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Abstract—The access of photovoltaic (PV) systems in the 

distribution networks has facilitated accurate PV power 

prediction for energy coordination and operations planning. Due 

to the power quality and photoelectric consumption of distribution 

system, the prediction task is still challenging. This paper aims to 

provide a spatial-temporal network to capture appropriate 

dependencies between temporal historical PV data and spatial 

effect factors for the multiple-step situational predictions. It 

involves a simplified version of convolution and pooling operation 

used to capture local features and model spatial correlations in the 

input data, and an attention based bidirectional long short-term 

memory (BiLSTM) used to enhance that association data 

prediction. Experimental results demonstrate that the proposed 

prediction network indicates enhanced accuracy across various 

time intervals and exhibits superior performance in prediction 

stability and robustness when compared to typical prediction 

methods based on the actual measurements from a photovoltaic 

micro plant. The method excels in capturing both temporal and 

spatial dependencies, making it a valuable tool for energy planning 

and operations in distribution networks. 

Keywords—PV power prediction, convolution, BiLSTM, spatial-

temporal feature  

I. INTRODUCTION 

With the intensification of energy crisis and the increase of 
environmental pollution, there is an increasing emphasis on 
renewable energy sources. Though PV power holds great 
potential as a renewable energy technology, its intermittent 
peculiarity poses a significant challenge for grid integration. 
Fluctuations in PV power output arise from diverse factors, 
including solar radiation intensity, shading and obstructions, 
atmospheric variations and limited PV modules, which make it 
difficult for the utility grid to maintain a balance between power 
demand and supply [1]. Consequently, a pivotal and effective 
measure towards addressing the challenge is to explore an 
accurate prediction method for PV power generation.  

PV prediction refers to the process of estimating the future 
power output of PV systems based on various factors and data 
inputs. Accurate and reliable PV prediction plays a crucial role 
in ensuring proper energy management, grid integration, and 
operational planning [2]. State-of-the-art works involve various 
solutions, ranging from physical models [3-7], statistical 
methods [8-10], machine learning algorithms [11-14], weather 
forecast integration [15-18], to hybrid approaches [19-22]. 

Physical models usually use mathematical equations and 
physical principles to model the behavior of PV systems. They 
consider factors such as solar radiation, temperature, and panel 
characteristics to estimate the power output. Typical examples 
include that single-diode based model [3-5] and the Sandia array 
performance model [6, 7]. Statistical methods utilize historical 
data to identify patterns and correlations between PV inputs and 
output power. For example, regression techniques like multiple 
linear regression or support vector regression, are often 
employed to develop prediction models. Machine learning 
algorithms, such as artificial neural networks, random forests, 
and support vector machines, are used to train models based on 
historical data. These models capture complex relationships 
between input variables and output power, enabling accurate PV 
prediction [12]. On the other hand, PV prediction can be 
enhanced by integrating weather forecasts to estimate solar 
radiation and temperature for future time intervals [23]. They 
generally allows for more real-time adjustments to expected PV 
power output. Besides, hybrid methods tend to combine multiple 
prediction techniques to exploit their respective strengths to 
achieve general PV prediction tasks. For example, a hybrid 
model might incorporate physical models, statistical analysis, 
and machine learning algorithms to improve the prediction 
accuracy of PV power [24, 25]. 

PV power prediction requires not only forecasting the future 
values that are as close to the truth as possible but also 
maintaining the stability at each step of the prediction in a long 
time series. As different network structure illustrates different 
sensitivity and ability to the sequential data, this paper combines 
the strengths of convolution process and an attention based 
bidirectional long short-term memory to provide a robust hybrid 
prediction method. It extracts the spatial and temporal features 
from the multi-input data and effectively learns from 
bidirectional sequence information that connected with the 
Bahdanau attention [26]. The goal of this paper is to make the 
method reliably and accurately predict the PV power data. 

II. METHOD FOR PV POWER PREDICTION 

A. Overview 

The proposed spatial-temporal prediction method is mainly 
designed upon a simplified version of convolutional neural 
network module, a bidirectional long short-term memory layer 
and an attention layer. Fig. 1 demonstrates the framework of the 
prediction network, which contains the following steps:  
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Fig. 1. The framework of the proposed spatial-temporal network for general PV prediction tasks, which depicts four compact connected layers.

1) Preprocessing the input PV power data. 

2) Use one-dimensional convolution to extract the spatial 

features of the data obtained from 1). Select convolution 

kernels of different sizes to capture feature information 

of different scales, and use the activation function ReLU 

to process the convolution results nonlinearly. 

3) Apply max pooling to conduct the downsampling to 

reduce the size of the feature map obtained from step 2) 

and retain the key features.  

4) Feature maps from 3) are input into a BiLSTM layer, 

which learns contextual representations of sequences and 

generates sequence-level feature representations. 

5) The output of step 4) are weighted and integrated in the 

attention layer to assign different attention weights for 

different input positions, which makes the network pay 

more attention to the sequence fragments that have 

important influence on the multi-step prediction results, 

and improves the performance and generalization ability 

of the network. 

6) A fully connected (FC) layer is applied to transform the 

learned features and representations from 5) into the final 

ReLU layer to get the final output. 

B. Data Preprocessing 

Data preprocessing aims to prepare the input data before it 
can be fed into the network. In this paper, the preprocessing 
involves normalization, feature scaling, and missing values 
handling. Min-Max normalization, as shown in (1), is used to 
scale the input PV data within a specific range to avoid bias 
towards certain variables.   

X'norm(t)=
X t -Xmin

Xmax- Xmin
∈[0, 1] .                    (1) 

Normalization by the maximum value of each feature, as shown 
in (2), is employed to conduct the feature scaling.  

X'scale(t)=
Xt

Xmax
∈[0, 1] .                        (2) 

To handle the missing values in the input data, multiple linear 
regression strategy, shown in (3), is utilized to estimate missing 
values based on other features. 

y (n) = b₀ + b₁X₁ + b₂X₂ + ⋯ + bₙXt .            (3) 

Among the three formulas, Xt is the original value, Xmax is the 
maximum value of the feature, Xmin is the minimum one, 
 X'norm(t) represents the normalized value, X'scale(t) represents 
the scaled value, y(n) represents the target variable (missing 
value), and b0, b1, b2, ⋯, bn represent the coefficients or weights 
associated with each feature. 

C. Convolution and Pooling Layer 

The one-dimensional convolutional layer applies an array 
of adaptable filters to slide across the data sequence to perform 
local feature extraction. Each filter convolves with the local 
regions of the input, resulting in a sequence of feature maps. By 
utilizing specific kernel sizes, the convolutional layer can 
capture different spatial patterns within the data. Each feature 
map encodes specific patterns or spatial information presented 
within the input sequence. The convolution layer and linear 
process are defined with the following (4) and (5), respectively, 

Ct =ReLU ( ∑
k

k=1
Wt×Xt+bt) ,                     (4) 

Ll =ReLU (Ll-1Wl+bl) ,                     (5) 

where Ct is the resultant feature map subsequent to the intricate 

mapping process, k denotes the index value of the filter, × is 
the convolution operation. Xt is the input sequential data, 
Wt is donates the weight matrix of the convolution kernel 
and bt is represents the bias vector. In (4), Ll is the output of 
l-th layer, Wl is the connected weight matrix and bl is the bias. 

The Max pooling operation is applied in the pooling layer 
to further enhance the spatial feature extraction by 
downsampling the feature maps. It selects the maximum value 
within each pooling window to represent the most salient 
feature present in that region, which reduces the spatial 
dimensions while retaining the important information and 
capturing the most relevant features. The feature maps in the 
pooling layer can be represented with the following equation. 

Pk = Max
𝜌(n-1)<n<𝜌𝑟

(Xt(n)) , r=1, 2,…. ,          (6) 

where Pk denotes the feature map of the k-th filter obtained from 
that convolution layer, Xt(n) indicates the n-th neuron value in 
the corresponding filter, 𝜌 and r represent the window size and 
the r-th moving step, respectively. 



D. Bidirectional Long Short-term Memory Layer 

BiLSTM integrates forward and backward computations for 
sequential data analysis. Its purpose is to capture and model the 
intricate dependencies and patterns inherent in such data by 
leveraging the power of Long Short-Term Memory (LSTM) 
units in both temporal directions. When the features are input 
into the layer, each structural direction is conducted as follow.  

          It =σ (Wi Xt+Ui ht-1+bi) ,                     (7) 

        ft =σ (Wf Xt+Uf ht-1+bf) ,                     (8) 

ot =σ (WoXt+Uoht-1+bo) ,                     (9) 

 gt = tanh (Wg Xt+Ught-1+bg) ,              (10) 

cet =ft⊙cet-1+ It⊙gt  ,                   (11) 

bt = ot⊙tanh (cet )  ,                      (12) 

where It denotes the input gate, ft is the forget gate, ot is the 
output gate, gt is the candidate value, cet is the cell state, and bt 
is the hidden state, Xt represents the input at time step t, ℎt-1 
denotes the previous hidden state, W and U are weight matrices, 
b is the bias term, σ denotes the sigmoid activation function, tanh 

is the hyperbolic tangent activation function, and ⊙is element-

wise multiplication. Forget gate determines the extent by which 
the previous memory content should be forgotten. Input gate 
controls the amount of new information to be stored in the 
memory. The candidate value represents the potential new 
information to be added to the memory. The output gate 
regulates the information to be passed from the memory to the 
hidden state. The cell state represents the updated memory at 
time step t. And the hidden state represents the output or the 
information propagated to the next time step.   

E. Bahdanau Attention Layer 

BiLSTM has shown effectiveness in learning from shorter 
input sequences. However, when applied to longer sequences, 
it will suffer from information loss, which makes it challenging 
to obtain a meaningful vector representation of the entire input 
sequence. To address this limitation, we use that Bahdanau 
attention [26] to learn the significance of each element in the 
sequential data and assign higher attention to crucial parts that 
have a significant impact on the output results. Fig. 2 depicts 
the workflow of the attention mechanism on an input data 
sequence (x1, x2, …, xt) to generate the t-th target value yt, 
where H1 to Ht represents the forward or backward hidden states 
at time t. By effectively leveraging the mechanism, the network 
adeptly amalgamates both forward and backward information, 
which empowers it to make informed predictions and 
proficiently handle longer input sequences. 

F. Fully Connected & ReLU Layer 

In the proposed network, we design a FC layer to perform a 
linear transformation on the input data, mapping it to the output 
space. As in Fig. 2, the output of the attention layer is denoted 
as yt (t=0, 1, 2…) with a size of n. The weight matrix of the FC 
layer is represented by WT, with a shape of (m, n), where m 
represents the number of neurons in the layer. Additionally, 
there is a bias vector bT, with a size of (m, 1). As shown in Fig. 
1, the calculation formula for the output of fully connected layer  

 
Fig. 2. The workflow of Bahdanau attention in our proposed prediction network. 

can be expressed as equation (13). 

Zk = WX + bT ,                          (13) 

where WX denotes the matrix multiplication between the weight 
matrix WT and the input Xt, and Zk represents the output of the 
fully connected layer.  

On the other hand, the output of the FC layer is designed to 
further pass through a non-linear activation function ReLU to 
increase the expressiveness of the network. It introduces non-
linearity to the calculation formula, enabling more complex 
patterns and relationships to be captured. 

The FC layer is used to act as a mapping layer to transform 
the features or representations from the previous layer into the 
final output. Through a series of linear transformations and non-
linear activations, the FC and ReLU layers facilely capture the 
intricate patterns and relationships in the input data, which 
facilitates the generation of the desired output for the network. 

G. Training 

Fig. 3 illustrates the training flow of the proposed PV 
prediction network. It involves the following several key steps. 

Step1: Initialize all the weight parameters of the neurons. 

Step2: Perform forward computation to calculate the output 

values of each neuron. In the BiLSTM layer, it includes the 

vector values of ft, It, ot, cet, and ℎt.  

Step3: Compute the error term δ for each neuron. Propagate 

the error backward in time, starting from the current t time step 

and calculating the error term for each time step, and then 

propagate the error term to the previous layer.  

Step4: Calculate the gradients of each weight parameter 

based on the corresponding error term δ.  

Step5: Utilize the optimization strategy Adam to update the 

weight parameters, and continue iterating until the number of 

iterations reaches the maximum or the total error converges to 

the specified threshold. 

III. ANALYSIS OF EXPERIMENTAL RESULTS 

A. Experimental Design 

In order to verify the prediction accuracy of the proposed 
network, this paper construct five different related networks 
with varying complexities for evaluation, including CNN, 
LSTM, BiLSTM, CNN-LSTM, LSTM-attention and BiLSTM-
attention. We use the actual measurements from a photovoltaic 
micro plant with resolution of 5 minutes per point to perform 
the experimental comparisons by conducting future multi-step 
prediction. Multi-step prediction in this paper means that the  



 
Fig. 3. The training process of the proposed PV prediction network. 

networks need to forecast all the values from the next point in 
time to 24 o'clock on the same day at one time. The metrics of 
mean absolute percentage error (MAPE), root mean square error 
(RMSE), mean absolute error (MAE), and R-squared (R2) are 
applied to evaluate the quality of the comparative networks. 
Lower MAPE, RMSE and MAE values indicate a higher 
accuracy and reliability of the prediction network. A higher R2 
value implies a better fit between the predicted and actual values. 
The collaboration of these metrics can elaborately describe the 
integral performance of a network.  

B. Subjective Evaluation 

Fig. 4 describes some sampling points of the PV power 
prediction results from the comparative models, which is plotted 
by overlaying the predicted PV power output values from the 
model with the actual measured values. It indicates that the 
predicted values of the seven comparison networks have good 
overlap with the trend of the actual values. From the sampling 
results, the proposed network presents a prediction result closer 
to the actual value, which can be further verified in Fig. 5. It 
presents future 12 days perdition data, whose results accurately 
predict the occurrence of peak and off-peak periods, as well as 
the timing of inflection points, which successfully captures the 
highs and lows of PV generation, enabling accurate predictions 
of when the system will reach its maximum and minimum 
output. From Fig. 5, the proposed model effectively identifies 
the turning points, indicating the moments when the PV output 
transitions from increasing to decreasing or vice versa. This 
indicates that the network is able to capture the underlying 
patterns and variations in the PV power output accurately. The 
alignment between the curves suggests that the network’s 
predictions are in line with the actual PV power production, 
thereby validating the effectiveness of the forecasting model. 

C. Objective Evaluation 

Table 1 illustrates the evaluated metrics of different 
prediction methods. From the table, we can conclude that our 
network achieves obvious performance on the data of metrics.  

 
Fig. 4. The PV power prediction results of the seven comparative networks. 

 
Fig. 5. Multi-step prediction results of ten days from the proposed network. 

TABLE I. THE EVALUATED METRICS OF DIFFERENT PREDICTION METHODS. 

Method 
Average Value of Each Metric 

MAPE RMSE MAE R2 

CNN 0.071 31.019 14.662 0.713 

LSTM 0.064 30.356 14.108 0.785 

BiLSTM 0.041 30.140 12.135 0.806 

CNN-LSTM 0.039 26.006 10.805 0.911 

LSTM-Attention 0.036 19.788 8.693 0.934 

BiLSTM-Attention 0.032 16.719 8.030 0.957 

The proposed network 0.021 9.083 5.992 0.991 

 

Specifically, It reduces 70.42% in MAPE , 70.72% in RMSE, 
59.13% in MAE and gains 38.99% improvement in R2 on 
average when compared with that CNN prediction network. The 
proposed method reduces 67.19% on average in MAPE, 70.08% 
in RMSE, 57.53 % in MAE  and gains 26.24% improvement  in 
R2 over LSTM network, and reduces 48.78% on average in 
MAPE, 69.86% in RMSE, 50.62 % in MAE  and gains 22.95% 
improvement  in R2 over BiLSTM network, and it can reduce 
46.15 % on average in MAPE, 65.07% in RMSE, 44.55 % in 
MAE  and gains 8.78% improvement in R2 over CNN-LSTM, 
reduces  41.67% on average in MAPE, 54.10% in that RMSE, 
31.07 % in MAE and gains 6.10% improvement in R2 over 
LSTM-Attention network, and reduces  34.38% on average in 



MAPE, 45.67% in RMSE, 25.38 % in MAE and gains 3.55% 
improvement in R2 over BiLSTM-Attention. The significant 
lower MAPE, RMSE, MAE values and the higher R2 clearly 
establish the superior accuracy, precision, and reliability of the 
proposed network when compared to other prediction networks. 

IV. CONCLUSION 

In this paper, we propose a novel spatial-temporal network 

for general photovoltaic power prediction tasks. The motivation 

behind the method is that a convolution and pooling layer is 

responsible for extracting spatial features from the multi-

dimensional data, a BiLSTM layer tends to capture long-term 

temporal dependencies by learning and memorizing sequential 

context information progressively through multiple sequential 

steps, and an attention is employed to weight and integrate the 

outputs of the two layers to pursue enhanced prediction 

accuracy. In comparison to comparative perdition models, the 

proposed network yields more effective performance in terms 

of improved accuracy and robustness in PV power prediction. 

The results indicate its great potential on predicting various 

challenging PV power data. 
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