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Abstract—Distributed energy storage installed on the demand 

side can increase the local consumption of photovoltaics (PV), 

thereby reducing the energy consumption cost on the demand side. 

However, energy storage is not always fully utilized, and the 

sharing of energy storage among multiple demand-side entities 

can further reduce energy costs. In this paper, a collaborative 

framework for microgrids (MGs) equipped with energy storage is 

proposed, in which the energy storage own by each MG is 

uniformly controlled by the vitural coordinator. Besides, the 

vitural coordinator participants the regional electricity market as 

an independent entity, bidding for the electricity to satisfy the load 

demand of MGs. Since MG alliance is big enough to affect the 

clearing price in the market, a soft actor critic (SAC) algorithm is 

applied in this paper to obtain the optimal bidding strategy as a 

price maker, while considering the control of energy storage. 

Simulation results show that the proposed collaborative 

framework can improve the local consumption of PV, thereby 

reducing the energy cost, and the required electricity can always 

be purchased from market with the SAC algorithm. 

Keywords—energy storage, price maker, microgrid alliance, 

vitural coordinator.  

I. INTRODUCTION 

With the development of distributed renewable energy, the 
flexibility of the power system decreases rapidly, and the 
security and stability of its operation is threatened. Energy 
storage can store excess renewable energy and provide reliable 
and flexible dispatch resources for the power system. According 
to the research by Bloomberg New Energy Finance (BNEF), by 
2030, 58GW/178GWh of energy storage will be deployed 
globally every year, with a compound annual growth rate of 30% 
[1]. Traditionally, energy storage devices are installed and 
controlled by the system operator, but many incremental energy 
storage devices belong to different entities [2], so centralized 
optimal control is difficult to achieve. 

In a microgrid (MG), energy storage devices are commonly 
deployed to mitigate the output fluctuations of distributed 
renewable energy sources and address price variations in the 
electricity market. The rational utilization of energy storage 
devices can reduce the energy cost of the microgrid. The 
optimization adjustment method based on Double-Q Learning 
proposed in reference [3]effectively reduces user energy costs 
by optimizing the adjustment of energy storage devices. 
Reference [4][4] focuses on the frequency issues of microgrids, 
achieving frequency stability through optimized adjustments of 
energy storage devices. Reference [5] emphasizes the 
intermittent nature of distributed renewable energy output and 
achieves minimization of demand-side electricity costs through 

the synergistic optimization of distributed photovoltaics and 
energy storage devices. 

Reference [6] investigates the transaction mechanism design 
of a zero-net-energy community MG and achieves optimal 
scheduling of energy storage through transactions. Reference [7] 
considers the system's robustness, balancing robustness and 
economic efficiency through robust optimization. 

Usually, the regulation capability of energy storage is not 
fully utilized. Therefore, sharing excess regulation capacity 
could theoretically enhance the utilization rate of energy storage 
devices and consequently improve the microgrid's overall 
performance. Current research on energy storage sharing 
includes a summary of common centralized modes in [2], a 
consumer-centric active distribution network energy-sharing 
mechanism considering household energy storage in [8], and a 
novel energy-sharing cloud mechanism for intelligent 
microgrids with renewable energy and energy storage in [9]. In 
[10], a game theory-based energy storage sharing mechanism is 
established, where each agent determines both capacity trading 
and energy storage charging/discharging schedules 
simultaneously. To reflect differences among end-users, [11] 
proposes a credit-based capacity sharing method, enhancing 
total net profit and self-sufficiency. 

In addition to local renewable energy sources, MGs need to 
purchase electricity from external sources to meet diverse power 
demands. When multiple MGs form alliances, their capacity 
may be significant enough to influence market clearing prices. 
In this case, the MG alliance is referred to as a price maker. In 
formulating bidding strategies, the MG alliance, in addition to 
considering local renewable energy output and load demand, 
must also consider the impact of bidding on market clearing 
prices [12]. Related studies, such as [13] and [14], respectively, 
focus on the bidding strategies of price makers in day-ahead and 
real-time markets. Uncertainty is a crucial factor affecting 
bidding outcomes, and [15] introduces probability distribution 
functions to describe the demand-price-quota curve, while [16] 
uses robust optimization to handle uncertainty in the electricity 
market. 

However, existing research only models and analyzes 
uncertainty in bidding, while MG alliances face various 
uncertainties when formulating bidding strategies, including 
uncertainty in local photovoltaic output, user load demand, and 
energy storage sharing. To address these issues, this paper 
proposes a soft actor-critic (SAC) optimization algorithm based 
on Monte Carlo sampling. By obtaining estimates of coupled 
uncertain states through multiple samples, the algorithm's 
stability is improved. Additionally, a Power Allocation Method 
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based on Offset Proportional Coefficient is designed to achieve 
rapid error correction in shared energy storage, further reducing 
the impact of uncertainty and ultimately enhancing the overall 
efficiency of the MG alliance. 

II. PROBLEM DESCRIPTION 

A. Architecture of MG Alliance 

Considering an MG alliance composed of n MGs and the 
coordinated architecture is shown in Fig. 1. The collaboration of 
multiple MGs is realized through vitural coordinator (VC). 
Different from the central control mode, VC can not directly 
control each MG, but coordinate MGs through mechanism 
design and sag coefficient signal. 

 
Fig. 1.  Architecture of microgrid Alliance 

MG alliance participates in regional power market as an 
independent entity through VC. In the regional power market, 
VC provides bidding or offering to purchase the demand power, 
or sell the exceeded power harvested from distributed energy 
resources of consumers e.g., photovoltaic (PV), wind power etc. 
In the MG alliance, the energy storages are aggregated by VC, 
and the social benefit of the MG alliance can be improved 
through bidding and the control of shared energy storages.  

B. Regional power market 

In the regional power market, the operator collects the 
bidding/offering curve of each participant, and clearing the 
market with the goal of maximize social welfare, as shown in 
Fig.2.For each buyer, they need to report multiple price 
electricity pairs in the market to represent the price they are 
willing to pay for each segment of electricity they purchase. 
Similarly, sellers also need to report a price electricity pair to 
represent their expected price for selling electricity. The 
electricity market combines the price electricity pairs reported 
by buyers into a decreasing step curve, while the reports of 
sellers are combined into an increasing step curve. All electricity 
quantities purchased at prices higher than the selling price can 
be traded. 

Due to the substantial load requirements of the MG Alliance, 
its bidding activities in the regional electricity market have a 

significant impact on the market's clearance prices. When its 
power demand is high, the settlement prices increase; otherwise, 
the settlement prices decrease. For specific participants in the 
regional electricity market, attention is directed towards the 
residual demand/supply curve. The residual demand curve can 
be derived based on the demand of other buyers and the total 
supply from sellers. Taking bidding as an example, each 
participant engages in segmented bidding, and there are two 
forms of settlement prices, as illustrated in Fig. 2. 

 
Fig. 2. Residual supply curve in power market with different bidding curve 

III. MODELING 

A. Shared energy storage model 

In each time slot, VC can control the charging/discharging 
power of the shared energy storage, and the dynamic transition 
of energy storage is as follows [20]: 

𝑉𝑡 = 𝑉𝑡−1 + 𝜂𝑡
𝑐𝑃𝑡

𝑐𝛥𝑡 −
1

𝜂𝑡
𝑑 𝑃𝑡

𝑑𝛥𝑡,          (1) 

0 ≤ 𝑉𝑡 ≤ ∑ 𝑉𝑖
H𝑁

𝑖=1 , 𝑃𝑡
𝑐 ≤ 𝑃𝑡

𝑐,𝑚𝑎𝑥 , 𝑃𝑡
𝑑 ≤ 𝑃𝑡

𝑑,𝑚𝑎𝑥 ,   (2) 

where 𝑃𝑡
𝑐  and 𝜂𝑡

𝑐  are the charging power and efficiency of 

energy storage, respectively, 𝑃𝑡
𝑑  and 𝜂𝑡

𝑑  are the discharging 
power and efficiency of energy storage, respectively, and the 
stored energy in time slot t should not exceed the shared energy 

storage capacity ∑ 𝑉𝑖
H𝑁

𝑖=1 . 

B. Objective function 

The optimization objective of VC is to minimize the 

operation cost of MG alliance, which is composed of energy 

cost in regional power market, the incentive of energy storage 

sharing and the cost of cycle life loss of energy storage: 

𝑚𝑖𝑛𝐶𝑎 = ∑ 𝑅𝑠𝑢𝑚,𝑡
𝑇
𝑡=0 + ∑ 𝜆𝑐𝑙𝑒𝑎𝑟,𝑡𝑃𝑐𝑙𝑒𝑎𝑟,𝑡

𝑇
𝑡=0 + ∑ 𝐶𝐵,𝑡

𝑇
𝑡=0 , (3) 

where 𝜆clear,𝑡 and 𝑃clear,𝑡 are the clearing price and the clearing 

power in the time slot t of the regional electricity market, 

respectively. The loss of energy storage equipment increases 

with the increase of discharge depth, so the cost of using energy 

storage equipment can be approximated in the form of a 

quadratic function, as follows: 

𝐶𝐵,𝑡 = 𝜏|𝑉𝑡 − 𝑉𝑡−1|2,                       (4) 

where 𝜏 is the loss factor, 𝑉𝑡 is the amount of electricity stored 

in the energy storage. 

In the optimization, the power balance constraint must be 

satisfied: 

𝑃𝑐𝑙𝑒𝑎𝑟,𝑡 + ∑ 𝑃𝑖,𝑡
𝑀𝐺𝑛

𝑖=0 + 𝑃𝑡
𝑐 − 𝑃𝑡

𝑑 − ∑ 𝑃𝑡,𝑖
𝑃𝑉𝑛

𝑖=0 = 0.         (5) 



IV. BIDDING STRATEGY BASED ON MONTE CARLO-SAC 

A. MONTE CARLO based Markov process 

The bidding process can be described by a 5-tuple Markov 
decision process, i.e., 𝑀 = (𝑆, 𝐴, 𝑇, 𝑟, 𝛾). Where S is the state 
space, including the residual supply curve, load, state of charge, 
and PV output. A is the action space, i.e., the bidding strategy. 𝛾 
is the discount factor. r is the reward for action. 

1) State: When the VC participates in the market bidding, it 
needs to know the load demand and PV output of the MG 
alliance, so as to know how much electricity it needs to buy from 
the market. A large number of studies are devoted to the 
prediction of load and PV output, so the predicted load demand 

𝑃̂𝑡
MG and PV output 𝑃̂𝑡

𝑃𝑉 are used as elements state. The bidding 
of other participants directly determines the clearing result of the 

market. Therefore, the predicted bidding pair (𝝀̂𝑜, 𝑷̂𝑜) in the 

market is also one of the elements of the state. Although the 
relevant prediction work has achieved good results, there are 
always errors in the prediction. Multiple types of prediction 
errors coexist, and a single prediction error is likely to have an 
impact on the optimization results. In order to reduce this impact, 
according to the central limit theorem, multiple independent 
samples follow a normal distribution. Therefore, this paper 
designs a Monte Carlo sampling module to sample the predicted 
state variables multiple times and obtain their expected values 
as the input states of the algorithm. Finally, the maximum 
energy storage capacity 𝑉𝑡,𝑚𝑎𝑥  electricity stored in energy 

storage cannot violate constraints, so state of charge (SOC) is 
also an element of state. In summary, the state of time slot 𝑡 is 
as follows: 

𝑆̂𝑡 = {𝑃̂𝑡
MG, 𝑃̂𝑡

𝑃𝑉 , 𝝀̂𝑜, 𝑷̂𝑜, 𝑉𝑡,𝑚𝑎𝑥},              (6) 

𝑆𝑡 = ∑ 𝑆̂𝑡,𝑙

𝑘

𝑙=1

𝑘⁄ .                              (7) 

2) Action: VC participates in market bidding and needs to 
submit price pairs (𝝀𝑏𝑖𝑑 , 𝑷𝑏𝑖𝑑) to the market. In the MG alliance, 
VC also needs to control the charging/discharging power of 
energy storage. However, due to the constraints of power 
balance, the energy storage power is regarded as a passive 
variable, that is, the energy storage power is calculated by (7). 
Therefore, the action is (𝝀𝑏𝑖𝑑 , 𝑷𝑏𝑖𝑑). 

3) Reward: The optimization goal of the algorithm is to 
minimize the cost, so the cost is one of the components of the 
reward. Besides, since the power of BES is a passive variable, 
the energy storage has the risk of violating the constraints, so the 
penalty for exceeding the limit of the energy storage should be 
subtracted from the reward. Then the reward is as follows: 

𝑟𝑡 = −𝜗1𝑅𝑠𝑢𝑚,𝑡 − 𝜗2𝜆𝑐𝑙𝑒𝑎𝑟,𝑡𝑃𝑐𝑙𝑒𝑎𝑟,𝑡 + 𝜗3Φ𝑡 ,             (8) 

where 𝜗1 , 𝜗2  and 𝜗3  are the adjustment parameters of each 
reward item, respectively, so that the reward obtained by the 
algorithm is maintained within a reasonable range, so as to 
promote the convergence of the algorithm. 𝐸𝑡 is the penalty for 
violating the constraints. In this paper, the charge and discharge 
power of the SOC is constrained by the value range of the action, 
so the value of 𝐸𝑡 comes from violating the capacity constraint 
of the SOC: 

Φ𝑡 = {
|𝑉𝑡 − ∑ 𝑉𝑖

H𝑁
𝑖=1 |,   𝑉𝑡 > ∑ 𝑉𝑖

H𝑁
𝑖=1

|𝑉𝑡|,   𝑉𝑡 ≤ 0.
,            (9) 

The cumulative reward is: 

𝑅𝑡 = ∑ 𝛾𝜏−𝑡𝑟𝑡
𝑇−1
𝜏=𝑡 .                           (10) 

B. Bidding algorithm based on SAC 

Since it is difficult to establish an accurate model for the 
bidding of other participants in the market, this paper introduces 
a model-free DRL algorithm to solve the optimization problem. 
Unlike other algorithms that aim at maximizing the expected 
reward value, SAC trains the network with the aim of 
maximizing entropy. In the bidding process, there may be a 
variety of actions that can achieve the optimal goal, because 
under the market clearing rules, as long as the segmented 
bidding is within a specific range, the same clearing results can 
be obtained. The algorithm based on SAC can avoid the bidding 
strategy to choose only a certain action, while ignoring other 
possible optimization actions. Therefore, the optimal strategy of 
SAC is: 

𝜋∗ = arg max 𝐸(𝑠𝑡,𝑎𝑡)~𝜌𝜋
[∑ 𝑅(𝑠𝑡 , 𝑎𝑡)𝑡 + 𝛼𝐻(𝜋(∙ |𝑠𝑡))],   (11) 

where 𝐻(𝜋(∙ |𝑠𝑡)) is the entropy and 𝛼 is the weight coefficient 

that determines the importance of entropy. 

To obtain 𝜋∗, the state value network 𝑉𝜓(𝑠𝑡), action value 

network 𝑄𝜃(𝑠𝑡 , 𝑎𝑡) , and policy network 𝜋𝜙(𝑎𝑡|𝑠𝑡)  are set in 

SAC. The object function for 𝑉𝜓(𝑠𝑡) is: 

𝐽𝑉(𝜓) = 𝐸𝑠𝑡~𝐷 [
1

2
(𝑉𝜓(𝑠𝑡) − 𝐸𝑎𝑡~𝜋𝜙

[𝑄𝜃(𝑠𝑡, 𝑎𝑡) − 𝑙𝑜𝑔 𝜋𝜙(𝑎𝑡|𝑠𝑡)])
2

],    (12) 

where D is reply buffer, and the gradient of 𝐽𝑉(𝜓)  can be 
estimated as follows: 

∇̂𝜓𝐽𝑉(𝜓) = ∇𝜓𝑉𝜓(𝑠𝑡)(𝑉𝜓(𝑠𝑡) − 𝑄𝜃(𝑠𝑡, 𝑎𝑡) + log 𝜋𝜙(𝑎𝑡|𝑠𝑡)).   (13) 

The object function for 𝑄𝜃(𝑠𝑡 , 𝑎𝑡) is: 

𝐽𝑄(𝜃) = 𝐸(𝑠𝑡,𝑎𝑡)~𝐷 [
1

2
(𝑄𝜃(𝑠𝑡 , 𝑎𝑡) − 𝑄̂(𝑠𝑡 , 𝑎𝑡))

2

],      (14) 

where 𝑄̂(𝑠𝑡 , 𝑎𝑡)  is obtained using target value network 
𝑉𝜓̅(𝑠𝑡+1), as follows: 

𝑄̂(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1~𝑝[𝑉𝜓̅(𝑠𝑡+1)].            (15) 

The gradient of 𝐽𝑄(𝜃) is: 

∇̂𝜃𝐽𝑄(𝜃) = ∇𝜃𝑄𝜃(𝑎𝑡, 𝑠𝑡) (𝑄(𝑠𝑡, 𝑎𝑡) − 𝑟(𝑠𝑡, 𝑎𝑡) − 𝛾𝑉𝜓̅(𝑠𝑡+1)),     

(16) 

The object function for 𝜋𝜙(𝑎𝑡|𝑠𝑡) is: 

𝐽𝜋(𝜙) = 𝐸𝑠𝑡~𝐷 [𝐷𝐾𝐿 (𝜋𝜙(∙ |𝑠𝑡)) ‖
exp(𝑄𝜃(𝑠𝑡,∙))

𝑍𝜃(𝑠𝑡)
],          (17) 

where 𝐷𝐾𝐿  is Kullback-Leibler divergence, 𝑍𝜃(𝑠𝑡)  is the 
partition function. To minimize 𝐽𝜋(𝜙) , the policy is 
reparameterized using neural networks: 

𝑎𝑡 = 𝑓𝜙(𝜖𝑡; 𝑠𝑡),                            (18) 

Where 𝜖𝑡 is random variable, and (17) can be rewritten as: 

𝐽𝜋(𝜙) = 𝐸𝑠𝑡~𝐷,𝜖𝑡~𝑁 [𝑙𝑜𝑔 𝜋𝜙(𝑓𝜙(𝜖𝑡; 𝑠𝑡)|𝑠𝑡) − 𝑄𝜃 (𝑠𝑡, 𝑓𝜙(𝜖𝑡; 𝑠𝑡))],   (19) 

the gradient of 𝐽𝜋(𝜙) can be written as: 

∇̂𝜙𝐽𝜋(𝜙) = ∇𝜙 log 𝜋𝜙(𝑎𝑡|𝑠𝑡)

+ (∇𝑎𝑡
log 𝜋𝜙(𝑎𝑡|𝑠𝑡) − ∇𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡)) ∇𝜙𝑓𝜙(𝜖𝑡; 𝑠𝑡)
,          (20) 

C. Power allocation based on offset proportional coefficient 

After market bidding, the virtual energy storage has obtained 
the adjustment target for each time period, and it is necessary to 
allocate the adjustment target to the physical energy storage of 



each MG. Due to the fact that the unit cost of energy storage 
increases with the amount of energy charged and discharged, in 
order to minimize the regulation cost of energy storage, it is 
necessary to comprehensively consider the current state of 
charge of each MG’s energy storage and the target regulation 
amount allocated to it. Due to the fact that energy storage 
belongs to different MGs, fairness needs to be taken into account 
when formulating allocation strategies. 

In summary, this paper designs a power allocation method 
based on offset proportional coefficient: 

∆𝑃𝑖,𝑡
𝐵 = (𝜒𝑖 ∑ 𝜒𝑖

𝑁
𝑖=1⁄ )(𝑃𝑡

𝑐 − 𝑃𝑡
𝑑),                    (21) 

𝜒𝑖 = |
𝑉𝑖,𝑡−0.5𝑉𝑖,𝑚𝑎𝑥

𝑉𝑖,𝑚𝑎𝑥
|.                               (22) 

In the above equation, 𝜒𝑖  is the offset coefficient, which 
keeps the SOC state of each energy storage at 50% as much as 
possible. On the one hand, it tries to reduce the adjustment cost 
as much as possible, and on the other hand, it leaves sufficient 
margin for subsequent adjustments. 

V. SIMULATION 

A. Simulation setup 

Three MGs are set for simulation, and the energy storage 
installed by each MG is 300 kWh, 450 kWh and 150kWh 
respectively, and the stored power in the energy storage is 
100kWh, 150kWh and 50kWh respectively. Load demand and 
PV output come from Pennsylvania-New Jersey-Maryland 
Interconnection power market [22], and the time period is from 
January 1, 2021 to December 31, 2021. All data from the PJM 
is scaled proportionally due to the smaller load demand and PV 
output of the MG. It should be noted that the fluctuations of the 
load and PV output are preserved. Residual supply curve are 
generated based on clearing prices from the PJM electricity 
market. Assume that the residual supply curve consists of 20 
segments. Based on the base clearing price 𝜆𝑡 , randomly 
generate 20 prices in the range of [0, 2𝜆𝑡] for each time slot, and 
randomly generate the electricity corresponding to each price in 
the range of [0, 20kW]. The charge/discharge efficiency factor 

𝜂𝑡
𝑐 and 𝜂𝑡

𝑑 of energy storage are all set to be 1, the loss factor 𝜏 
is set to be 0.05. All prediction errors are generated using a 
normal distribution with a standard deviation of 0.02. 

 
Fig. 3.  Load demand and PV output of selected day 

The SOC of energy storage, PV output, load demand and the 
residual supply curve are set as input of the algorithm, so the 
input dimension is set as 43. Assuming that the MG alliance 
uploads 3 bids in the market, the action dimension is set to 6. 
The value network, soft Q network and policy network are all 
have 3 layers, and each hidden layer has 256 nodes. Learning 
rate is set to be 0.00001 and the discount factor is set to be 0.99. 
The simulation is implemented using PyTorch in Python, on the 
laptop with Intel(R) Core(TM) i7-9750H processor and one 
single NVIDIA GeForce GTX 1660 Ti GPU. 365 days of 

historical data are used in the algorithm, in which the 
proportions of training set, validation set and test set are 80%, 
10% and 10%, respectively. One day in the test set is used to 
demonstrate the effect of the algorithm, and its load demand, PV 
output and base clearing price are shown in Fig. 3. 

B. Result analysis 

The clearing power and the corresponding price in each time 
slot are shown in Fig.4. As the clearing result of the market is 
affected by the bidding strategy of MG alliance based on their 
load demand, the electricity purchased from the market in each 
time slot is different, and the clearing price is also fluctuating. 
At noon, the purchased electricity is zero due to the high output 
of PV. In these time slots, the PV output is surplus compared 
with load demand, so the MG alliance does not need any 
additional power. In other time slots, e.g., time slot 20, the 
purchased electricity is also zero without exceed PV output, 
because the load demand is satisfied by energy storage. 

 
Fig. 4.  Clearing result in each time slot throughout the day 

Besides, as a price maker, the clearing price is positively 
related to the power demand of MG alliance, but it is also 
affected by the offering of suppliers. For example, in time slot 
20, the load demand is about 260kW, and the clearing price is 
around 0.03$/kW. In comparation, in time slot 18, the clearing 
price is near 0.08 $/kW, while the load demand is about 280kW. 
This is because the supplier's offering during this period is 
relatively high. 

In order to ensure that MG alliance can always obtain the 
required electricity, the bidding strategy should be able to adapt 
to the changes of the residual supply curve. The bidding and 
market clearing of typical time slots are shown in Fig. 5: 

 
(a) time slot 4                                    (b) time slot 12 

 
(c) time slot 18                                    (d) time slot 21 

Fig. 5.  Bidding curve in different time slot 

In the bidding, MG alliance submits three price-power pairs 
in each time slot to form the bidding curve. In time slot 12, MG 
alliance does not need to purchase electricity from the market, 
so the bidding price is 0, and in other time slots, the algorithm 
can formulate an appropriate bidding strategy according to the 



offering, even if there is uncertainty (highlighted in yellow in the 
figure). In order to ensure that the power demand can be met, the 
algorithm tends to submit a high price in the first price-power 
pair, and the intersection of residual supply curve and bidding 
curve always appears in the vertical part of the bidding curve. 

The utilization of energy storage can improve the local 
consumption of PV, the SOC of storage is shown in Fig. 6. 

In Fig. 6, the green line represents the exceed PV, i.e., the 
remaining PV output after meeting load demand, the yellow line 
and purple line are the SOC with and without coordination in 
each time slot, respectively. It can be seen that the energy 
storage can store the exceed PV output at noon and satisfy the 
load demand in the following time slots. Due to the sharing of 
energy storage, PV is more fully utilized in the case of 
collaboration, and the local absorption rate of PV and the 
benefits of MGs are simultaneously improved.  

 
Fig. 6.  SOC of energy storage in each time slot 

VI. CONCLUSION 

This paper proposes a collaborative framework for MGs 
equipped with energy storage. Through the sharing of the energy 
storage among MGs, the energy storage can be more fully 
utilized, and the local consumption of PV output can be 
improved. Then MGs participate in the regional market as an 
independent entity through central collaborator. Since the MG 
alliance is a price maker in the market, the bidding strategy 
affects the clearing price. Besides, the utilization of energy 
storage affect the load demand from the market. SAC algorithm 
is applied to obtain the optimal bidding strategy according to the 
residual supply curve. Simulation results verify the effectiveness 
and superiority of the proposed collaborative framework and the 
algorithm. In the future work, the peer-to-peer transactions 
among MG alliances can be studied to further improve the 
operation efficiency of the system. 
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