In Proceedings of 19" IEEE International Performance, Computing, and Communications Conference (IPCCC 2000),

Phoenix, USA, February 2000, pp. 485-492.

Performance M odeling of Parallel and Distributed Computing Using PACE

Junwei Cao’ Darren J. Kerbyson’

Efstathios Papaefstathiou’

Graham R. Nudd"

"Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
"Microsoft Research Limited, Cambridge, CB2 4NH, UK

{junwel, djke, grn} @dcs.warwick.ac.uk

Abstract

There is a wide range of performance models being
developed for the performance evaluation of paralel and
distributed systems. A performance modelling approach
described in this paper is based on a layered framework of
the PACE methodology. With an initid implementation
system, the model described by a performance
specification language, CHIPSS, can provide a capability
for rapid calculation of relevant performance information
without sacrificing accuracy of predictions. An example
of the performance evaluaion of an ASCI kernd
application, Sweep3D, is used to illustrate the approach.
The validation results on different parallel and distributed
architectures with different problem sizes show a
reasonable accuracy (approximately 12% error at most)
can be obtained, allows cross-platform comparisons to be
easly undertaken, and has a rapid evaluation time
(typically less than 2s).

1. Introduction

Performance evaluation is an active area of interest
especially within the paralle and digributed systems
community where the principle aim is to demonstrate
substantially increased performance over traditiond
sequential systems.

Computational GRIDs, composed of distributed and
often heterogeneous computing resources, are becoming
the platform-of-choice for many performance-challenged
applications [3]. Proof-of-concept implementations have
demonsgtrated that both GRIDs and clustered environments
have the potentia to provide great performance benefitsto
distributed applications. Thus, a the present time,
performance analysis, evaluation and scheduling are
essential in order for applications to achieve high
performance in GRID environments.

The techniques and tools that are being devel oped for
the performance evaluation of parald and distributed

efp@microsoft.com

computing systems are manifold, each having their own
motivation and methodology. The main research projects
currently in progress in thisareainclude:

* POEMS [2]. The am of this work is to create a
problem-solving environment for end-to-end
performance modeling of complex parale and
distributed systems. This spans application software,
run-time and operating system software, and
hardware architecture. The project supports
evaluation of component functionality through the
use of anayticd models and discrete-event
simulation at multiple levels of detail. The analytical
models include deterministic task graph anaysis,
and LogP, LoPC models.

» AppLeS [10]. This is an application-level scheduler
using expected performance as an aid. Performance
predictions are generated from structural models,
consisting of components that represent the
performance activities of the application.

* CHAOS[12]. A part of thiswork is concerned with
the performance prediction of large-scale data
intensive applications on large-scale parald
machines. It includes a simulation-based framework
to predict the performance of these applications on
existing and future paralel machines.

» Osculant [13]. Thisis a class of bottom-up resource
scheduler inherently suitable for heterogeneous
information processing systems consisting of an
arbitrary mix of processors, operating systems,
application programs, and network topol ogies.

 WARMSones [1]. This work aims to provide a
scheduler implementation toolkit, alowing
researchers to implement their agorithms in
isolation from dependencies on particular scheduling
support system.

The motivation to develop a Performance Analysis
and Characterization Environment (PACE) in the work
presented here is to provide quantitative data concerning

the performance of sophisticated applications running on
high performance systems [7]. The framework of PACE is
a methodology based on a layered approach that separates
out the software and hardware system components
through the use of a parallelisation template. This is a
modular approach that leads to readily reusable models,
which can be interchanged for experimental analysis.

Each of the modules in PACE can be described at
multiple levels of detail in a similar way to POEMS, thus
providing a range of result accuracies but at varying costs
in terms of prediction evaluation time. PACE is amed to
be used for pre-implementation analysis, such as design or
code porting activities as wel as for on-the-fly use in
scheduling systemsin similar manner to that of AppLeS.

The core component of PACE is a performance
specification language, CHIPS (Characterisation
Ingrumentation for Performance Prediction of Parallel
Systems) [8]. CHIPSS provides a syntax that alows the
description of the performance aspects of an application,
and its paralldisation, to be expressed. This includes
control flow information, resource usage information (e.g.
number of operations), communication structures and
mapping information for aparallel or distributed system.

In the work presented in this paper, the use of the
PACE system is described through an example application
kernel — Sweep3D [6]. Sweep3D is a part of the ASCI
application suite, which has been used to evaluate
advanced paralld architectures at Los Alamos Nationd
Laboratories. The capabilities for performance evaluation
within PACE are illugrated through the cross-platform
use of Sweep3D on both an SGI Origin2000 (a shared
memory system), and a cluster of SunUItral workstations.

Therest of the paper is organised as follows: Section
2 describes the performance modelling approach based on
the PACE conceptual framework. Section 3 gives an
overview of the Sweep3D application and how it is
described within CHIPS performance specification
language. Section 4 illustrates the performance predictions
that can be produced by PACE on the two systems
considered. Preliminary conclusions are discussed in
Section 5.

2. PACE Performance M odelling Approach

The main concepts behind PACE include a layered
framework, and the use of associative objects as a basis
for representing system components. An initid
implementation of PACE supports performance modelling
of parale and distributed applications from object
definition, through to model creation, and result
generation. These factors are described further below.

2.1. Layered Framework

Many existing techniques, particularly for the
analysis of serial machines, use Software Performance
Engineering (SPE) methodologies [11], to provide a
representation of the whole system in terms of two
modular components, namely a software execution model
and a system model. However, for high performance
computing systems, which involve concurrency and
paralelism, the model must be enhanced. The layered
framework is an extension of SPE for the characterisation
of paralld and didributed systems. It supports the
development of three types of models: software model,
paralelisation modd and system (hardware) modd. It
allows the separation of the software and hardware model
by the addition of the intermediate parallelisation modd.

The framework and layers can be used to represent
entire systems, including: the application, paralleisation
and hardware aspects, asillustrated in Figure 1.

(Application Domain)
| Application Layer |
]

L | ¢Subtask Laye: |)

s N

| Paralld TemplateLayer |

& J

] 1

s N

| Hardware Layer |

. J

Figure 1. The Layered Framework

The functions of the layers are:

» Application Layer — describes the application in
terms of a sequence of paralle kernels or subtasks. It
acts as the entry point to the performance study, and
includes an interface that can be used to modify
parameters of a performance study.

» Application Subtask Layer — describes the sequential
part of every subtask within an application that can
be executed in parallel.

» Parallel Template Layer — describes the parallel
characteristics of subtasks in terms of expected
computation-communication interactions between
processors.

» Hardware Layer — collects system specification
parameters, micro-benchmark results, datistical
models, anayticl models, and heurigics to
characterise the communication and computation
abilities of a particular system.

According to the layered framework, a performance

model is built up from a number of separate objects. Each
object is of one of the following types: application,
subtask, parald template, and hardware. A key feature of
the object organization is the independent representation
of computation, paraléisation, and hardware. This is
possibl e due to strict object interaction rules.

All objects have a dmilar dsructure, and a
hierarchical set of objects, representing the layers of the
framework, is built up into the complete performance
model. An example of a complete performance modd,
represented by a Hierarchical Layered Framework
Diagram (HLFD), isshown in Figure 7.

2.2. Object Definition

Each software object (application, subtask, or paralle
template) is comprised of an internal structure, options,
and an interface that can be used by other objects to
modify its behaviour. A schematic representation of a
software object is shown in Figure 2.

4 Type |Identifier\/{ Object 1 (lower) |

Include W [Object 2 (lower) |
Externa Var. Def. [Object 3 (higher) |
]
]

A

Link » Object 1 (lower)
Options (" Object 2 (lower)

K Procedures /

Figure 2. Software Object Structure

Each hardware object is subdivided into many
smaller component hardware models, each describing the
behaviour of individual parts of the hardware system. An
example is shown in Figure 3 illugrating the main
subdivision currently considered involving a distinction
between computation, communication, memory and 1/0O
models.

Hardware Object
(cPu [Cde] [(fic | [t] [] |

[Memory [Cache 1] [Cachel2] [Wiain] |

[Network| Sockets | [MPI | [PVM]]

Figure 3. Hardware Object Structure
2.3. Modd Creation

The creation of a software object in PACE system is

achieved through the Application Characterization Tool
(ACT). ACT aids the conversion of sequential or parallel
source code into the CHIPSS language via the Stanford
Intermediate Format (SUIF) [4]. ACT performs a static
analysis of the code to produce the control flow of the
application, operation counts in terms of high-level
language operations [9], and aso the communication
structure. This processisillustrated in Figure 4.

Source
Code I

| Application

AN .

SUIE C L___laver ___!
Front End T i'pa' arallelisation !

Laver |

Figure 4. Model Creation Process with ACT

In PACE a Hardware Modd Configuration Language
(HMCL) alows users to create new hardware objects by
specifying system-dependent parameters. On evaluation,
the relevant sets of parameters are used, and supplied to
the evaluation methods for each of the component models.
An example HMCL fragment is illustrated later in Figure
9E.

2.4. Mapping Relations

There are strict mapping relations between source
code of the application and its performance model. Figure
5 illugrates the way in which independent objects are
abstracted directly from the source code and built up into
a complete performance model which can be used to
produce performance prediction results.

Application Modd Scripts
Source Code
Paralld
Abstracted Template -
Paralld _J\ 8)
Part ‘|/ =
! o)
- - @)
) | Sibtask | 2
\ 3
I
‘I/ _l/ 8

Figure 5. Mapping Relations

The mapping relaions are controlled by the CHIP3S
language compiler and the PACE evauation engine,
which will be described further in the next section through
the use of the example application — Sweep3D.

3. Sweep3D: An Example Application

Here we illustrate the PACE modelling capabilities
for performance prediction of Sweep3D - a complex
benchmark for evaluating wavefront application
techniques on high performance parallel and distributed
architectures [6]. This benchmark is also being analysed
by other performance prediction approaches including
POEMS. This section contains a brief overview and the
model description of this application. In Section 4 the
mode is validated with results on two high performance
systems.

3.1. Overview of Sweep3D

The benchmark code Sweep3D represents the heart
of a rea Accderated Strategic Computing Initiative
(ASCI) application. It solves a 1-group time-independent
discrete ordinates (Sn) 3D cartesian (XYZ) geometry
neutron transport problem. The XYZ geometry is
represented by a 3D rectangular grid of cells indexed as
IJK. The angular dependence is handled by discrete angles
with a spherical harmonics treatment for the scattering
source. The solution involves two main seps:

* the streaming operator is solved by sweeps for each
angle, and
* the scattering operator is solved iteratively.

A sweep (Sn) proceeds as follows. For one of eight
given angles, each grid cell has 4 equations with 7
unknowns (6 faces plus 1 centrd); boundary conditions
complete the system of equations. The solution is by a
direct ordered solve known as a sweep from one corner of
the data cube to the opposite corner. Three known inflows
allow the cell centre to be solved producing three outflows.
Each cdl's solution then provides inflows to 3 adjoining
cells (1 in each of thel, J, & K directions). This represents
a wavefront evaluation in all 3 grid directions. For XYZ
geometries, each octant of angles has a different sweep
direction through the mesh, but all anglesin a given octant
sweep the same way.

Sweep3D exploits parallelism through the wavefront
process. The data cube undergoes a decomposition so that
a set of processors, indexed in a 2D array, hold part of the
datain the | and Jdimensions, and al of the data in the K
dimension. The sweep processing consists of pipelining
the data flow from each cube vertex in turn to its opposite

vertex. It is possible for different sweeps to be in
operation at the same time but on different processors.

Figure 6. Data Decomposition of
the Sweep3D Cube

For example, Figure 6 depicts a wavefront (shaded in
Grey) that originated from the unseen vertex in the cube,
and is about to finish at vertex A. At the same time, a
further wavefront is starting at vertex B and will finish at
vertex C. Note that the example shows the use of a 5x5
grid of processors, and in this case each processor holds a
total of 2x2x10 data el ements (data set of 10x10x10).

3.2. Mode Description

We define the application object of the performance
model as sweep3d, and divide each iteration of the
application into four subtasks according to their different
functions and different pardlelisations. The object
hierarchy is shown in Figure 7, each object is a separate
rectangle and is labelled with the object name.

(o ~
Application

ubtask | source | [sweep | | fixed | [flux_er
Object

N ~/
F N
Parallel

Template| async | |pipeling| | 9lobal | | global
ObjeCt sum max
- \ '\ /‘ /)
f NN <
Hardware —

Object SgiOrigin2000

b J

Figure 7. Sweep3D Object Hierarchy
(HLFD Diagram)

The functions of each object are:

» sweep3d —the entry of the whole performance mode.

It initialises all parameters used in the model and
cals the subtasks iteratively according to the
convergence control parameter (epsi) as input by the
user. Figure 8 describes different parts of the
sweep3d object clearly in CHIPSS scripts. The
sections correspond to those shown schematically in
Figure 2.

appl i cation
i ncl ude
i ncl ude
i ncl ude

'sweep3d {

sour ce;
sweep;
fixed;

include flux_err

Nproc = npe_i * npe_j
sour ce:
it =it,

option {
hrduse = "Sgi Ori gi n2000"

for(i = 1;i <= -epsi;i =i + 1) {
call source
call sweep;
call fixed;
call flux_err

}
}

Figure 8. Sweep3D Application Object

source — subtask for getting the source moments,
which is actually a sequential process.

sweep — subtask for sweeper, which is the core
component of the application.

fixed — subtask to compute the total flux fixup
number during each iteration.

flux_err — subtask to compute the maximum of
relative flux error.

async —a sequential “parallel” template.

pipeine — paralld template specially made for the

sweeper function.

» globalsum — paralld template which represents the
parallel pattern for getting the sum value of a given
parameter from all the processors.

» globalmax — pardlel template which represents the
parallel pattern for getting the maximum value of a
given parameter from all the processors.

e iOrigin2000 — contains al the hardware
configurations for SGI Origin2000, which is
comprised of smaller component hardware models
already in existence within PACE. This can be
interchanged with a hardware model of a different
system, e.g. acluster of SUN workstations.

The example mode objects and their correspondence
with the C source code is shown in Figure 9. Figure 9A is
the C source code of showing part of the main function
sweep, whose serial parts have been abstracted into a
number of sub-functions in bold font. Figure 9C shows
how the same source code structure is used to provide the
paralel template description. Figure 9B is an example
sub-function source code, which can be converted
automatically to the control flow procedure in the subtask
object as shown in Figure 9D.

Some of the main statements used in the CHIF?S
language to represent the performance aspects of the
source code are as follows:

» compute — a processing part of the application, its
argument is a resource usage vector. This vector is
evaluated through the hardware object.

* loop — the body of which includes a list of the
control flow statementsthat will be repeated.

« call - used to execute another procedure.

e case — the body of which includes a list of
expressions and corresponding control flow
statements which might be evaluated.

» step — corresponds to the use of one of the hardware
resources of the system. Its argument is used to
configure the device specified in the current step.
Thisisused in paralld templates only.

» confdev — configures a device. The meaning of its
arguments depend on the device. For example, the
device mpirecv (MPl recelve communication
operation) accepts three arguments. source processor
ID, destination processor 1D and message size.

It can be seen from the part of the Sweep3D model
shown in Fgure 9 that there is a lot of information
extracted from the source code that is used for the
performance prediction. The accuracy of the resulting
mode is of importance, and in Section 4 below, detailed
results are shown to validate the modd with
measurements on the two systems considered.

Sweep3D Source Code

sveep init();
fo(iq=1 iq<=8 iqgH) {
octant();
get_direct();
for(@ =1, no <<mo; no+) {
pipelineinit();
for(kk =1 kk <= Kb, kk+) {
kk loop init();

if (ewrcv!=0)

info=MA_Recv(Piib, nib,
MA_DQBE tids[ewrcv],
ewtag, MA_COMWRD

&tatus); ----------------
else
else ewrov();

comp_face();
/if (nsrev\=0)
info=MA\Rcv(Fhijb, nib,

MI_DRBE tids[ns rev,
s tag, NA,_GOMVERD

i &tatus);

| ese)

4 esensrov);

/

\

!/ fedTa0 1
! Ioidvork() { ‘
G d copu face() {

#pragna capp Loop nmi
for(M =21 nh <= nm; n+) {
m=n + o
#poragna capp Loop nk
fa(lk=1 Ik <=nk lk+) {
k =kO0 + sign(l k-1, k2);
#pragna. capp Loop jt

o(j=Lj<jt; j+){
Fed i+ J[j1[M[1] =
L Fecdi A3 [j][K[Y +
Profiling J vf rj*Rhii b{j] [K] [ni];
}

}
}
}

#pragna capp If do dsa

B

Sweep3D Performance Model Scripts
partnp pi pelire { [config Sy Qi g n2000 {
o e init { har dvere {
------- -- .si.e;:;.cm{mm/Tx_sveep_irit;} }
for(phase = 1; phase <= 8, phase = phase + 1){ pvm{
step cpu { cofdev T octat; ¥
step cpu { confdev Tx get_direct; } }
fo(i =L i<myi=i+1)({ i {
step cpu { confdev Tx pipelireinit; } [| ...
fo(j =1 <Kyj=j+1){ [D CWMA = 512,
step cpu { confdev Tx Kk loopinit; } [D GWB = 33. 28,
fo(x=21% x<=npei; x=x+1) D GWMC = 0. 02260,
fo(y=L y<nej; y=y+1){ D @D = -5, 9776,
nyid=Gt nyid(x y); [D GMME = 0. 10690,
ewrcv = @t_ewrcv(phese X, y); - M TREO/A=512
if(ewrcv1=0) [D TR/ B = 22. 065,
------------------- step mirecy { corfdev ewrcy, nyid, niby }-~<f7 D TRED/ C = 0.06438,
se D TR/ D= -1.7891,
step cpu on nyid { confdev Tx el se ewrcv; } T TR/ E = 0.00145,
} D TEDA= 512,
step cpu { confdev Tx_conp_face; } [D TSEND B = 14. 2672,
for(x=1 x<=npei; X=x+1) D TSE\D C= 0. 06225,
fo(y=L y<=npej; y=y+1){ D TED D= -12 327,
nyid=Q&_nyid x v); D TEND E = 0. 07646,
ns rev = Get rsrcv(phase, xys 1 | ...
if(isrev!=0) /
steprmreo/{oo{fda/rsrw nyid nb; } ce{
stepqnmnwd{oor#da/Txeisersrw } NFS.:O(DGOZQ%
} MFSG = 0. 025046,
stepcm{omfda/’Txvork } ML = 0.0068927,
...... MG = 0. 011226,
} g A e
Stepqn{oonfda/Txlést } ARON = 0. (00612606,
i ARDL = 0.0094727,
} A AR = 0.0234027,
} ;o C ARCB = 0. 0438327,
N AR = 0.0672354
Isubt ask sweep] [QMLL = 0. 0098327,
...... ! Lo QUG= 0. 020817,
proccflozvcormfaoe{(*(hllls sign *) QWL = 0.0096327,
conpute s clc, FouL>,v ! QVBG= 0. 0805927,
.......... | --case(dsclc, IFR) { / Q. = 0.0100827,
do cka e QMG = 0. (223627,
conpute <is clc, A'LL;‘ 'I1LL st QWAL = 0.0107527,
laop (<is clc, LRRy nmi) { o= R QWG = 0. 0229227,
oorm:teqsclmM AL L, S - QL = 0. 0106327,
loop (<is clc, [RBR, nig { TTene-l . Oms= 0027327,
oonputeqsclo QML ALL ~I FBR = 0. 0020327,
oonputeqsclc A 1 N e
cal ch0N3| FOAL = 0.0804%4,
oonputeqsclc TL, 9L LFOR = 0. 011834,
Ioop(qsa:lo LFOR, jt) { .-
oommte»qs cc, QUL 2*ADM, ATB, }
AL MDL, AL, THDL, N>
} ;o
oormute’h’sfclc, INL>
} ;o
conpute <1's/c|c, INLL>;
} / /
} s
} (* Bd of oanpfaoe *)
proccfloww;rk,{ }
proc cflowlast' { }
D

Figure 9. Mapping between Sweep3D Model Objects and C Source Code

Figure 9 also shows the inner mapping between the
software objects and hardware object of the performance
model. The abundant off-line configuration information
included by the hardware object is the basis to implement
a rapid evaluation time to produce the performance

predictions.

4. Validation Results

In this section the preiminary validation results on

execution time for Sweep3D are given to illustrate the
accuracy of the PACE modeling capabilities for
performance evaluation. The procedures in the PACE
evaluation engine to achieve these results is complex and

out of the scope of this paper. Further details can be found
in[7].

Figure 10 shows the validation of the PACE model
againg the code running on an SGI Origin2000 shared
memory system. Note that the result for single processor
input is not included because there are many special
configurations, which are not incuded to current
performance model for the sequentia code. As shown in
the figure, run time decreases when the number of
processors increases. At the same time the paralle

efficiency decreases too. In fact when the number of
processors is more than 16, the run time does not improve
any further.

By only changing the hardware object to the
SunUltral predictions on this new system can be obtained
as shown in Figure 11. A cluster of 9 SunUltral
workstations were used to obtain the measurements
assuming no background loading. The run time spent is
much more than that on SGI Origin2000 with the same
workload. But the trend of the curveis almost the same.

5 K grid size: 15x15x15 25 grid size: 25x25x25
Run 477\ Run 20 &
(sec) 27 \-\‘-\-\-\.; 10 \
1 =9 5 \-\gﬁ
02 03 04 05 06F97 08 09 10 11 12 13 14 15 16 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
0CESOrS Processors
80 id size 35x35x35 250 dsze
70 T grid size: 35x35x R wu grid size: 50x50x50
Run 60 ti Y\
time (589 —s—podd MEHC —=—Mode
40) 100
30 \
20 N 50
10 T T T T T T T T T T T T T T
0 T T T T T T T T T T T T T T
020304050607080910111213141516
02 03 04 05 OSP%FCAECSH())% 10 11 12 13 14 15 16 6& e

Figure 10. PACE Model Validation on SGI Origin2000

14 —
12 _%\ grid size: 15x15x15
Run 10 N
time (s&) \@%
6
4
2
0

02 03 Oéh 05 06 07 08 09
0CeSI'S

e

arid size: 35x35x35

120

Run 100

time (sag)

\\I —=— M99e\en

60

. -

20

02 03 Odbr 05 06 07 08 09
0CeSrs

60 - grid size: 25x25x25
50 \
Run 40 [—=—Modd
time (gg; ==
20 e
10
0
02 03 04Dmr%§m mOG 07 08 09
20 T grid size: 50x50x50]
400
Run 350 N\ | e ~e—rere—r——
time (399 D — = -
200 ~—__
100
%
02 03 OAPmrggcn rs06 07 08 09

The accuracy of the prediction results were eval uated

as follows:

Error =

Figure 11. PACE Model Validation on Cluster of SunUltral Workstations

| Measurement—Prediction |
x 100%.

M easurement

The errors between measurements and predictions are
shown in Table 1, for the SGI Origin2000, and in Table 2
for the SunUltral Workstation Cluster. It can be seen that
the maximum error is 11.44% in both cases, but the
average error isapprox. 5%.

Table 1. Prediction Error on SGI Origin2000

Err.(%) | 15X15X15 | 25X25X25 [35X35X35 | 50X50X50
1X2 6.53 10.44 7.02 -5.02
2X2 0.45 4.60 9.37 9.80
2X3 1.38 -0.73 4.47 -2.46
2X4 -5.66 0.82 1.12 -5.60
3X3 -0.29 -0.13 0.48 -4.55
3X4 -4.72 -4.92 -1.13 -7.62
4X4 -9.54 -4.90 -11.44 0.20

Table 2. Prediction Error on SunUltral

Err.(%) | 15X15X15 | 25X25X25 [35X35X35 | 50X50X50
1X2 -6.79 0.15 3.24 -1.12
2X2 7.07 8.07 5.62 5.30
2X3 4.00 1.64 -0.20 0.32
2X4 2.85 -1.49 -4.30 -10.06
3X3 5.01 342 2.27 0.82

Besides the reasonable accuracy, the performance
model can be used to obtain the evaluation results in a
rapid time period, typicaly less than 2s. This is a key
feature of PACE that enables the performance models to
be used to aid to steer the application execution onto an
available system at run-time in an efficient manner [5].

5. Conclusions

This work has described a performance modelling
approach for paralle and distributed computing using the
PACE toolset. A case sudy of the Sweep3D application
has been given containing both model descriptions and
validation results.

The key features of PACE include: a reasonable
prediction accuracy — approximately 12% error at most; a
rapid evaluation time — typically less than 2s for a given
syssem and problem size; and easy performance
comparison across different computational systems. It has
been shown that the PACE performance system can
produce reliable performance information which may be
used for investigating application and system performance
in many different ways.

The PACE system is currently being extended to
provide support for performance prediction in
computational environments which may be dynamically
changing, and to ad the scheduling of multiple
applications on the available resources. This corresponds
in part to the chalenges currently posed by the
devel opment of Computational GRIDs.

Acknowledgement

This work is funded in part by DARPA contract
N66001-97-C-8530, awarded under the Performance
Technology Initiative administered by NOSC.

References

[1] S Chapin. WARMStones. Benchmarking Wide-Area
Resource Management Schedulers. Draft white paper,
http://www.cs.virginia.edu/~chapinf'ws/ws.ps

[2] E. Deddman, A. Dube, A. Hoise, Y. Luo, R.L. Oliver, D.
Sundaram-Stukel, H. Wasserman, V.S. Adve, R. Bagrodia,
J.C. Browne, E. Houstis, O. Lubeck, J. Rice, P.J. Tdler, and
M.K. Vernon, “POEMS:; End-to-end Performance Design
of Large Pardlel Adaptive Computational Systems’,
Proceedings of the 1% International Workshop on Software
and Performance, pp. 18-30, 1998.

[3] I. Foster, and C. Kessedman, “The Grid: Blueprint for a
New Computing Infrastructure”, Morgan-Kaufmann, 1998.

[4 M.W. Hal, JM. Anderson, SP. Amarasinghe, B.R.
Murphy, S. Liao, E. Bugnion, and M.S. Lam, “Maximizing
Multiprocessor Performance with the SUIF Compiler”,
IEEE Computer, Vol. 29(12), pp. 84-89, December 1996

[5] D.J Kerbyson, E. Papaefstathiou, and G.R. Nudd,
“Application Execution Steering Using On-thefly
Performance Prediction”, in: High Performance Computing
and Networking, Springer-Verlag, 1998.

[6] K.R. Koch, R.S. Baker, and R.E. Alcouffe, “Solution of the
First-Order Form of the 3-D Discrete Ordinates Equation on
a Massively Parald Processor”, Trans. of the Amer. Nuc.
Soc., Vol. 65(108), 1992.

[7] G.R. Nudd, D.J Kerbyson, E. Papaefstathiou, S.C. Perry,
J.S. Harper, and D.V. Wilcox, “PACE — A Toolset for the
Performance Prediction of Paralld and Distributed
Systems’, to appear in High Performance Systems, Sage
Science Press, 1999.

[8] E. Papaefgtathiou, D.J. Kerbyson, G.R. Nudd, and T.J.
Atherton, “An Overview of the CHIPS Performance
Prediction Toolset for Parallel Systems”, in Proceedings 8"
ISCA International Conference on Parale and Distributed
Computing Systems, pp. 527-533, 1995.

[9] B. Qin, H.A. Shall, and RA. Ammar, “Micro Time Cost
Analysis of Paralld Computations’, IEEE Transactions on
Computers, Val. 40(5), pp613-628, 1991.

[10] IM. Schopf, “Structural Prediction Models for High-
Performance Distributed Applications’, Proceedings of
1997 Cluster Computing Conference, 1997.

[11] C.U. Smith, “Performance Engineering of Software
Systems”, Addison Wesley, 1990.

[12] M. Uysal, T.M. Kurc, A. Sussman, and J Sdtz, “A
Performance Prediction Framework for Data Intensive
Applications on Large Scae Padlel Machines’,
Praceedings of the 4" Workshop on Languages, Compilers
and Run-time Systems for Scalable Computers, 1998.

[13] H. Wu, C. Chen, and F.J Taylor. Osculant: A
Multiprocessor ~ Self-Organizing Task Scheduler.
http://www.hsdal .ufl .edu/Projects/Oscul ant/osc06961. html

