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Abstract—Load forecasting is a critical concern for the 

operation of regulated power systems and electricity markets. It 

can guarantee the availability of electricity supply, minimize 

both excess and insufficient utilization of generating capacity 

and therefore optimize energy prices. In this paper, a novel 

multi-layer forecasting neural network based on feature weight 

optimization is developed for general reliable short-term load 

forecasting. It utilizes historical load data combined with some 

influencing factors such as seasonal and daily patterns as well as 

social behavior and user habits. Specifically, the proposed 

network involves a set of convolutional features extraction, 

bidirectional gate recurrent unit (BiGRU) and automatic 

feature weight optimization strategy, which subtly picks the 

nonlinear relationships and complex dependencies to facilitate 

the efficient generation of the close-to-true values. Experimental 

results demonstrate that the network achieves competitive 

performance with significantly higher accuracy when compared 

to congeneric methods, which greatly indicates its potential in 

the load forecasting tasks of electricity resource management. 

Keywords—load forecasting, convolution, feature extraction, 

BiGRU, attention optimization 

I. INTRODUCTION  

Amidst the escalating intricacy and volatility within the 
electricity market, accurate and reliable load forecasting 
assumes paramount significance in guaranteeing a dependable 
and impregnable power supply. The ability to precisely 
anticipate electricity demand facilitates optimal resource 
allocation, strategic energy planning, and economically viable 
grid operation. Load forecasting provides great opportunities 
for implementing demand response initiatives, integrating 
renewable energy sources, and fortifying overall grid stability 
[1]. Consequently, the exploring endeavors pertaining to load 
forecasting algorithms strive to fashion robust and accurate 
models adept at navigating the dynamic character of energy 
consumption patterns and sundry influencing factors, 
encompassing weather conditions, economic indicators, and 
social dynamics [2]. Harnessing advanced load forecasting 
methodologies and data analytics technologies, the ultimate 
goal is to enhance the efficiency and reliability of power 
systems, curtail operational expenses, and further foster the 
sustainable energy management practices. 

The present methods for short-term power load forecasting 
encompass various approaches, spanning from that statistical 
techniques [3, 4], machine learning based methods [6-10], 

hybrid or ensemble approaches [11-13], to advanced 
algorithms [14, 15]. Their principal aim is to discern an 
optimal model by utilizing historical load and influencing data 
to facilitate rapid and precise forecasts of future load 
information across both single-step and multi-step scenarios. 

Statistical based load forecasting strive to create a direct or 
indirect nexus between the projected values and historical data. 
It involves a breadth of techniques including time series 
analysis [4], regression theory [16], load derivative strategy 
[17], similar day algorithm [18], weather-based analysis [19], 
load profiling [20], and exponential smoothing [21]. Time 
series forecasting focuses on analyzing and forecasting load 
demand based on historical time-stamped data. Popular time 
series models used in load forecasting include autoregressive 
integrated moving average and seasonal decomposition of 
time series [3]. Regression theory based analysis entails 
establishing a mathematical relationship between load 
demand and pertinent explanatory variables, such as historical 
load data, weather conditions, and socio-economic factors. 
Common regressions for power load forecasting include linear 
regression, multiple regression and polynomial regression. 
Load derivative based forecasting is based on the assumption 
that changes in load demand can be predicted based on the rate 
of change of previous load readings, which involves load 
growth models, load ramp models and load acceleration 
models [22]. Similar day method tends to identify historical 
days with similar load demand patterns to the forecasted day 
and use their load data as predictors, which usually involves 
similar day clustering, nearest neighbor and pattern matching. 
Weather-based technique analyzes the impact of weather 
conditions on electricity demand by analyzing past weather 
relationships and incorporating weather variables, such as 
temperature, humidity, and wind speed, as predictors in load 
forecasting models. On the other hand, load profiling strategy 
aims to segment load data into different customer-specific or 
region-specific groups based on their load patterns and then 
use them to forecast future load demand based on the 
historical load behavior of each group [23]. Besides, 
exponential smoothing, including simple, double, as well as 
triple exponential smoothing, is commonly used in load 
forecasting to predict the load data by employing weighted 
combinations. They are beneficial in capturing trends, 
seasonality, and other patterns in the load data, which makes 
them effective for general forecasting tasks. These mentioned 
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statistical methods can be integrated and tailored according to 
the distinctive attributes and demands of the assignment at 
hand. Sometimes, machine learning or advanced techniques 
are often employed in conjunction with these techniques to 
augment the precision and efficacy of the power load forecasts. 

Machine learning-based techniques for load forecasting 
are intended to utilize neural networks with multiple hidden 
layers to predict load demand accurately. They leverages the 
ability of deep learning models to automatically learn and 
extract complex patterns and relationships from historical load 
data. Common prominent models include recurrent neural 
networks (RNN), convolutional neural networks (CNN), long 
short-term memory (LSTM), gated recurrent unit (GRU), 
generative adversarial network (GAN), autoencoders and 
variational autoencoders (VAEs), attention-based networks, 
and diverse iterations of their different variant [6] and pure 
innovative architectures [10]. These learning-based networks 
have shown promising results in load forecasting tasks by 
effectively capturing complex patterns and dependencies in 
historical load data. They provide accurate predictions for 
short-term and long-term load demand. CNN seems to excel 
at capturing local patterns, while LSTM is better suited for 
handling long-term time dependencies. If designing different 
feature extracting and relationship capturing modules, or 
incorporating other processing layer in a network architecture, 
may be it can potentially enhance the performance of general 
load forecasting tasks and provide a unique experience. 

Hybrid or ensemble approaches in load forecasting mean 
the amalgamation of multiple forecasting techniques or 
models to improve the accuracy and reliability of load 
predictions. They amalgamate the strengths of different 
forecasting models and algorithms to overcome the limitations 
of individual methods when predicting electricity demand. 
Popular combinations mainly involve that weighted averaging 
[24], stacking ensemble [25], neural network ensemble [13], 
or hybrid model that both combining statistical and artificial 
intelligence forecasting methods [11]. This type of method 
poses the potential to achieve improved predictive accuracy, 
increased robustness and reduced overfitting when compared 
to using a single approach or model. 

Furthermore, the extensive utilization of deep learning 
technology has contributed to the emergence of advanced load 
forecasting algorithms [26]. These methods can capture 
complex temporal dependencies and non-linear relationships 
in the data. In realistic load forecasting task, the choice of 
forecasting method depends on the specific application, 
available data, computational resources, and desired accuracy. 
In this paper, we incorporate the strengths of convolution 
process and an attention based gate recurrent unit to provide a 
robust multi-layer forecasting network. It adeptly extracts the 
spatial and temporal features from the input data and 
effectively learns from bidirectional sequence information 
that connected with an integrated attention. The goal of this 
paper is to ensure the method excels in providing reliable and 
precise forecasts for diversiform power load data. 

II. THE MULTI-LAYER NETWORK AND DATABSE 

A. Problem Statement 

Given a set of input sequential power load data, which is 

denoted as Data_in={xnm | n=1,2,3. m=1,2,…,+∞}. The goal 

of this paper is to explore an appropriate model f (*) that can 

output the accurate predictions Data_out={O1, O2,…,Ot} of 

multi-step future events or outcomes for any input. The 

network is expected to facilely estimate the likelihood of 

specific future events, states or outcomes by training the 

historical and referenced input data to capture the relations, 

patterns, trends, and correspondences within the input data. 

This can allow for informed decision-making and proactive 

measures to be taken based on the anticipated outcomes. 

B. Overview of the Multi-Layer Network 

The proposed multi-layer network is mainly designed 
upon a simplified version of convolutional neural network 
layer, expansion, a bidirectional gate recurrent unit layer and 
an integrated multi-head attention layer. Fig. 1 demonstrates 
the framework of the multi-layer load forecasting network, 
which explicitly describes the workflow from input to the 
output. Specially, the input data is needed preprocessed before 
being fed into the network. In the forecasting network, the 
operation of one-dimensional convolution and expansion is 
applied to extract the spatial features of seasonal and daily 
patterns from the input multi-dimensional data. We utilize 
convolution kernels of varying sizes to capture feature 
relations across different scales, and apply the ReLU to 
nonlinearly process the convolution results. The obtained 
feature maps will be transferred into a BiGRU layer, which is 
responsible for acquiring context-based representations of 
sequences and generating feature representations at the 
sequence level. These feature representations will undergo 
weighting and integration within the attention layer to allocate 
distinct attention weights to various input positions. This 
enables the network to focus more on sequence fragments that 
exert significant influence on the multi-step prediction 
outcomes, thereby enhancing the network’s performance and 
generalization capabilities. Finally, a fully connected (FC) 
layer and ReLU function are constructed to transform the 
learned features and representations into the final output. 

C. Load Dataset and Data Preprocessing 

This paper uses the actual measurements of power load 
data from a company in Shanghai with resolution of 15 
minutes per point from two incoming lines to achieve the 
training and test of the proposed multi-layer network. 
According to the nonlinear characteristics of the company’s 
power consumption, we consider the influence characteristics 
of multiple inputs, including seasonal and daily patterns 
(working/holiday time), social behavior and user habits 
(on/off mode of incoming line) to perform the actual multi-
input and multi-out load forecasting tasks. 

In this work, data preprocessing of the load forecasting 
tasks mainly involves several key steps. Firstly, it typically 
includes data cleaning, where any missing or data is identified 
and addressed. The multiple linear regression strategy is 
applied to estimate and adjust missing and inconsistent values 
based on other sequential data features. Secondly, the data is 
normalized with min-max normalization to scale the input 
load data within a specific range to avoid bias towards certain 
variables. They are normalized by the maximum value of each 
feature to ensure they have a similar scale, which aids in the 
training process. Temporal aggregation and resampling of the 
data is necessary to align with the desired forecasting horizon. 
Furthermore, the load dataset is typically split into training, 
validation, as well as testing sets to evaluate the performance 
of the forecasting network. The preprocessing ensures that the 
data is suitably prepared for the neural network model to 
effectively learn and forecast the power load data. 



 
Fig. 1. Framework of the proposed multi-layer neural network for load forecasting, which depicts the process of the input load data to that forecasting output. 

D. Convolution and Expansion Operation 

The one-dimensional convolution operation is used to 
extract temporal features from time series data. The process 
involves sliding a one-dimensional convolutional filter over 
the input time series to capture local patterns at different 
temporal positions. It facilitates the model to identify and 
extract relevant features that are critical for load forecasting, 
such as daily or weekly patterns. 

Denote the input time series data as X of length L and the 
convolutional filter as F with length K. The convolution 
operation at position i can be expressed as: 

(X  *F )i =∑
k-1

 
k=0

Xi+k×Fk ,                     (1) 

Where (X *F)i represents the result of the convolution at 

position i, * is the convolution operation, Xi+k denotes the 
element in the input time series at position i+k, and Fk 
represents the k-th element of the filter. The result of the 
summation represents the output of the convolution operation 
at a particular position i, which captures the local relationship 
between elements of the input time series and the filter. The 
operation is central to the process of capturing relevant 
temporal patterns and features from time series data. After the 
convolution operation, an ReLU activation function will be 
applied to introduce non-linearity. The convolution operation 
and linear process are defined with (4) and (5), respectively, 

Mt =ReLU ( ∑
j

j=1
wt*xnm+bt) ,                     (2) 

Tl =ReLU (Cl-1wl+bl) ,                     (3) 

where Mt denotes the feature map subsequent to the intricate 
mapping process, j represents the index value of the filter, * 
indicates the convolution operation, and that xnm is the input 
element of the sequential load data, wt is the weight matrix of 
the convolution kernel, bt represents the bias vector. In 
equation (3), Cl is the output of the l-th layer, Wl is the 
connected weight matrix and bl is the bias. 

The convolution is followed by an expansion operation to 
increase the perceptual range of the model, which aims to 
capture more longer-term time dependencies and broader 
spatial features in the input data. The designed expansion can 
enhance the forecasting performance of the network since it 
allows the model to better understand complex time series 
patterns and features. 

E. Bidirectional Gate Recurrent Unit Layer 

Bidirectional gate recurrent unit incorporates the benefits 
of bidirectionality and gating mechanisms, which is designed 

to effectively process and model sequential data by capturing 
dependencies and patterns within the input sequence. The 
bidirectionality feature allows the structural unit to process 
the input sequence in both forward and backward directions, 
enabling it to effectively capture past and future context 
simultaneously. Moreover, the gating mechanisms can 
facilitate the network’s ability to selectively retain or discard 
information at each time step, thereby enhancing its capacity 
to handle long-range dependencies and mitigate the vanishing 
gradient problem. For an arbitrary input sequence load data 
X={x1m, x2m,…,xtm}, X⊆ Data_in. The forward and backward 
calculations of the gate recurrent unit layer can be expressed 
as the equation (7) and (8), respectively.     

 h⃗ t=GRU (h⃗ t-1, xt) ,                        (4) 

h⃗⃖t=GRU (h⃖⃗t-1, xt) ,                        (5) 

h⃗⃖tht=Wt • h⃗ t+ft • h⃗⃖t+bt ,                       (6)   

in which, h⃗ t  and h⃖⃗t represent the forward hidden and the 
backward hidden state at time t, respectively. Wt, ft and bt  
represent the corresponding weights and the bias term of the 
hidden layer at time t, respectively.   

F. Multi-Head Attention Layer 

In the proposed network, multi-head attention from [27] 
is improved into the attention layer to enable capturing and 
optimizing complex relationships and dependencies. Fig. 2 
describes the structural workflow of the multi-head attention 
layer on the input features values to generate the linear weight 
transformation and optimization. It usually contains an input, 
linear projections, attention heads, as well as concatenation 
and linear transformation. The input is a sequence of vectors 
extracted from the previous layer, which is then linearly 
projected into different subspaces to create queries, keys, and 
values for each attention head. The multi-head attention 
consists of multiple independent attention mechanisms, or 
“heads,” which perform the attention operation in parallel. 
The aim of the layer is to enable the multi-layer network to 
jointly attend to different parts of the input sequence in 
parallel, and facilitate a more comprehensive capture of a 
broader range of relationships and patterns within the data.  

In this paper, a scaled dot-product attention is applied and 
integrated in the multi-head attention structure. After the dot-
product, the scale processing is conducted to avoid excessive 
dot-product results entering the saturated area of SoftMax. 
Given an input sequence of vectors Y = [y1, y2,…,yn], Define 
Q to be the query matrix, which contains the queries derived 
from the input sequence, which denoted as the set of vectors 
representing what needs to be attended to. Define K to be the 



 
Fig. 2. The workflow of multi-head attention in the proposed neural network. 

key matrix, containing the keys derived from the input 
sequence, representing the source of information with which 
the queries are compared. Let V represent the value matrix, 
containing the values derived from the input sequence, 
representing the information that needs to be combined or 
attended to. The formulation of a single attention head in the 
attention layer of the multi-layer network can be described as: 

1) Linear projection. Calculate the query Q, key K, and 

value V matrices by linearly transforming Y using that 

Q=YWQ , K=YWK , V= YWv , where WQ, WK, and Wv  

are the learnable linear projection matrices. 
2) Scaled dot-product attention. For each query in Q, 

compute its attention scores with all keys in K, scaled 
by the square root of the dimension of the keys with 

 Attention (Q, K, V)=SoftMax(
QKT

√dk

)V ,    (7) 

where dk is the dimension of the keys. 

3) Multi-head attention. Repeat the process 1) and 2) for 

multiple attention heads in parallel. When obtaining 

the outputs from each head, concatenate them and 

apply another linear transformation to produce the 

final multi-head attention output. 
The designed multi-head attention layer can help achieve 

self-attention and linear weight optimization. Compared with 
a simple attention mechanism, it calculates the results of 
attention separately after multiple routing transformations of 
the input, and performs linear transformations again after 
concatenating all the results as the output. It supports parallel 
processing of different aspects of the input load data, which 
greatly enables the proposed network to capture diverse linear 
patterns and dependencies. 

G. Fully Connected Layer 

The FC layer receives input feature from the preceding 
layer, and each neuron in the layer is connected to every 
neuron in the previous layer. The layer applies a linear 
transformation to the input data followed by a non-linear 
activation function to capture complex patterns and 
relationships in the data. The output of a single neuron in a 
fully connected layer is calculated with the equation, 

𝜑out =ReLU( ∑
N

i=1
wi𝜇i+bT) ,                   (8) 

where 𝜑out is the output of the neuron, N is the number of 
input features, wi are the weights associated with each input 
feature, 𝜇i  are the input features, bT is the bias term. The 
connected FC layer finally integrates complex patterns in the 
input features through linear transformations and non-linear 
activation functions, which helps the network to capture 
intricate relationships and make accurate predictions. 

H. Model Training 

Fig. 3 depicts the training and test workflow of the muti-
layer network. The dataset is partitioned into a training set  

 
Fig. 3. The training and test workflow of the proposed forecasting network. 

and a test set according to a predetermined ratio. The training 
set is utilized for training the network component, while the 
test set is used to evaluate the effectiveness of forecasting 
results. During the training process, a backpropagation 
mechanism is employed to compare the forecasted results 
with the actual results, compute the loss function, and adjust 
the network parameters to minimize the loss. The training 
dataset is typically divided into small batches for training, 
with the data in each batch undergoing forward and backward 
propagation in the network for parameter updates. The 
process is iteratively repeated until the predetermined number 
of training epochs or a stopping condition is reached. 
Subsequently, the trained model can be directly employed to 
conduct the forecasting tasks and evaluations to assess the 
effectiveness of forecasting results.  

III. ANALYSIS OF EXPERIMENTAL RESULTS 

A. Experimental Design 

In order to verify the prediction accuracy of the proposed 
network, this paper conducts six different related networks 
with varying complexities for evaluation, including CNN, 
LSTM, GRU, LSTM-attention, BiGRU-attention, and Bi-
LSTM. We use the actual dataset to perform the experimental 
comparisons by conducting future multi-step prediction. 
Multi-step forecasts in this paper means 96-steps that the 
networks need to forecast all the values from the next point 
in time to 24 o'clock on the same day at one time. The metrics 
of mean absolute percentage error (MAPE), root mean square 
error (RMSE), mean absolute error (MAE), and R-squared 
(R2) are applied to evaluate the quality of the comparative 
networks. Lower MAPE, RMSE and MAE values indicate a 
higher accuracy and reliability of the prediction network. A 
higher R2 value implies a better fit between the predicted and 
actual values. The collaboration of these metrics can greatly 
elaborately describe the integral performance of a network. 

B. Subjective Evaluation 

Fig. 4 describes some sampling points of the load 
forecasting results from the comparative networks, which is 
plotted by overlaying the predicted power load output values 
from the model with the actual measured values. It indicates 
that the predicted values of the seven comparison networks 
have good overlap with the trend of the actual values. From 
the sampling results, the proposed network presents a 
prediction result closer to the actual value, which can be 
further verified in Fig. 5. It presents future 12 days perdition 
data, whose results accurately predict the occurrence of peak 
and off-peak periods, as well as the timing of turning points, 
enabling accurate predictions of when the system will reach 
its maximum and minimum output. From Fig. 4, the proposed 
model effectively identifies the turning points, indicating the 
moments when the load output transitions from increasing to 
decreasing or vice versa. This indicates that the network is 



 
Fig. 4. Representative plotted results of 96-steps load forecasting from all the comparative networks with actual measurements from a company in Shanghai.  

 
Fig. 5. Representative plotted results of 96-step load forecasting using the load data of consecutive days with the proposed multi-layer network.  

able to capture the underlying patterns and variations in the 
power load output accurately. The alignment between the 
curves suggests that the network’s predictions are in line with 
the actual power load production, thereby validating the 
effectiveness of the forecasting model. 

C. Objective Evaluation 

Table 1 illustrates the evaluated metrics of different 
forecasting networks. From the table, we can conclude that our 
network achieves obvious performance on the data of metrics. 
Specifically, there is no significant difference in the load 
forecasting performance between CNN, LSTM and GRU 
network. The proposed multi-layer network reduces 69.33% 
in MAPE , 76.90% in RMSE, 69.23% in MAE and gains a 
22.74% improvement in R2 on average when compared with 
that CNN prediction network. It reduces 67.61% on average 
in MAPE, 74.68% in RMSE, 63.73 % in MAE and gains a 

13.36% improvement  in R2 over LSTM network, and reduces 
66.67% on average in MAPE, 72.53% in RMSE, 59.86 % in 
MAE  and gains a 13.75% improvement  in R2 over GRU 
network, and it can reduce 56.60 % on average in MAPE, 
66.84% in RMSE, 42.44% in MAE and gains a 7.24% 
improvement in R2 over LSTM-Attention, reduces  51.06% 
on average in MAPE, 61.97% in that RMSE, 32.17 % in MAE 
and gains a 5.64% improvement in R2 over that BiLSTM-
Attention network, and reduces 47.73% on average in the 
metric of MAPE, 46.31% in RMSE,27.53 % in MAE and 
gains 4.97% improvement in R2 over BiGRU-Attention 
network. The significant lower MAPE, RMSE, MAE values 
and the higher R2 clearly establish the superior accuracy, 
precision, and reliability of the proposed multi-layer load 
forecasting network when compared to existing similar type 
of power load forecasting networks. 



TABLE I. THE EVALUATED METRICS OF DIFFERENT METHODS. 

Forecasting Method 
Average Value of Each Metric 

MAPE RMSE MAE R2 

CNN 0.075 47.881 21.392 0.809 

LSTM 0.071 43.695 18.146 0.876 

GRU 0.069 43.662 18.398 0.873 

LSTM-Attention  0.053 33.360 11.435 0.926 

BiLSTM-Attention 0.047 29.086 9.704 0.940 

BiGRU-Attention 0.044 20.605 9.082 0.946 

The proposed network 0.023 11.062 6.582 0.993 

IV. CONCLUSION 

In this paper, we propose a novel multi-layer network 

based on feature weight optimization for general short-term 

load forecasting tasks. The motivation behind the method is 

that a convolution and expansion operation is responsible for 

extracting spatial features from the multi-input load data, a 

bidirectional gate recurrent unit layer tends to capture long-

term temporal dependencies by learning and memorizing 

sequential context information progressively through 

multiple sequential steps, and an attention is employed to 

weight and integrate the outputs of the two layers to pursue 

enhanced forecasting accuracy. In comparison to some 

comparative forecasting models, the proposed network yields 

more effective performance in terms of improved accuracy 

and robustness in power load forecasts. The results indicate 

the great potential of the network on forecasting various 

challenging power load data. 
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