

 - 1 -

Adjacent Matrix based Deduction for Grid Workflow Applications*

Fan Zhang1, Junwei Cao2,3, Lianchen Liu1,3, Cheng Wu1,3
1National CIMS Engineering and Research Center, Department of Automation

Tsinghua University, Beijing 100084, P. R. China
2Research Institute of Information Technology, Tsinghua University, Beijing 100084, P. R. China

3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R. China
Corresponding Email: jcao@tsinghua.edu.cn

Abstract

This paper presents an adjacent matrix based method for

verifying and analyzing large scale workflows, which is used
to find our three basic prosperities: sequential, parallel and
simple mixing. Any workflow with the three characteristics
can be grouped and deducted into smaller and even easier
workflow. This reduction can also be used to figure out
branches in complicated connected workflows. We exemplify
our method using a real scientific workflow in our previous
work. The analysis of reduced workflow can further facilitate
the verification and validating process.

Key words: Adjacent matrix, graph deduction, scientific
workflow

1. Introduction

Cloud computing[1,2] is a buzzword in internet with its
far-reaching vision to revolutionize the internet applications
into large scale data centers with virtualization and
visualization. In this way, the execution of applications, either
operation system based or user based, are fully deployed and
regulated in remote servers with experts and experienced
works who are dedicated to ensure the service could satisfy
different user’s demand. Workflow applications, which has
long been proven to successfully organize and direct various
applications, can be still useful for dynamic and complicated
services.

Scientific workflow[3,4,8] is emerging as a method to
ensure large scale and complicated grid applications running
smoothly, flexibly and reliably [5]. The functionalities of
traditional grid workflow enabling technologies, such as job
scheduling, dispatching, etc are thus enhanced. However, as
the even more events and interoperations among multiple
events, the organization of the resources, customers, and
domain users are even more difficult.

The performance of validating and verifying large scale
workflows is still a difficult and error-prone work [7]. Since as
the increase of the workflow scale, the uncertainties,
unpredictabilities, and even more unregular connections make
this work very difficult to follow. This problem becomes even
worse in evolving and dynamic workflow with constrained to
memory usage and network provision.

To solve the above difficulties, there are many attempts to
visualize the workflow structure and try to find some
characteristics in common. Some researches focus on finding
simple yet easy-to-figure-out ways [9], such as single

connections between two large sub-workflows, to decompose
a large one into several small ones. Along this line, many
other researches [6] has proposed methods to cut and/or add
branches between pairs of activities in order to find common
structures.

This paper proposes a novel and interesting algorithm to
simplify the representation of a very complicated workflow. It
uses Adjacent matrix to describe the relationship among
activities and finds out the basic structures, such as sequential,
parallel and simple mixing, of such workflows. Then we
derive a small Adjacent matrix with more and better view of a
complicated workflow. Besides that, our proposed can be used
very easily to figure the branches in a workflow application,
which thus can be used as an enhanced method to supplement
the above related researches.

The rest of the paper is organized as follows. In Section 2,
We introduce some basic concepts and propositions. Section 3
and 4 introduce that we decompose a large workflow Adjacent
matrix into s small one and pick out its branches. The case
study using a scientific workflow is implemented in section 5
to exemplify our work. Section 6 concludes the paper.

2. Preliminaries

2.1 Basic Concepts

All the abbreviations and symbols in the following definitions
and based on figure 1.

Begin
Node

Grid Service
Activity Node

Data Service
Node

Grid Service
Control Node

Transition Transition with
Condition

Data
Channel

……

……

……

……

……

……

……

……
=

=
……

……

……

……

……

……

……

……
=

……

……

……

……

(a) Visual Notations of Grid Workflow Elements

(b) Annotation Shortcuts for Grid Workflow Controls

End
Node

SrvName Subflow
Node

SrvName SrvName

(Split) Grid Service
Control Node (Join)

Figure 1. Visualization of grid workflow elements

Definition 1 (Region): Two Srv&Ctrl nodes or Begin / End
nodes Nhead and Ntail form a region in a grid workflow Γ,
denoted by {Nhead, Ntail}, IFF: (1) ∃ Nhead N1 …Nm
End where End is the End node of Γ, and Ni != Ntail (i=1,…,m);
(2) ∃ Begin N1 …Nm Ntail where Begin is the Begin

 - 2 -

node of Γ, and Ni != Nhead (i=1,…,m). Nhead / Ntail are called
Start Region / End Region respectively.

Definition 2 (Maximized Region): Two Srv&Ctrl nodes or
Begin / End nodes Nhead and Ntail form a maximized region in a
grid workflow Γ, IFF ∀ Begin N1 …Nm End where
Begin, End are the Begin node and the End node of Γ, Nhead
and Ntail are contained in the path and Nhead≠Ntail. Nhead / Ntail
are called Maximized Start Region / End Region respectively.

Definition 3 (Decomposition): A maximized region {N1, N2}
in Γ is said to be decomposable IFF: (1) there are more than
one path N1 … N’ … N2 s.t. N1 can reach N2 in Γ and
∃N’⊂{N1, N2}, s.t. {N1, N’} or {N’, N2} is a maximized region;
or (2) there is only one path N1 … N’ … N2 s.t. N1 can
reach N2 in Γ and for any N0 N1 and N2 N3, either {N0,
N2}, {N1, N3} or {N0, N3} is a maximized region. Moreover, for
nodes N’1, … N’m within region {N1, N2}, the set of
maximized regions {{N’, N’’} | {N’, N’’}={N1, N’1} or {N’1,
N’2} or … or{N’m, N2}} is said to be a total decomposition of
{N1, N2} IFF all {N’, N’’}s are maximized regions and are not
further decomposable.

Definition 4 (Standard Region): A maximized region {Nstart,
Nend} in Γ is a standard region IFF {Nstart, Nend} belongs to the
total decomposition of Γ. Nstart / Nend are called Standard Start
Region / End Region respectively.

2.2 Basic Propositions

Proposition 1 (Sequential Combination): Two Srv&Ctrl
nodes N1 and N2 form a Sequential Region in a grid
workflow Γ, denoted by Nstart – N1 - … - N2 - Nend, IFF: (1)
Nstart / Nend are Standard Start / End Region ; (2) ∀ Ni in { N1,
N2 }. OutDegree(Ni) = InDegree(Ni) = 1.

This proposition makes sure all nodes within a standard region
(exclude the Standard Start / End Region) can be sequentially
ordered then generalized and replaced by a single node. Figure
2 shows the detailed procedure of the simplification.

Figure 2. Sequential Combination

Prososition 2 (Parallel Combination): Two Srv&Ctrl nodes
N1 and N2 form a Parallel Region in a grid workflow Γ,
denoted by Nstart – N1 / … / N2 - Nend, IFF: (1) Nstart / Nend
are Standard Start / End Region ;(2) ∀ Ni in N1 –… - Ni

- … - N2, there should one and only one node Ni ; (3) ∀ Ni
in N1 – Ni– N2. OutDegree(Ni) = InDegree(Ni) = 1.

This proposition makes sure all nodes within a standard region
(exclude the Standard Start / End Region) can be parallel then
generalized and replaced by a single node. Figure 3 shows the
detailed procedure. Notice should be made that in above
constraint (2) in definition 2, Ni can be original Srv&Ctrl node
or combination of nodes based on all these rules.

Srv
1

Srv
2

Srv
n+1

Srv
n+2

Srv
1 Srv 2 / Srv 3 / / Srv n+1 Srv

n+2

Figure 3. Parallel Combination

Proposition 3 (Simple Mixing Combination): Two Srv&Ctrl
nodes N1 and N2 form a Simple Mixing Region in a grid
workflow Γ, denoted by Nstart – (N1 / … / N2) - Nend, IFF:
(1) Nstart / Nend are Standard Start / End Region ;(2) ∀ Ni in
N1 –… - Ni - … - N2, there should one and only one
node Ni ; (3) ∀ Ni in N1 – Ni– N2. OutDegree(Ni) =
InDegree(Ni) = 1. (4) One single connection exists between
Nstart and Nend directly.

This proposition make sure all nodes within a standard region
(exclude the Standard Start / End Region) can be simply
mixed and then replaced by a single node. Figure 4 shows the
detailed procedure of the simplification. Notice that in above
constraint (2) in definition 2, Ni can be original Srv&Ctrl node
or combination of nodes based on all these rules.

Figure 3. Simple Mixing Combination

 - 3 -

3. Workflow Indexing, Laying and Deduction

3.1 Workflow indexing and laying

Topological Sort in directed acyclic graph is widely used

nowadays to order all vertices to analyze the structure and
components. Two typical commonly used methods are BFS
(Breadth-First-Search) and DFS (Depth-First-Search).
Neither of these methods is suitable for analyzing grid
workflows since their adjacent matrices shows only one aspect
of the intrinsic characteristic of the structure. BFS deals more
with the horizontal information of one same layer while DFS
concerns mainly on the hierarchical relationships among the
nodes. In our proposed indexing and laying methods, we tend
to combine the two analytical component together to better
understand the inner information. Together with that, all these
reorganizing and ordering are implemented within the scale of
one region. Both advantages in the two traversing algorithms
should be fully utilized and a better combination can give us
more direct information of the graph.

In order to standardize the structure of one graph, index of
layers should be adopted firstly and properly calculated. Here
is the algorithm we propose to index and lay one graph.

Algorithm 1: graph indexing and laying
Input: G = <N, A> , start

//N = { n1 , n2 ,…, n|N|} A = {(ni , nj)} |i, j =1,…, |N|

Output: Index of each node {1,2,…, |N| }
Procedure:
Queue Q ← null

List N ← N

Int index ← 0
InQueue(start)

while (NotNull (Q))
np = DeQueue (Q)
np.index = index +1
N = N - np

for all (node nt in N) do // nt parent node nk son node
if InEdge(nt, nk) && NotherPath(nt, nk)
then InQueue(nk)

end for
for all (node nk in Q) // nd branch parent node

for all (node nd in N)
if InEdge(nd, nk)
then ns.index = index +1

N = N - ns

end for
end for

end while
end

 The algorithm shows the steps for re-indexing and laying
for the original graph which is useful for us to better
understand the horizontal and vertical relationships in the grid
workflows. It paves the way for us to know the regions,
maximized regions and standard regions easily and directly.
Together with that, we could figure out the branch from its
adjacent matrix introduced bellow and give further analysis of
the ruled structure.

3.2 Information from Adjacent Matrix

After re-indexing and laying for all the nodes included in
our grid workflows, the detailed structure and hierarchy can be
easily derived. We introduce adjacent matrix, AM = (mij) |N|
×|N| with respect to G , which is a |N|×|N| boolean matrix to
show the relationship of all nodes. It is defined like this: iff (ni,
nj) < A, mij = 1 or else mij = 0.

From our proposed indexing and laying method, the
adjacent matrix is more orderly arranged and reveals more
information of the inner structure.

Definition 4(Sub-diagonal matrix): A square matrix (SDM)k

×k is called one sub-diagonal matrix of square matrix (SM)n×n
IFF: (1) ∃ t ∈{1,2,…,n-k}, ∀ i, j ∈ {1,2,…,k}, (SDM)(i,j) =
(SM)(t+i,t+j). We denote the relationship as (SDM)k×k sdm∈ (SM)n

×n.

Proposition 4 (Standard Region in adjacent matrix): Given
the complete adjacent matrix (AM) |N|×|N|, (SDM)k×k is called
the standard region of AM IFF: (1) SDM sdm∈ AM, (2)if
(SDM)(i,j) = (SM)(t+i,t+j), t ∈ {1,2, … , |N|-k} and i, j ∈
{1,2,…,k}, matrix {(t+k, t+k+1),(t+k-1, |N|)} should be all
zeros. Matrix{(a,b) ,(c,d)} denotes the rectangular matrix start
from diagonal element (a,b) and end to diagonal element (c,d).

Proposition 5 (Sequential Region in adjacent matrix): Flow
Nstart – N1 – … – Nm – Nend form one sequential region iff the
corresponding adjacent matrix (SRM)(i,j) satisfy if j = i+1
(SRM)(i,j) = 1 else (SRM)(i,j) = 0. i,j∈{0,1,…, m-1}.The related
predefined indices are Nstart.index = 0, Nt.index = t (t = 1,…,
m)and Nend.index = m+1. These indices apply to Proposition 6
and 7.

Proposition 6 (Parallel Region in adjacent matrix): Flow
Nstart – N1 / … / Nm – Nend form one parallel region iff the
corresponding adjacent matrix (PRM)(i,j) satisfy if i=0 and j∈
{1,…, m } or j = m+1 and i∈ {1,…, m} (PRM)(i,j) = 1 else
(PRM)(i,j) = 0.

Proposition 7 (Simple Mixing Region in adjacent matrix):
Flow Nstart – (N1 / … / Nm) – Nend form one simple mixing
region iff the corresponding adjacent matrix (SMRM)(i,j)
satisfy if i=0 and j∈ {0,1,…,m+1} or j = m+1 and i∈ {0,1,…,
m+1} (PRM)(i,j) = 1 else (SMRM)(i,j) = 0.

Proposition 8 (Inter-Region Connected in adjacent matrix):

 - 4 -

Suppose Sub-diagonal matrix of R (SDM)(i,j) = (SM)(t+i,t+j) and
n is the dimension SDM , region R in grid workflow is called
to be inter-connected iff matrix{(t+n+1,t+1),(|N|,t+n-1)} is
zero matrix.

Proposition 9 (Intra-Region Connected in adjacent matrix):
Suppose Sub-diagonal matrix of R1 (SDM)(i,j) = (SM)(t+i,t+j) , R2
(SDM)(i,j) = (SM)(k+i,k+j) and n1 is the dimension SDM of R1 and
n2 is the dimension SDM of R2. Two Regions R1 and R2 in
grid workflow is called to be intra-connected iff
matrix{(t+n+1,t+1),(|N|,t+n-1)} is zero matrix.

3.3 Workflow Deduction

In order to simplify complex grid workflows, especially
those composed of large scale and frequently time variant
structure, say, scientific workflows and so on, deduction is
the primary concern we should take. It is impossible to
make a unified deduction rule that apply to any structure.
Instead, we fully utilized the three simple structure
introduced in previous chapters to cluster similar and closed
related workflow structure and merge them together to form
a much smaller and more easily analyzable flow pattern.

The primary work we have to do is renaming the new
grouped element and record the history of deduction. Some
symbols and denotations previously used are our choice to
form a simple element in complex workflows. The steps
should be made recursively to form the most simple and
undeductable workflow structure, it is called Base
Workflow Structure (BWS). Mathematically, such BWS is
isomorphic to numerous other structures that share the
similar flow pattern. Similar analytical method can be
adopted to implement those isomorphic workflows.

Our algorithm firstly deduct all sequential regions and
such deduction is recorded and replaced by one single
sequential node, then all parallel regions are fully
investigated to be deducted to similar single parallel node,
notice should be made that parallel deduction utilize the
nodes not only from original ones , but also those sequential
or parallel nodes. Simple mixing structure should be then
deducted further. All these three steps are not necessary to
be strictly ordered since their functionalities are almost the
same. Several rounds of such deduction should be made to
reach to the BWS, in which the general structure is
unchangeable after another round of three types of
deduction. The procedure is introduced in Algorithm 2.

Algorithm 2: Workflow Deduction
Input: G = <N, A> , start

//N = { n1 , n2 ,…, n|N|} A = {(ni , nj)} |i, j =1,…, |N|
Output: G = <N’, A’> , start

//N’ = { n1 , n2 ,…, n|N’|} A = {(ni , nj)} |i, j =1,…, |N’|
Procedure:
Name ← null
CurFlow ← G
OldFlow ← G
while (!Equal(OldFlow,CurFlow))

 OldFlow = CurFlow
 CurFlow = SeqDeduction(CurFlow)
 CurFlow = ParDeduction(CurFlow)
 CurFlow = SimDeduction(CurFlow)
end while

Sub Algorithm 2: Sequential / Parallel / Simple Mixing

Deduction
Input: Initial Workflow Iniwf
Output: Deducted Workflow Dedwf

N1.name ← null
Procedure:
Switch(DeductionType)

Case SeqDeduction:
if(IsSeqStart(Nstart) && IsSeqEnd(Nend))
for all (node Ni in{ Nstart, Nend })

Ni.name += “ - ” + Ni.name
DeleteEdge((Ni,*) and (*,Ni))

Case ParDeduction:
if(IsParStart(Nstart) && IsParEnd(Nend))

for all (node Ni in{ Nstart, Nend })
Ni.name += “ / ” + Ni.name
DeleteEdge((Ni,*) and (*,Ni))

Case SimDeduction:
if(IsSimStart(Nstart) && IsSimEnd(Nend))

Ni.name += “(”
DeleteEdge((Nstart, Nend))
for all (node Ni in{ Nstart, Nend })

Ni.name += “ - ” + Ni.name
DeleteEdge((Ni,*) and (*,Ni))
Ni.name += “)”

end

4. Total Decomposition Based on Adjacent

Matrix

In [10], one algorithm, totaldecomposition gives out the
way to decompose complex workflows by combining Aspect
Oriented Programming(AOP) into region analysis, which
successfully totally decompose workflows into its maximized
regions{M1,M2, … ,Mn}. However, it is really complex to
analyze the procedure and not very easily spot out regions, not
to say standard regions or other structure information. The
adjacent matrix, on the other hand, gives out very intuitive
information of how to totally decompose the workflow such
that it is even easier for us to do further verifications.
Proposition 8 gives the characteristics of regions and parallel
branches, which is our principles to do the decomposition.
Here is the algorithm of adjacent matrix based total
decomposition.
Algorithm 3: Total decomposition based on adjacent matrix
Input: (AM) |N|×|N|

Output: { M1,M2,…,Mn}

Procedure:
ip ← 0
region_num ← 0

 - 5 -

count_num ← 0
while(count_num < |N|)

region_num++
Mregion_num = GetMatrixMember(AM , count_num,
count_num + SDM(ip))
count_num = count_num + SDM(AM , ip)

end while
end procedure

Sub Algorithm 3: Sub-diagonal Matrix(SDM)
Input: adjacent matrix (AM) |N|×|N|

Initial position ip
Output: Matrix dimension n
Procedure:
Step ← 0
index = FindMaxColumnIndex(AM[ip,index] equalto 1)

 Step ← index
while (Matrix {(index+1,ip),(|N|, index-1)} is not zero matrix)
forall i in 0 to index

index = FindMaxColumnIndex(Matrix {(index+i,ip),(|N|, index-1)})
Step ← index

end while
return Step

end procedure

In the algorithm above, Function SDM () is used to derive the
dimension of the current standard region. They are those tasks
in the pipelines which can be grouped together. That is the
critical sub-function in order to tell whether the current task is
the end of the current standard region. FindMaxColumnIndex
(Matrix) is used to calculate the value which is not zero and in
the same time with the maximized column. Since based on our
proposition 8, no edge of standard region should connect to
outer regions. That is to say one region should be completely
self-contained in a cubic matrix. Based on the return

dimension, we can easily recover the included members inside
the region from function GetMatrixMember(AM , count_num,
count_num + SDM(ip))，which is used to get those tasks
from AM [count_num] to AM [count_num + SDM(ip)].
5. Case Study

5.1 Scientific Workflow — LIGO

In order to verify the requirements that describes the
properties of certain demands, one example of scientific
workflows called gravitational waves detection is introduced
here to show the efficiency of the proposed methods.

Gravitational Waves (GW) are produced by the movement
of energy in mass of dense material which fluctuate space-
time structure. The analysis of unknown mass movement and
formulation in the universe is stemmed from its detection. But
the difficulty is that the detection and analysis of them relates
to multiple tasks and massive data.

LIGO (Laser Interferometer Gravitational-Wave
Observatory) includes three most sensitive GW detectors in
the world which are L1, H1, H2 introduced in the following
examples jointly built by Caltech and MIT. LIGO Scientific
Collaboration (LSC) includes over 500 research scientists
from over 50 institutes all over the world who are working
hard on LIGO data analysis for GW detection. LIGO produces
one terabyte of data per day and LIGO data analysis require
large amount of CPU cycles. The LIGO data grid[8] provides
such a computing infrastructure to integrate petabytes of data
storage capability and thousands of CPUs and enable research
collaboration cross multiple institutes.

A typical example of a grid workflow for LIGO data
analysis can be found in [10]. Figure 4 describes one
workflow structure of GW search and its visualization.

TmpltBank_H1

TmpltBank_H2

TmpltBank_L1

Inspiral_L1

TrigBank_H1_1

TrigBank_H1_2

Inspiral_H1_1

Inspiral_H1_2

sInca_L1H1

thInca_L1H1

TrigBank_H2_1

TrigBank_H2_2

Inspiral_H2_1

Inspiral_H2_2 thIncaII_L1H1

ReturnRes

FData_H_1

FData_H_2

TrigBank_H2_3 InspVeto thIncaII_L1H2

InitData_H1H2

Standard Region 1

Standard Region 2
Figure 4. Scientific workflow for LIGO data analysis

Firstly three detectors sample their signal data (FData)
respectively, we use orange hexagon to show this step since it
is the preparation step rather than the formal step. Then
Initializing data (InitData) is implemented to divide the
sampled data into smaller blocks for further analysis. We can
use some theoretical models to produce a series of (TmpltBank)
that marches with the detected data, then the undesirable data
can be easily excluded though the matching of TmpltBank and
the blocks, this step is called Inspiral, Those data satisfy the
requirement should be combined with other detectors to go
through coincidental analysis (sInca and thInca) for noise
discovery. Those signals that pass the coincidental analysis
should be reput into the TmpltBank for optimizing the
performance in later steps (TrigBank). Since all these work

should be done when the interferometers are in stable status, it
is necessary to veto those bad signals (InspVeto) based on the
status of all interferometers when they are operating. In the
practical gravitational waves analysis, the veto of bad signals
are frequently happened do analyze the impulse wave
disturbance from extra information channel of interferometer
L1, in the end the final signal should again go though
coincidental analysis (thIncall) to get the candidate signals of
gravitational waves. By means of the procedure, LIGO users
are able to derive the gravitational waves that exist potentially
around the celestial objects and explain some related
phenomenon, say, the movement of them.
In [8],Those blocks that perform specific tasks are grouped
together to describe the detection pipeline. Those tasks are

 - 6 -

implemented as individual programs and the pipeline itself is
then implemented as a logical graph, called a directed acyclic
graph or DAG, describing the workflow (the order that the
programs must be called to perform the pipeline activities)
which can then be submitted to a batch processing system on a
computer cluster. Condor high throughput computing system
[11] can then be used to manage the DAG and to control the
execution of the programs. Though it is more or less satisfying
those mid-scale pipelines perform, more work should be done
to optimize the pipelines’ structure and to unburden the load
of the analytical instruments when it comes to large-scale
workflow structures.

5.2 LIGO workflow deduction and analysis

Based on our proposed indexing and laying methods
introduced in section II, we input the LIGO workflow in figure
4, our algorithm automatically indexes all the tasks in the
pipelines. Here is the corresponding indices result.

Table 1. Indexes and layers of scientific workflow

Start 0
InitData_H1H2 1
TmpltBank_H2 2
TmpltBank_H1 3

TmpltBank_L1 4
Inspiral_L1 5
TrigBank_H1_2 6
TrigBank_H1_1 7
FData_H_1 8
Inspiral_H1_2 9
Inspiral_H1_1 10
sInca_L1H1 11
TrigBank_H2_3 12
thInca_L1H1 13
InspVeto 14
TrigBank_H2_2 15
TrigBank_H2_1 16
FData_H_2 17
thIncall_L1H2 18
Inspiral_H2_2 19
Inspiral_H2_1 20
thIncall_L1H1 21
ReturnRes 22
End 23

Together with that, our ordered graph can be even
clearly laid to form much understandable structure based on
the indexing and laying. It is shown in figure 6.

Figure 5. Scientific workflow after indexing and Laying

Figure 6. Scientific workflow after deduction

The understandability of the workflow structure is much more
readably and the laying of which is quite obvious. Its adjacent
matrix is in table 2.

It is quite clear that there are two regions ({0,
5};{5,23}) in the workflow. The second region {5, 23}, if task
(5, 13) in the yellow node can be eliminated, can be further
decomposed into two other regions. The same rule applies to
task (16, 22). From the above matrix, we can also very easily
figure out those three types of basic regions: sequential region,
parallel region and simple mixing region.
 Suppose we decompose the second large region {5,23}
into two smaller regions by eliminating the branch (5,13) that
connect the two regions. Notice should be made that region
{11, 23} is still really complex and more work should be done

to decompose it further. Then we should rename the indices in
region {11, 23} and together with that indexing and laying a
second round of it. More basic regions can be generalized and
even simpler workflow structure can be derived.

After the implementation of our proposed algorithms to
deduct the workflow into a simplified pattern, the final BWS
can be shown in figure 6.

Based on the deducted workflow, 11 tasks still remain in the
final BWS, which could not go any further in our proposed
deduction rules. We can easily spot out the general structure of
the complex workflow and detail out more information from
this figure. From this deducted flow, we could do local
verification based on the aggregated tasks and extend such
verification to even larger regions and finally to the whole

 - 7 -

flow. Such verification logics are more understandable and
easily operated. Mostly importantly, it helps us to spot out
those parallel branches that negatively affect the analysis of

the whole workflow. The correspondent adjacent matrix is as
follows.

Table 2. Indexes, layers, blocks and branches of our scientific workflow
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1

1 1 1 1

2 1

3 1

4 1

5 1 1 1

6 1

7 1

8 1 1

9 1

10 1

11 1 1

12 1

13 1 1

14 1

15 1

16 1 1

17 1 1

18 1

19 1

20 1

21 1

22 1

23

Table 3. Indexes, layers, blocks and branches of our
reduced scientific workflow

 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12'

0' 1

1' 1

2' 1 1

3' 1

4' 1 1

5' 1

6' 1 1

7' 1

8' 1 1

9' 1

10

' 1

11

' 1

12

'

6. Conclusions and Future Work

We firstly conclude our works in this paper and then

suggest two possible directions to extend this work.

6.1 Conclusions of this work

The more structural the flow structure is, the better
performance result is easily derived. Figure 7 gives the
implementation procedure of the proposed method in this
paper.

Figure 7. Implementation of graph deduction

6.2 Our Future Work

For further research, we suggest to extend the work in
the following two directions:

 - 8 -

(1) Quantify the verifying time reduction. Since our
proposed algorithms can be used to decompose a
complicated workflow, the followed work should be
justifying the usefulness by measuring verification time
deduction. We’ll further our work as proposed in [10] to
better illustrate the significance of this method.
(2) Develop toolkits for workflow deduction. We are
designing some toolkits with matlab to build a platform,
which is used to automatically convert an input workflow,
whether a BPMN or Pi calculus representation, into its
adjacent matrix and then followed deduction could be
carried out. This work can be better facilitate our analysis
in the future.

Acknowledgement

This work is supported by National Science Foundation

of China (grant No. 60803017) and Ministry of Science
and Technology of China under the national 863 high-tech
R&D program (grants No. 2008AA01Z118 and No.
2008BAH32B03).

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica and M. Zaharia, Above the Clouds: A Berkeley
View of Cloud Computing, Technical Report No.
UCB/EECS-2009-28, Feb. 10, 2009.

[2] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, D. Zagorodnov, The Eucalyptus
Open-Source Cloud-Computing System, in Proceedings
of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, Shanghai, China.

[3] J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, “GridFlow:
Workflow Management for Grid Computing”, in Proc.
3rd IEEE/ACM Int. Symp. on Cluster Computing and the
Grid, Tokyo, Japan, pp. 198-205, 2003.

[4] J. Yu and R. Buyya, “A Taxonomy of Workflow
Management Systems for Grid Computing”, J. Grid
Computing, Vol. 3, No. 3-4, pp. 171-200, 2005.

[5] K. Xu, Y. Wang and C. Wu, “Ensuring Secure and
Robust Grid Applications - From a Formal Method Point
of View”, Advances in Grid and Pervasive Computing,
LNCS Vol. 3947, Springer Verlag, pp. 537-546, 2006.

[6] K. Xu, Y. Wang and C. Wu, “Aspect Oriented Region
Analysis for Efficient Equipment Grid Application
Reasoning”, in Proc. 5th IEEE Int. Conf. on Grid and
Cooperative Computing, Changsha, China, pp. 28-31,
2006.

[7] E. M. Clarke, O. Grumberg and D. A. Peled, Model
Checking, MIT Press, 1999.

[8] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L.
Pearlman, K. Blackburn, P. Ehrens, A. Lazzarini, R.
Williams and S. Koranda, “GriPhyN and LIGO, Building
a Virtual Data Grid for Gravitational Wave Scientists”, in
Proc. 11th IEEE Int. Symp. on High Performance

Distributed Computing, Edinburgh, Scotland, pp. 225-
234, 2002.

[9] S. Wang and M. P. Armstrong, “A Quadtree Approach to
Domain Decomposition for Spatial Interpolation in Grid
Computing Environments”, Parallel Computing, Vol. 29,
No. 10, pp. 1481-1504, 2003.

[10] . K. Xu, J. Cao, L. Liu, and C. Wu. Proc. Performance
Optimization of Temporal Reasoning for Grid Workflows
Using Relaxed Region Analysis, in Proceedings of 22nd
IEEE Int. Conf. on Advanced Information Networking
and Applications Workshops, GinoWan, Okinawa, Japan,
187-194, 2008.

[11] D. Thain, T. Tannenbaum, and M. Livny, "Distributed
Computing in Practice: The Condor Experience"
Concurrency and Computation: Practice and Experience,
Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

