
SPLWAH: a bitmap index compression scheme for

searching in archival Internet traffic

Jiahui Chang, Zhen Chen*, Wenxun Zheng,

Junwei Cao, Yuhao Wen, Guodong Peng

Research Institute of Information Technology, Tsinghua

University

Tsinghua National Lab for Information Science and

Technologies (TNList), Beijing, China

zhenchen@tsinghua.edu.cn

Wen-Liang Huang

China Unicom Groups Labs

China Unicom Groups

Beijing, China

huangwenliang@gmail.com

Abstract—Bitmap index is widely used in archiving and

searching of Internet traffic, which is an essential step for

analyzing network events in the field of network forensics.

However, bitmap index requires a large storage space for fast

searching in archival data. As current state-of-the-art bitmap

index compression techniques, various encoding algorithms have

been proposed, e.g. WAH, PLWAH, COMPAX, etc. With the

advantages of fast query speed and easy implementation,

PLWAH is an outstanding encoding scheme to encode the sparse

dirty bits in bitmap index. Unfortunately, for searching Internet

traffic, the constructed bitmap index can be quite dense locally

according to the statistics. This is because that Internet traffic are

usually composed of the flows with the same five tuple (SrcIP,

SrcPort, DstIP, DstPort, proto). In this paper, SPLWAH is

proposed to adapt to Internet traffic based on PLWAH. In

SPLWAH, a new codebook is introduced to fit the characteristics

of Internet traffic. We also conduct several performance

evaluation experiments based on real network flow data from

CAIDA. The results show that SPLWAH reduces the space

consumption with a factor of 20% or more without incurring

extra encoding and decoding cost. This work also shows that the

design space in bitmap index compression is still a fruitful

unknown frontier and worth further exploring to adapt to the

emerging data spaces.

Keywords—Bitmap index, Bitmap index compression, Big Data,

WAH, PLWAH, Internet traffic, Flow trace, Performance

evaluation, Network forensic.

III. INTRODUCTION

A. Bitmap Index

Bitmap indexing [4-6] was proposed by P'O Neil in 1987,
and deployed in a commercial database system called Model
204 for the first time [4]. And it uses a bit vector or a sequence
of bits to indicate the value of the index whether exists in the
indexed data, which can efficiently use bit logical operations
(AND/OR/NOT/XOR, etc.) to answer the complex queries. A
simple bitmap indexing example is shown in Fig. 1.

Bitmap index is designed for scientific data and databases.
The scientific data are usually generated by scientific
instruments or mathematical simulation, and it is characterized
by an extremely large amount of data without changing.
Bitmap index database solves the problem of how to quickly

identify a small amount of data in a mass of scientific data,
while traditional relational databases are not suitable for this
work.

Fig. 1. An example of bitmap index.

B. Bitmap Index Compression

In bitmap index based database, data are usually stored in a
columnar way, where every column is stored together and a
bitmap index is created correspondently. The core technology
used in bitmap indexing includes bitmap index compression
and others.

Fig. 2. The advancement of bitmap index compression algorithms.

Currently, the representative bitmap index compression

schemes include BBC [7], WAH [8-9], UCB [10], RLH [11],

PLWAH [12], EWAH [13], CONCISE [14], COMPAX [15]

and VLC [19], PWAH [20], VAL-WAH [21], DFWAH [22],

Roaring Bitmap [23], BREAD [24], etc. GPU

implementations of WAH and PLWAH are introduced in [16-

18]. A more detailed survey of bitmap index compression

algorithms is presented in [25]. Fig. 2 also shows the various

bitmap index compression algorithms appearing in

chronological order.

PLWAH has some minor improved versions such as

APLWAH (PLWAH with adaptive counter), and enhanced

variants such as PLWAH+ [26]. COMPAX also has minor

improved versions such as COMPAX with oLSH, COMPAX2,

and enhanced variants such as SECOMPAX [27].

C. Internet Traffic

With the popularity of Internet applications and mobile
wireless networks for large-scale commercialization, huge
amounts of information content greatly enriches users. The
outbreak of mobile Internet which allows users from anywhere
and anytime access to any content of the network, results in
generating more traffic data. The entire Internet traffic
maintains a rapid growth as a normal Internet company
generates and accumulates users. Internet traffic is quite large,
which cannot use gigabit (G) or trillion (T) to measure. Cisco's
report [1] predicts that Internet traffic data will grow four-fold
from 2011 to 2016 and reach 1.3 ZB in 2016. Internet traffic is
a typical streaming data and needs to be explored with big data
platform based on bitmap indexing [2, 15].

D. Main Contribution

For faster retrieval and better space efficiency, bitmap
indexes are usually sorted in practice. However, It is observed
that PLWAH does not perform well in the dense bitmap with
few dirty bit positions, especially when it comes to Internet
traffic and other sorted data.

Based on the observation of the compression results of
current state-of-the-art bitmap index compression algorithms,
this paper presents a new bitmap index compression technique
that outperforms PLWAH in both storage and query
performance perspectives. This new bitmap index compression
scheme is named as SPLWAH (Position List Word Aligned
Hybrid algorithm for Sorted data).

The remainder of this paper is structured as follows. A more
detailed encoding scheme is provided in Section 2 while
Section 3 presents a FSM model to describe the encoding
procedure of SPLWAH. Section 4 shows the experiments
conducted in real network flow data from CAIDA. Finally, we
conclude and discuss future research directions in Section 5.

IV. SPLWAH ENCODING

A. The Main Idea

SPLWAH keeps the idea of the “Position List” in PLWAH

to record “Switch Positions” in Literal Chunk, which is more

efficient in the case where the fraction of the set bit is not at a

low level. For isolated “1” in the middle position of a Literal

Chunk, SPLWAH pays double bits than PLWAH to store its

position. However, when the number of continuous “1” is

larger than two, SPLWAH uses less bits to store the positions

than PLWAH [12].

Furthermore, the new definition of Simple Chunk which
can be piggybacked by Fill codeword abandons the concept of
the diverse types, which is definitely different from other
algorithms.

 At last, the definitions of FSF and SFS codewords perform
better in cases where the bitmap indexes are sorted well.
According to a number of experiments, a conclusion can be
naturally made that SPLWAH is more suitable for the dense
and clustered bitmap index.

Details of the definitions and compression processes will be
discussed in later subsections.

B. Definitions for Chunks

The original bitmap consists of columns which have a large
amount of sequences of bits divided into 31-bit-long chunks to
ensure they fit into the L1 cache. All processes being carried
out are based on the chunks, which is more suitable for modern
CPU architecture. Firstly, each chunk is classified into different
types as follows:

0-Filled Chunk: If the 31 bits of a chunk are all “0”, the
chunk is called “0-Filled Chunk”.

1-Filled Chunk: If the 31 bits of a chunk are all “1”, the
chunk is called “1-Filled Chunk”.

Generally, 0-Filled Chunk and 1-Filled Chunk are two
types of Filled Chunk.

Literal Chunk: If a chunk cannot be classified into 0-Filled
Chunk or 1-Filled Chunk, it is called “Literal Chunk”.

Switch Position: If the bit before the position is different

from current one, the bit position is called “Switch Position”.

Specially, SPLWAH takes the position of first “1” bit in a
Literal Chunk as the first Switch Position. Obviously, each
Switch Position occupies 5 bits to represent the number from 1
to 31.

Simple Chunk: If a Literal Chunk can be represented by no
more than four Switch Positions, it is called “Simple Chunk”.

C. Definitions for Codewords

After the categorization of chunks, we begin to encode the
bitmap roughly into the codewords as shown below:

0-Fill: If there are some continuous 0-Filled Chunks,
SPLWAH replaces them with a 0-Fill codeword which
indicates the number of the replaced chunks.

1-Fill: If there are some continuous 1-Filled Chunks,
SPLWAH replaces them with a 1-Fill codeword which
indicates the number of the replaced chunks.

Obviously, 0-Fill and 1-Fill are two types of Fill which is
similar to WAH [8].

Furthermore, the 2-tuple codewords are shown as below:

FS: For a continuous 2-tuple in the sequence, if the first
element is a Fill and the second element is a Simple Chunk,
this 2-tuple is encoded into a FS codeword, including 0-Fill-S
and 1-Fill-S.

SF: For a continuous 2-tuple in the sequence, if the first
element is a Simple Chunk and the second element is a Fill,

this 2-tuple is encoded into a SF codeword, including S-0-Fill
and S-1-Fill.

At last, the 3-tuple codewords are shown as follows:

FSF: For a continuous 3-tuple in the sequence, if the first
and the third elements are both Fill codewords and the second
element is a Simple Chunk with no more than 2 Switch
Positions, this 3-tuple is encoded into a FSF codeword,
including 0-Fill-S-0-Fill, 0-Fill-S-1-Fill, 1-Fill-S-0-Fill and 1-
Fill-S-1-Fill.

SFS: For a continuous 3-tuple in the sequence, if the first
and the third elements are Simple Chunks and the second
element is a Fill codeword, this 3-tuple is encoded into a SFS
codeword, including S-0-Fill-S and S-1-Fill-S.

Literal: If a Literal Chunk survives after the encoding
procedure above, it is called a Literal codeword with a “0” bit
added as shown in Fig. 4.

For easy understanding, let symbol [F] be Fill codeword, [L]
be Literal codeword.

So far, the whole process of SPLWAH compression has
finished. The result of the encoding scheme consists of Fill,
Literal, FS, SF, FSF and SFS codewords.

D. Bit-Represented Codebook

In this subsection, the final result of every codeword is
represented by 4 bytes. The first four bits of word are used as a
header of codeword. The details are shown as follows:

Fig. 3. A Fill codeword.

The first bit of Fill codeword is set to “1” and the second bit
(“t”) is used to encode Fill codeword type (“0” means 0-Fill
codeword while “1” means 1-Fill codeword). Only the lowest
byte will be used because of the 4,096-bit-long segment in the
later experiments as shown in Fig. 3. However, it is easy to find
that a Fill codeword actually has 23 bits for storing a counter.

Fig. 4. A Literal codeword.

For Literal, a “0” bit is added before the 31 bits as the flag
for identifying as shown in Fig. 4.

For FS, SF, FSF and SFS codewords, the third and fourth
bits of the codeword are used to identify the types of the
codewords. Especially, the first Switch Position can’t be zero
so that FS codeword can be distinguished from Fill codeword.
However, the second, third and fourth Switch Positions are

optional, which is the reason why the number of Switch
Positions used to represent Simple Chunk is no more than four.

a. FS codeword.

b. SF codeword.

Fig. 5. FS and SF for the 2-tuple codewords.

Fig. 5 shows the difference between FS and SF codeword.
The third bit represents the type of 2-tuple codewords (“0”
means FS codeword and “1” means SF codeword) with the
fourth bit set to “0”. The second bit (“t”) is used to encode the
type of the Fill codeword (“1” means 1-Fill codeword and “0”
means 0-Fill codeword).

a. SFS codeword.

b. FSF codeword.

Fig. 6. FSF and SFS for 3-tuple codewords.

As shown in Fig. 6, the 3-tuple codewords make full use of
bits. Actually, the bits to represent the third and the fourth
Switch Positions in 2-tuple codewords are used to carry a new
tuple with the fourth bit set to “1” (“11” means a SFS
codeword and “01” means a FSF codeword considered with the
third bit). For FSF codeword, the 15th bit (“t2”) of the codeword
represents the type of the second Fill codeword while the
following 8 bits are used as the counter of the second Fill
codeword (Fig. 6. b), which is more adaptive to encode Fill
codeword.

V. FINITE STATE MACHINE REPESENTATION FOR SPLWAH

SPLWAH encoding can be regarded as a re-encoding based
on the result of the WAH encoding scheme. The re-encoding
process can also be described as a finite state machine (FSM)
in coding theory [28].

Firstly, two types of codewords from WAH are defined as
follows:

1) Fill: 0-Fill or 1-Fill codeword.

2) Literal: Literal codeword which contains Simple Chunk

in this case.
The FSM model of the encoding procedure with SPLWAH

is shown in Fig. 7, where “Start” is the start state of a bitmap
index compression procedure. The meanings of symbols are
also defined as follows:

1) Symbol “F” stands for codeword Fill.

2) Symbol “S” stands for Simple Chunk.

3) Symbol “L” stands for codeword Literal.

Fig. 7. Finite state machine model of SPLWAH.

The pair (x, y) labels the edge to stand for an action taken at
a shift of states, which means when x is the input from WAH
encoding scheme, the state moves along the corresponding
edge and y is the output to the final result. Particularly, if y
equals “null”, it outputs nothing. If the output is a 2-tuple
codeword or a 3-tuple codeword, e.g. FS codeword and FSF
codeword, y is one symbol like “FS” or “FSF” underlined. If
the outputs are two codewords, e.g. a Fill codeword and a
Literal codeword, y consists of two symbols like “F L”.

According to the FSM, a hardware implementation of
SPLWAH can be easily designed and implement in a FPGA
platform.

VI. EXPERIMENTS AND RESULTS

A. Input / Output Data

In the experiments, the real network flow data from CAIDA
is parsed using libpcap library. Internet trace is collected from
a core router and anonymized by CAIDA, which is widely
accepted for the experiments for Internet traffic measurement.
The fields of source IP, source port, destination IP, destination
port and protocol ID are extracted from the pcap archive, and
are saved into a plain text file in columnar way.

The record ID of a file is the same as the Row ID in the
bitmap as shown in Fig. 1, which means a row is corresponding
to a particular record. A row in the file is in the form of
<SRC_IP SRC_PORT DEST_IP DEST_PORT PROTOCOL>.
The total space consumption for a row is 14 bytes (4 bytes for
src_ip, 2 bytes for src_port, 4 bytes for dest_ip, 2 bytes for
dest_port, 4 bytes for dest_ip, 2 bytes for dest_port, 2 bytes for
protocol). Generally, the input data is 14 vectors of bytes.

All in all, the output data for one vector will be one bitmap
with 256 bit sequences as a column. For 14 vectors, there will
be totally 14 bitmaps, or 3584 (14*256) bit sequences.

B. Experiments

In this subsection, the compression process of SPLWAH is
presented. The whole process is roughly divided into three
steps, all of which adopt bitwise operations with high
performance.

1) Step 1. Create a bitmap

Firstly, a vector is created to store the Record ID of each
input. There are totally 13,581,810 packets in this trace. And
then we reorder packets with the mechanism based on the
principle of locality-based hashing used in [15].

After sorting, a sequence of tuples like (input, Record ID),
where the input data listed in ascending order are obtained.
And then, the Record ID is converted into a pair (Chunk ID,
offset).

Now the output data can be easily created by the Chunk ID
and offset including the 14 uncompressed bitmaps with 3,584
bit sequences which are divided into 31-bit-long chunks,
corresponding to the word length of the CPU architecture. As
mentioned before, the bitmap is compressed in each column
with a fixed block size of 3968 (128*31) rows as a segment in
each loop which is also used in [15], generating a series of
result files.

After the first step, bit sequences can be compressed in
parallel.

2) Step 2. Merging (WAH Encoding)

The merging step merges the adjacent homogenous Filled
Chunks into a Fill codeword. And the bit sequence is divided
into 1-Fill, 0-Fill, Literal Chunk (contains Simple Chunk) as
mentioned in [8-9].

Fig. 8. An example of FSF codeword.

3) Step 3. Combining

After the merging step, the bit sequence has been divided
into words. According to SPLWAH, the result of the step 2 can
be compressed with the combination of 2-tuple and 3-tuple

codewords. The rough algorithm is shown in Algorithm 1. And
a more detailed example is shown in Fig. 8.

Fig. 9. The space consumption of the algorithms.

Fig. 10. The compression result of the algorithms.

Algorithm 1: Combining(B, n)

Require: the result of WAH Encoding B and the length n

Ensure: Compressed Bitmap C

1: length ← 0

2: for (i ← 0 to n − 2){

4: if(Combinable(B[i], B[i+1], B[i+2]))

3: // can be combined as a 3-tuple codeword

5: C[length]=Combined(B[i] , B[i+1] , B[i+2])

6: ++i

7: else if(Combinable(B[i] and B[i+1]))

8: // can be combined as a 2-tuple codeword

8: C[length]=Combined(B[i],B[i+1])

9: ++i

10: else

11: C[length]=B[i]

12: end if

13: ++i

14: ++length

15: end for

“Combinable” and “Combined” referred in the algorithm are both

functions which can classify the types of codewords based on WAH Encoding
and do Combine procedure.

C. Results

The length in Dword (4 bytes) of the compressed result is
shown in Fig. 9. There are totally 15,536,413 Dwords in the
final compressed files. The original data size is 13,581,810
multiplied by 14 bytes, equaling to 47,536,335 Dwords. Then
the compression ratio is roughly 32%.

Besides, Fig. 9 shows that the result of SPLWAH reduces
about 24.3% of the storage of PLWAH+ and 37.0% of the
storage of the WAH.

It is obvious that COMPAX performs better than PLWAH
and PLWAH+ when it handles sorted data as shown in Fig. 10.
However, SPLWAH makes up for the shortcomings of the
PLWAH+ and reduce the storage about 23.9% compared with
COMPAX.

Fig. 11. The distribution of codeword(in logarithmic scale).

Fig. 12. The compression result of current state-of-the-art algorithms.

Fig. 13. The compression result of SPLWAH compared with PLWAH.

As shown in Fig. 10, PLWAH, PLWAH+ and COMPAX,
which can be regarded as re-encoding based on WAH, all
perform well in the bitmap index compression procedure.
However, SPLWAH outperforms these algorithms in both
storage and performance perspective.

The statistics distribution of each codeword in all
compressed bitmaps is given in Fig. 11. From left to right, the
labels in the X-axis represents Literal, 0-Fill, 1-Fill, S-0-Fill, S-
1-Fill, 0-Fill-S, 1-Fill-S, 0-Fill-S-0-Fill, 0-Fill-S-1-Fill, 1-Fill-
S-0-Fill, 1-Fill-S-1-Fill, S-0-Fill-S and S-1-Fill-S codewords.

From Fig. 11, it is obvious that the definitions of the 2-tuple
and 3-tuple codewords in SPLWAH encoding scheme are

much more useful in the compression procedure than PLWAH
and COMPAX.

D. Insight of Results

As shown in Fig. 12, it is easy to see that SPLWAH is more
adaptive to the dense bitmap index, especially for sorted data,
and thus improves the compression ratio directly.

As shown in Fig. 13, SPLWAH improves PLWAH in this
case with about a 26.3% reduction in storage space.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present SPLWAH, a bitmap index
compression scheme that compresses bitmaps better than both
PLWAH and COMPAX. According to the statistics of Internet
traffic data, the clustered effect of ones is quite obvious in
generated bitmap indexes because traffic data are composed of
flows with the same five-tuple. As an enhanced PLWAH,
SPLWAH adapts well to this data characteristic with new
designed codebook. Based on real Internet traffic data from
CAIDA, we also conduct several performance evaluation
experiments. The results show that SPLWAH reduces the
space consumption with a factor of 20% or more without
incurring extra encoding and decoding cost. SPLWAH can be
easily applied into query for Internet traffic data. In general,
this work also shows that the design space in bitmap index is
still a fruitful unknown frontier and worth to further explore to
adapt to the different emerging data spaces, such as machine
logs, IoT sensing data and monitoring data etc.

There are still many works need to be done. Future works
includes: Optimizing the performance of SPLWAH
implementation, applying more parallelism in bitmap index
compression and exploiting GPU to accelerate, and giving a
more detailed and accurate analytical model of SPLWAH.

ACKNOWLEDGE

This work is supported in part by Ministry of Science and
Technology of China under 973 Program No.2013CB228206
and No.2012CB315801, NSFC No.61233016 and
No.61472200 and National Training program of Innovation
and Entrepreneurship for Undergraduates with Project
No.201410003033 and No.201410003031.

REFERENCES

[1] Cisco Visual Networking Index Forecast (2011 - 2016).

[2] Wenliang Huang, Zhen Chen, Wenyu Dong, Hang Li, Bin Cao, Junwei
Cao. Mobile Internet Big Data Platform in China Unicom. Tsinghua
Science and Technology, vol. 19, issues 1, pp. 10-16, 2014.

[3] Bao-hua Yang, Ya-xuan Qi, Yi-bo Xue and Jun Li. Bitmap data
structure: Towards high-performance network algorithms designing."
Computer Engineering and Applications 45(15), 2009.

[4] Hector Garcia-Molina, Jeffery D. Ullman, Jennifer Widom, Database
System implementation, Second Edition, Prentice Hall, 2009.

[5] Patrick E. O'Neil. Model 204 architecture and performance. High
Performance Transaction Systems. Springer Heidelberg, 39-59, 1989.

[6] Patrick O'Neil and Dallan Quass. Improved query performance with
variant indexes. In ACM Sigmod Record, vol. 26, no. 2, pp. 38-49.
ACM, 1997.

[7] Antoshekov G. Byte-aligned bitmap compression. Proc of the Conf on
Data Compression. Piscataway, NJ: IEEE, 1994: 363- 098, 1994.

[8] Kesheng Wu, Ekow J. Otoo and Arie Shoshani. Compressing bitmap
indexes for faster search operations." In Scientific and Statistical

Database Management, 2002. Proceedings. 14th International
Conference on, pp. 99-108. IEEE, 2002.

[9] Kesheng Wu, Ekow J. Otoo and Arie Shoshani. Optimizing bitmap
indices with efficient compression. ACM Transactions on Database
Systems (TODS), 31(1), 1-38, 2006.

[10] Guadalupe Canahuate, Michael Gibas and Hakan Ferhatosmanoglu.
Update conscious bitmap indices. 19th IEEE International Conference
on Scientific and Statistical Database Management SSBDM'07, 2007.

[11] Michał Stabno, and Robert Wrembel. RLH: Bitmap compression
technique based on run-length and Huffman encoding. Information
Systems 34, no. 4 (2009): 400-414.

[12] François Deli`ege, Torben Bach Pedersen. Position list word aligned
hybrid: optimizing space and performance for compressed bitmaps. In
Proceeding of the 13th International Conference on Extending Database
Technology, 2010.

[13] Daniel Lemire, Owen Kaser, Kamel Aouiche. Sorting improves word-
aligned bitmap indexes. Data & Knowledge Engineering, 69(1), 3-28,
2010.

[14] Alessandro Colantonio, Roberto Di Pietro. Concise: Compressed ‘n’
composable integer set. Information Processing Letters, 110(16), 644-
650, 2010.

[15] Francesco Fusco, Michail Vlachos, Marc Ph. Stoecklin. Net-fli: on-the-
fly compression, archiving and indexing of streaming network traffic.
Proceedings of the VLDB Endowment, 3(1-2), 1382-1393, 2010.

[16] Witold Andrzejewski, Robert Wrembel, GPU-WAH: Applying GPUs to
compressing bitmap indexes with word aligned hybrid. In Database and
Expert Systems Applications, pp. 315-329, Springer, January, 2010.

[17] Witold Andrzejewski, Robert Wrembel, GPU-PLWAH: GPU-based
implementation of the PLWAH algorithm for compressing bitmaps.
Control & Cybernetics, 40(3), 2011.

[18] Francesco Fusco, Michail Vlachos, Xenofontas Dimitropoulos, and Luca
Deri. Indexing million of packets per second using GPUs. In
Proceedings of the 2013 conference on Internet measurement conference,
pp. 327-332. ACM, 2013.

[19] Fabian Corrales, David Chiu, and Jason Sawin, Variable Length
Compression for Bitmap Indices, in DEXA’11, pp. 381-395, Springer-
Verlag, 2011.

[20] van Schaik, Sebastiaan J., and Oege de Moor. A memory efficient
reachability data structure through bit vector compression. In
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pp. 913-924. ACM, 2011.

[21] Ryan Slechta, Jason Sawin, Ben McCamish, David Chiu and Guadalupe
Canahuate, A tunable compression framework for bitmap indices, In
Data Engineering (ICDE’ 2014), pp. 484-495. IEEE.

[22] A. Schmidt, D. Kimmig, and M. Beine, DFWAH: A Proposal of a New
Compression Scheme of Medium-Sparse Bitmaps, in the
Third International Conference on Advances in Databases, Knowledge,
and Data Applications (DBKDA 2011), pp. 192-195.

[23] Chambi, Samy, Daniel Lemire, Owen Kaser, and Robert Godin. "Better
bitmap performance with Roaring bitmaps." arXiv preprint
arXiv:1402.6407 (2014).

[24] Ma, Ge, Zhenhua Guo, Xiu Li, Zhen Chen, Junwei Cao, Yixin Jiang,
and Xiaobin Guo. "BreadZip: a combination of network traffic data and
bitmap index encoding algorithm." In Systems, Man and Cybernetics
(SMC), 2014 IEEE International Conference on, pp. 3235-3240. IEEE,
2014.

[25] Zhen Chen, Yuhao Wen, Junwei Cao, Wenxun Zheng, Jiahui Chang,
Yinjun Wu, Ge Ma, Mourad Hakmaoui, Guodong Peng, “A Survey of
Bitmap Index Compression Algorithms for Big Data,” Tsinghua Science
and Technology, 20(1), February 2015.

[26] Jiahui Chang et al., PLWAH+: A Bitmap Index Compressing Scheme
based on PLWAH, ACM/IEEE Symposium on Architectures for
Networking and Communication System Design, Los Angeles, CA,
USA, 2014.

[27] Yuhao Wen, Wen-Liang Huang, Zhen Chen, Ge Ma, Junwei Cao,
Wenxun Zheng, Guodong Peng, Shiwei Li, SECOMPAX: a bitmap
index compression algorithm, ICCCN HotData’2014, August 2014.

[28] McEliece, Robert. The theory of information and coding. Cambridge
University Press, 2002.

