
Enabling Access to WSRF from Mobile Devices
Jan Christian Mangs1, Shihong Huang2, Junwei Cao3

Department of Computer Science, Florida Atlantic University
777 Glades Road, Boca Raton, FL, USA

1jmangs@fau.edu
2shihong@cse.fau.edu

3Research Institute of Information Technology, Tsinghua University
Information Science & Technology Building 100084, Beijing, China

jcao@mail.tsinghua.edu.cn

Abstract—The increasing availability of Web services and grid
computing has made easier the access and reuse of different kind
of services. Web services provide network accessible interfaces to
application functionality, while grid computing enables the
efficient distribution of computing resources and power. Mobile
devices as a platform of computing have become a ubiquitous,
inexpensive, and powerful computing resource. Currently, there
are a few complete implementations that leverage mobile devices
as a member of a grid environment. This paper presents a
framework that enables the use of mobile devices to access
stateful Web services on a Globus-based grid. To illustrate the
presented framework, a user-friendly application has been
created that uses the framework libraries to demonstrate the
various functionalities that are accessible from any Nokia S60
phone.

Keywords: grid computing, mobile devices, Web services,
software reuse

I. INTRODUCTION
Web services are network-accessible interfaces to

application functionality. Although there have been some
discussions of the numerous technical challenges to fully
utilize their potentials [11], web services have become part of
mainstream computing.

A web service is defined by the W3C as “a software system
designed to support interoperable machine-to-machine
interaction over a network” [17]. An individual who wishes to
utilize a web service only needs to know what a service does
and not how it is implemented on the server side. Specifically,
that individual needs to know where they can find a specific
service, what input, if any, is required by an invocation to a
web service and what information is returned by that web
service. Web services describe themselves using the Web
Service Description Language (WSDL)[16] and developers
utilize this description to automatically generate client stubs
that use Simple Object Access Protocol [14] invocations to
access services.

The convergence of grid computing and web services has
lead to the concept of stateful web services. While first
generation grids were capable of massive computational
power, there were drawbacks due to the overhead required in
managing and configuring available computing resources and
the relatively lack of reusable end-user applications [4]. An
application was tightly-coupled to the platform it was
developed for and reusing previous work required additional
effort. The latest trend has involved movement towards
applying web services in grid computing and has led to
development of “stateful” web services that are geared for use
in grid computing environments.

Because of the lack of support for maintaining state
information across web service invocations, the current
standard for web services was insufficient for the grid
computing environment. In order to effectively support the
collaboration required by grid computing, the Open Grid
Services Infrastructure (OGSI) standard was proposed [1].
OGSI was originally intended to provide the infrastructure to
adding stateful resources to web services. However, the
advent of new Web Service standards such as WSDL 2.0 [15]
and WS-Addressing [6] necessitated the creation of Web
Services Resource Framework (WSRF). The WSRF standard
is relatively similar to OGSI with the exception of syntax and
naming convention changes; it support is more robust for
other Web Service standards.

A. Utilizing Mobile Devices in Grid Computing
In regards to grid computing, the mobile phones are in a

position similar to personal computers: it is relatively
inexpensive, available to many, and continuing to grow in
computing power. Although still lagging behind traditional
computers in technical aspects, the potential of mobile devices
cannot be easily dismissed. The current generation of cell
phone technology, for example, is suited for tasks which
involve remote management of tasks running in a grid
environment. Because of their inherent mobile nature, these
devices are able to stay with a user regardless of their location.
A person is not limited to sitting by a desktop machine.
Although they aren’t well suited yet for offering

This material is based upon work supported by the National
Science Foundation under Grant No. OISE-0730065.

computational and storage, the processor speed and storage
capacity of mobiles continues to grow rapidly with the advent
of low-power processors and flash memory [12]. In the future,
it may even be possible that mobile devices are powerful
enough to perform some level of computation for grids
through CPU cycle scavenging or voluntary participation in
grids.

Because of the lack of notable solutions to the problem
mentioned, this paper proposes to create a new and complete
solution that will finally make it possible to readily utilize
WSRF on a mobile device. It presents a framework created to
address the issues that occur when trying to utilize WSRF
from a mobile device. The purpose of this paper is threefold:

(1) To solve the complications when communicating to a
stateful web service from a mobile device;

(2) To allow more complicated use of stateless web
services simultaneously, and

(3) To lay the foundation for incorporating mobile devices
into the grid environment.

II. IMPLEMENTATION INFRASTRUCTURE
The objective of this framework is to enable mobile devices

to connect to WSRF-enabled web services and lay the
foundation for future work on incorporating mobiles into the
grid computing environment. This section describes the
details of the server-side component that implements WSRF
and the client-side software platform on which the framework
is built upon, the reasons that why each was chosen, and the
difficulties in establishing successful communication.

A. Grid Component - Globus Toolkit
The open source Globus Toolkit [4] is a toolkit used for

building distributed computing grids. It allows organizations
to bring numerous independent computers together into a
single virtual “supercomputer” otherwise known as a
computing grid. The Globus Toolkit was created by the
Globus Alliance some of whose members include the
University of Chicago, the U.S. Argonne National Laboratory,
and the University of South Carolina. Globus has widespread
industry adoption with many companies such as IBM, Sun,
Oracle, and Hewlet-Packard have pursued Globus-based Grid
strategies [5].

One of the main reasons the Globus Toolkit was chosen as
the platform to develop our framework in conjunction with
was its implementation of WSRF [8]. As mentioned in the
introduction, WSRF is an evolution of OGSI which is another
standard which Globus also implemented. In Globus, stateful
web services are used to expose grid computing services to
the internet in a platform-independent manner. The services
provided by Globus are well-suited for testing the framework
proposed in this paper. Rather than relying on mock-up web
services, the framework has been built in conjunction with
testing on robust web services in Globus such as job
submission and management and file transfers. The case study
in Section 4 demonstrates the use of these services in an
application built upon the framework.

B. Software Platform - Java ME
The target platform on which our framework would be

developed also plays a crucial role. Because of the wide
variety of cell phones, handsets, and PDAs available, we
decided to develop our framework for the Java ME
programming language. The reason for this decision is fairly
simple. Because Java ME is not limited to a single
manufacturers’ platform, the framework which is built upon it
will be applicable to as many phones as possible. For example,
if we had to chosen to develop in .NET Mobile, it would only
be applicable to devices which can run Windows Mobile.

The JSR-172 Web Services API [9][10] is a subset of the
Java API for XML-based Remote Procedure Calls (JAX-RPC)
[7]. JAX-RPC provides asynchronous RPC to web services
using Extensible Markup Language (XML) and works over a
wide variety of protocols including HTTP. In both JSR-172
and JAX-RPC, client-side stubs are used to hide the
implementation details of the web service being called. The
client-side stub includes the operation name, the input and
output types, and miscellaneous parameters. In short, JSR-172
provides basic support for web service invocations and not
much else. The lack of full support for complex data types
results in an inability to communicate with any web services
inside Globus that require more complicated input.

III. THE FRAMEWORK
Because of the limitations mentioned in the section above,

the use of the standard JSR-172 API was not possible when
communicating to Globus. The framework described in this
section was created to fix the problem of communicating to
stateful web services by implementing standards required by
WSRF and allowing the use of complex data types.

A. Architecture of the Framework
The basic approach to this framework was to emulate the

approach implemented in the JSR-172 API. The client creates
stubs manually or automatically from a WSDL file of a
WSRF-based service. The client stubs invoke the framework
run-time. The framework’s run-time consists of a connection
manager which handles setting up the connection to a web
service and the processing of the request and response
commands, and a SOAP encoder and decoder. Since the
SOAP encoder and decoder used by JSR-172 were not
available publicly, the framework required the use of a custom
encoder and decoder. This allowed us to add additional
property fields to the stub such as those defined by WSRF or
any of its related standards. It also allowed us to add an
object-oriented method of constructing the numerous different
SOAP messages required to communicate successfully. It
allows a developer utilizing the framework to perform custom
serialization of complex data types. This method was derived
from Apache Axis as it is used in Globus [3].

B. Description of the Framework
In JSR-172, when the developer utilizes a method defined

by the portType that requires complex input that is not a

simple data type, there was no clear way to submit the
information required. There is no method provided for custom
serialization or custom message properties in the SOAP
message. Rather than only accepting simple data types, such
as in JSR-172, the framework’s encoder was modified to
accept classes that implement an interface called
GlobusObject. This simple interface consisted of a single
method called GenerateMessage(), which when called,
would create an SOAP message representation of the object.
This allows the developer to define the specific construction
of the object as it would appear in the SOAP message. This
method was applied to most of the default web services in
Globus that required complex input. It has an added benefit
when dealing with the more complicated XSD definitions that
could have inheritance and contain arrays of objects; the
developer simply has to create a Java representation of arrays
and inheritance instead of trying to compose an enormous
SOAP message in one single Java class.

C. Features of the Framework
The framework provides full support for the WS-

Addressing, WS-ResourceProperties, and WS-

ResourceLifetime standards as well as partial support for
WS-Trust, WS-Security, and WS-BaseFaults. Due to the
complexity in running a mobile phone as a server, there is no
current support for the WS-Notification standard as it is
implemented in the Globus Toolkit [13]. There is also limited
inherent support for WS-BaseFault and its sub-faults; the
framework parses errors returned by the server and throws an
exception with the server-side error and its details.

The framework’s SOAP encoder is able to encode simple
types, arrays of simple types, and objects that implement
GlobusObject. When creating a stub, the user is able to
specify which WS-Addressing tags to utilize in the SOAP
envelope. The decoder is able to parse simple types, arrays of
simple types, complex types, and error messages. Also
because the framework is based partially upon JSR-172, there
is inherent support for stateless web service invocations.

IV. CASE STUDY
In order to demonstrate the functionality of the framework

and provide a user-friendly manner in which to utilize its
functionalities, a sample application was created and built
upon the framework libraries previously created. It
demonstrates the use of the framework while creating a user-
friendly interface to utilize its functionality.

A. Emulation Platform: Nokia S60
After some research, it was decided to restrict the case

study implementation to Nokia’s S60 platform. This allowed
the case study to focus on one phone platform for deployment.
The latest S60 SDK provided by Nokia comes with an
emulator and integrates into Eclipse through a plug-in called
EclipseME [2]. The emulator’s debugger integrates into
Eclipse and allows a developer to perform real-time
debugging of the actual code as if it were running in a

physical device. The emulator also provides numerous
diagnostics such as CPU and memory usage statistics as well
as tracking messages sent over HTTP/HTTPS.

B. Implementation Overview
The client application for the phone is able to submit jobs,

perform third party files transfers, view/browse a shared
server space, and obtain delegated credentials. The user
interface is geared for use on mobile phones and to simplify
functionality as much as possible. The application allows the
user to connect to one or more servers at one time and keeps
track of currently open connections. To keep navigation
simple, the user can only see only one ‘view’ of the server
connection at a time but is free to independently switch
between at will. In order to connect to a server, the phone
requires a valid user certificate from a certificate authority.
This simply required conversion of a Globus user certificate to
PCKS12 and, once imported into the phone, works
automatically with the case study application.

In this case study, the application was built using Nokia’s
S60 3rd Edition FP 2 SDK and was developed in Eclipse
using the EclipseME 1.7.9 plug-in. Globus Toolkit 4.0.7 (GT4)
was utilized to host the stateful web services and simpleCA
was used as the Globus certificate authority. Currently, the
application includes support for the several services in Globus
including: Web Services Grid Resource Allocation
Management (WS GRAM), Reliable File Transfer (RFT), and
the Delegation Service.

C. Emulation Results
This section illustrates an overview of the application

developed through the course of the case study. The main
features enabled in this application are reviewed including file
browsing, remote file transfers, and job submission &
management.

The main menu screen presents the user with several
options. The user can choose to view current jobs submitted
from the phone, view the shared space in the applications file
browser, enable credential delegation for a specific server,
open a new connection, or switch between connections. The
main function of the main menu is to provide access to the
other key features of the application. Users are able to save
connection info to different servers and connect to them at
will; the application manages each connection independently
and allows the user to switch between servers at freely. The
“View Folders” command shows the root directory of the
shared space on the current view and provides a good majority
of the functionality enabled by the framework. The “View
Jobs” command is only used when jobs are submitted from
file browser; it provides a list of all job submissions and
allows the user to manage them. The “Delegate” command is
simply used to activate credential delegation with the current
server. The final two commands allow for switching between
open server connections and creating and opening new server
connections.

The file-browsing interface which is accessed from “View
Folders” emulates a Windows-type file browsing user
interface. The browser is the main point of interaction with the
Globus server and its shared space. The shared space is a
directory defined by a stateful web service called
DirectoryService which lists the contents of this directory
and provides a method for getting the contents of the files
listed. The user can navigate up and down the shared space’s
folder hierarchy similarly as in desktop operating systems.
When selecting a specific file, several options become
available. The user can choose to view the contents of the file,
submit the file as a RSL description to WS GRAM, mark it as
a source or destination, or mark the file for a deletion request.
For mobile job submission, the application allows the mobile
device to get jobs through the “Submit Job”. In a separate
screen which can be accessed from the main menu through
“View Jobs”, users are able manage operations perform
operations such as “Destroy” to remove a finished job and
“Get Status” to query a job resource property for its state. In
the future, other more advanced management options will be
integrated into the case study application.

V. CONCLUSIONS AND FUTURE WORK
This paper presented a framework for utilizing stateful web

services from a mobile device. The framework is built upon
the previous work done in JSR-172 and expands support for
custom serialization and additional message properties. To
demonstrate the functionality of this framework, the paper
showcases an example application built on top of this
framework which allows users to browse and view files on a
Globus server, submit jobs, and transfer files between
multiple servers.

The main limitations in our framework are those created by
the restrictions imposed by Java ME. Many features that could
have been salvaged from the APIs already created for Java SE
could not be directly reused to the limitations in the Java ME
environment. Also, it should be noted that because Java ME
works in a limited environment, performance will not always
be ideal; for example, a loss of connectivity will prevent a
web service-based application from working properly.
Another limitation involves utilizing the framework on non-
Nokia devices. In order to utilize the framework on other
phones, the manufacturer must support the same features in
their MIDP implementation for Java ME. Because the Globus
Toolkit utilizes Transport Layer Security (TLS) [18], the
manufacturer must provide full support for TLS. For example,
a reference implementation such as Sun’s Java ME SDK does
not support client certificates under TLS and such does not
work with our framework.

In the future, the framework will address some of the
challenges presented in this paper such as developing a
method to implement WS-Notification. In addition work will
be done in order to deploy the application to another
manufacturer’s phone platform to test compatibility and
improve its user interface as much as possible. Other possible

areas of work involve simplifying the framework itself and
creating a tool to automatically generate Java ME client stubs
from Globus WSDL files.

References

[1] Cjazkowski, K., et. al., “From Open Grid Services
Infrastructure to WS-Resource Framework: Refactoring &
Evolution” Online at:
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf

[2] Craig Setera, “Eclipse ME: J2ME Development Using Eclipse”
Online at: http://eclipseme.org/

[3] Feller M., Foster I., and Martin S., “GT4 GRAM: A
Functionality and Performance Study”, TeraGrid Conference
2007, Madison, WI, June 2007.

[4] Foster I., “Globus Toolkit Version 4: Software for Service-
Oriented Systems”, Proceedings of IFIP International
Conference on Network and Parallel Computing, Beijing,
China, Springer-Verlag LNCS 3779, December 2005, pp 2-13.

[5] Globus Alliance “About the Globus Toolkit”, Online at:
http://www.globus.org/toolkit/about.html”

[6] IBM, “Web Services Addressing” Online at:
http://www.ibm.com/developerworks/library/specification/ws-
add/

[7] Nokia “Java ME Developer’s Library” Online at:
http://www.forum.nokia.com/document/Java_Developers_Libr
ary_v2/

[8] Pu L., Lewis, M.J., "Uniform Dynamic Deployment of Web
and Grid Services", Proceedings of the IEEE International
Conference on Web Services, 2007. ICWS 2007. 9-13 July
2007, pp.26-34.

[9] Sun Microsystems, “JAXP Reference Implementation”,
Available at: https://jaxp.dev.java.net/

[10] Sun Systems, “JSR 172 J2ME Web Services” Online at:
http://jcp.org/en/jsr/detail?id=172

[11] Tilley, S.; Gerdes, J.; Hamilton, T.; Huang, S.; Müller, H.;
Smith, D.; and Wong, K. “On the Business Value and
Technical Challenges of Adopting Web Services.” Journal of
Software Maintenance and Evolution: Research and Practice,
16(1-2):31-50. John Wiley & Sons, April 2004.

[12] Trevor M., “Power: A First-Class Architectural Design
Constraint” Computer, v.34 n.4, p.52-58, April 2001.

[13] Vinoski, S., "More Web Services Notifications", Internet
Computing, IEEE, vol.8, no.3, May-Jun 2004, pp. 90-93.

[14] W3C, “SOAP Specifications” Online at:
http://www.w3.org/TR/soap/

[15] W3C, “Web Services Description Language (WSDL) Version
2.0 Part 0: Primer” Online at: http://www.w3.org/TR/wsdl20-
primer/

[16] W3C, “Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language” Online at:
http://www.w3.org/TR/wsdl20/

[17] W3C, “Web Services Glossary” Online at:
http://www.w3.org/TR/ws-gloss/

[18] Welch, V., et al., "Security for Grid services", Proceedings of
the 12th IEEE International Symposium on High Performance
Distributed Computing, 2003. 22-24 June 2003, pp. 48-57

