (!Equal(OldFlow,CurFlow)) 

 OldFlow = CurFlow 
 CurFlow = SeqDeduction(CurFlow) 
 CurFlow = ParDeduction(CurFlow) 
 CurFlow = SimDeduction(CurFlow) 
end while  
 
Sub Algorithm 2: Sequential / Parallel / Simple Mixing 

Deduction 
Input: Initial Workflow Iniwf 
Output: Deducted Workflow Dedwf 

N1.name ← null 
Procedure: 
Switch(DeductionType) 

Case SeqDeduction: 
if(IsSeqStart(Nstart) && IsSeqEnd(Nend)) 
for all (node Ni in{ Nstart, Nend }) 

Ni.name += “ - ” + Ni.name 
DeleteEdge((Ni,*) and (*,Ni)) 

Case ParDeduction: 
if(IsParStart(Nstart) && IsParEnd(Nend)) 

for all (node Ni in{ Nstart, Nend }) 
Ni.name += “ / ” + Ni.name 
DeleteEdge((Ni,*) and (*,Ni)) 

Case SimDeduction:   
if(IsSimStart(Nstart) && IsSimEnd(Nend)) 

Ni.name += “(” 
DeleteEdge((Nstart, Nend)) 
for all (node Ni in{ Nstart, Nend }) 

Ni.name += “ - ” + Ni.name 
DeleteEdge((Ni,*) and (*,Ni)) 
Ni.name += “)”  

end 
 
4. Total Decomposition Based on Adjacent 

Matrix 
 

In [10], one algorithm, totaldecomposition gives out the 
way to decompose complex workflows by combining Aspect 
Oriented Programming(AOP) into region analysis, which 
successfully totally decompose workflows into its maximized 
regions{M1,M2, … ,Mn}. However, it is really complex to 
analyze the procedure and not very easily spot out regions, not 
to say standard regions or other structure information. The 
adjacent matrix, on the other hand, gives out very intuitive 
information of how to totally decompose the workflow such 
that it is even easier for us to do further verifications. 
Proposition 8 gives the characteristics of regions and parallel 
branches, which is our principles to do the decomposition. 
Here is the algorithm of adjacent matrix based total 
decomposition.  
Algorithm 3: Total decomposition based on adjacent matrix 
Input: (AM) |N|×|N| 

Output: { M1,M2,…,Mn} 

Procedure: 
ip ← 0 
region_num ← 0 
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count_num ← 0 
while(count_num < |N|) 

region_num++  
Mregion_num = GetMatrixMember(AM , count_num, 
count_num + SDM(ip)) 
count_num = count_num + SDM(AM , ip) 

end while 
end procedure 
 
Sub Algorithm 3: Sub-diagonal Matrix(SDM) 
Input: adjacent  matrix (AM) |N|×|N| 

Initial position ip 
Output: Matrix dimension n 
Procedure: 
Step ← 0 
index = FindMaxColumnIndex(AM[ip,index] equalto 1) 

 Step ← index 
while (Matrix {(index+1,ip),(|N|, index-1)} is not zero matrix) 
forall i in 0 to index 

index = FindMaxColumnIndex(Matrix {(index+i,ip),(|N|, index-1)}) 
Step ← index 

end while 
return Step 

end procedure 
 

In the algorithm above, Function SDM () is used to derive the 
dimension of the current standard region. They are those tasks 
in the pipelines which can be grouped together. That is the 
critical sub-function in order to tell whether the current task is 
the end of the current standard region. FindMaxColumnIndex 
(Matrix) is used to calculate the value which is not zero and in 
the same time with the maximized column. Since based on our 
proposition 8, no edge of standard region should connect to 
outer regions. That is to say one region should be completely 
self-contained in a cubic matrix. Based on the return 

dimension, we can easily recover the included members inside 
the region from function GetMatrixMember(AM , count_num, 
count_num + SDM(ip))，which is used to get those tasks 
from AM [count_num] to AM [count_num + SDM(ip)].  
5. Case Study 
 
5.1 Scientific Workflow — LIGO 
 

In order to verify the requirements that describes the 
properties of certain demands, one example of scientific 
workflows called gravitational waves detection is introduced 
here to show the efficiency of the proposed methods. 

Gravitational Waves (GW) are produced by the movement 
of energy in mass of dense material which fluctuate space-
time structure. The analysis of unknown mass movement and 
formulation in the universe is stemmed from its detection. But 
the difficulty is that the detection and analysis of them relates 
to multiple tasks and massive data. 

LIGO (Laser Interferometer Gravitational-Wave 
Observatory) includes three most sensitive GW detectors in 
the world which are L1, H1, H2 introduced in the following 
examples jointly built by Caltech and MIT. LIGO Scientific 
Collaboration (LSC) includes over 500 research scientists 
from over 50 institutes all over the world who are working 
hard on LIGO data analysis for GW detection. LIGO produces 
one terabyte of data per day and LIGO data analysis require 
large amount of CPU cycles. The LIGO data grid[8] provides 
such a computing infrastructure to integrate petabytes of data 
storage capability and thousands of CPUs and enable research 
collaboration cross multiple institutes. 

A typical example of a grid workflow for LIGO data 
analysis can be found in [10]. Figure 4 describes one 
workflow structure of GW search and its visualization. 
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TmpltBank_H2
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FData_H_2
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Standard Region 1

Standard Region 2  
Figure 4. Scientific workflow for LIGO data analysis 

Firstly three detectors sample their signal data (FData) 
respectively, we use orange hexagon to show this step since it 
is the preparation step rather than the formal step. Then 
Initializing data (InitData) is implemented to divide the 
sampled data into smaller blocks for further analysis. We can 
use some theoretical models to produce a series of (TmpltBank) 
that marches with the detected data, then the undesirable data 
can be easily excluded though the matching of TmpltBank and 
the blocks, this step is called Inspiral, Those data satisfy the 
requirement should be combined with other detectors to go 
through coincidental analysis (sInca and thInca) for noise 
discovery. Those signals that pass the coincidental analysis 
should be reput into the TmpltBank for optimizing the 
performance in later steps (TrigBank). Since all these work 

should be done when the interferometers are in stable status, it 
is necessary to veto those bad signals (InspVeto) based on the 
status of all interferometers when they are operating. In the 
practical gravitational waves analysis, the veto of bad signals 
are frequently happened do analyze the impulse wave 
disturbance from extra information channel of interferometer 
L1, in the end the final signal should again go though 
coincidental analysis (thIncall) to get the candidate signals of 
gravitational waves. By means of the procedure, LIGO users 
are able to derive the gravitational waves that exist potentially 
around the celestial objects and explain some related 
phenomenon, say,  the movement of them. 
In [8],Those blocks that perform specific tasks are grouped 
together to describe the detection pipeline. Those tasks are 
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implemented as individual programs and the pipeline itself is 
then implemented as a logical graph, called a directed acyclic 
graph or DAG, describing the workflow (the order that the 
programs must be called to perform the pipeline activities) 
which can then be submitted to a batch processing system on a 
computer cluster. Condor high throughput computing system 
[11] can then be used to manage the DAG and to control the 
execution of the programs. Though it is more or less satisfying 
those mid-scale pipelines perform, more work should be done 
to optimize the pipelines’ structure and to unburden the load 
of the analytical instruments when it comes to large-scale 
workflow structures. 
 
5.2 LIGO workflow deduction and analysis 
 

Based on our proposed indexing and laying methods 
introduced in section II, we input the LIGO workflow in figure 
4, our algorithm automatically indexes all the tasks in the 
pipelines. Here is the corresponding indices result. 

 
Table 1. Indexes and layers of scientific workflow 

Start 0 
InitData_H1H2 1 
TmpltBank_H2 2 
TmpltBank_H1 3 

TmpltBank_L1 4 
Inspiral_L1 5 
TrigBank_H1_2 6 
TrigBank_H1_1 7 
FData_H_1 8 
Inspiral_H1_2 9 
Inspiral_H1_1 10 
sInca_L1H1 11 
TrigBank_H2_3 12 
thInca_L1H1 13 
InspVeto 14 
TrigBank_H2_2 15 
TrigBank_H2_1 16 
FData_H_2 17 
thIncall_L1H2 18 
Inspiral_H2_2 19 
Inspiral_H2_1 20 
thIncall_L1H1 21 
ReturnRes 22 
End 23 

Together with that, our ordered graph can be even 
clearly laid to form much understandable structure based on 
the indexing and laying. It is shown in figure 6. 

 
Figure 5. Scientific workflow after indexing and Laying 

 
Figure 6. Scientific workflow after deduction

The understandability of the workflow structure is much more 
readably and the laying  of which is quite obvious. Its adjacent 
matrix is in table 2. 

It is quite clear that there are two regions ({0, 
5};{5,23}) in the workflow. The second region {5, 23}, if task 
(5, 13) in the yellow node can be eliminated, can be further 
decomposed into two other regions. The same rule applies to 
task (16, 22). From the above matrix, we can also very easily 
figure out those three types of basic regions: sequential region, 
parallel region and simple mixing region. 
 Suppose we decompose the second large region {5,23} 
into two smaller regions by eliminating the branch (5,13) that 
connect the two regions. Notice should be made that region 
{11, 23} is still really complex and more work should be done 

to decompose it further. Then we should rename the indices in 
region {11, 23} and together with that indexing and laying a 
second round of it. More basic regions can be generalized and 
even simpler workflow structure can be derived. 

After the implementation of our proposed algorithms to 
deduct the workflow into a simplified pattern, the final BWS 
can be shown in figure 6. 

Based on the deducted workflow, 11 tasks still remain in the 
final BWS, which could not go any further in our proposed 
deduction rules. We can easily spot out the general structure of 
the complex workflow and detail out more information from 
this figure. From this deducted flow, we could do local 
verification based on the aggregated tasks and extend such 
verification to even larger regions and finally to the whole 
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flow. Such verification logics are more understandable and 
easily operated.  Mostly importantly, it helps us to spot out 
those parallel branches that negatively affect the analysis of 

the whole workflow. The correspondent adjacent matrix is as 
follows.

Table 2. Indexes, layers, blocks and branches of our scientific workflow 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0   1                           

1     1 1 1                     

2           1                   

3           1                   

4           1                   

5             1 1       1               

6              1                   

7               1                  

8              1 1                  

9                1                 

10                1                 

11                 1 1               

12                   1              

13                    1 1            

14                       1          

15                        1        

16                          1   1  

17                        1 1      

18                                1

19                            1    

20                            1    

21                              1  

22                                 1

23                                  

 
Table 3. Indexes, layers, blocks and branches of our 
reduced scientific workflow 

 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12'

0'   1             

1'     1           

2'       1     1           

3'       1               

4'         1 1           

5'                     1

6'             1 1       

7'                   1    

8'                 1  1   

9'                   1    

10

'                    1  

 

11

'                     1

 

12

'                      

 

 
6. Conclusions and Future Work 

 
We firstly conclude our works in this paper and then 

suggest two possible directions to extend this work. 
 

6.1 Conclusions of this work 
 

The more structural the flow structure is, the better 
performance result is easily derived. Figure 7 gives the 
implementation procedure of the proposed method in this 
paper. 

 
Figure 7. Implementation of graph deduction 

 
6.2 Our Future Work 
  

For further research, we suggest to extend the work in 
the following two directions: 
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(1) Quantify the verifying time reduction. Since our 
proposed algorithms can be used to decompose a 
complicated workflow, the followed work should be 
justifying the usefulness by measuring verification time 
deduction. We’ll further our work as proposed in [10] to 
better illustrate the significance of this method. 
(2) Develop toolkits for workflow deduction. We are 
designing some toolkits with matlab to build a platform, 
which is used to automatically convert an input workflow, 
whether a BPMN or Pi calculus representation, into its 
adjacent matrix and then followed deduction could be 
carried out. This work can be better facilitate our analysis 
in the future. 
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