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Abstract—Bitmap index is widely used in archiving and 

searching of Internet traffic, which is an essential step for 

analyzing network events in the field of network forensics. 

However, bitmap index requires a large storage space for fast 

searching in archival data. As current state-of-the-art bitmap 

index compression techniques, various encoding algorithms have 

been proposed, e.g. WAH, PLWAH, COMPAX, etc. With the 

advantages of fast query speed and easy implementation, 

PLWAH is an outstanding encoding scheme to encode the sparse 

dirty bits in bitmap index. Unfortunately, for searching Internet 

traffic, the constructed bitmap index can be quite dense locally 

according to the statistics. This is because that Internet traffic are 

usually composed of the flows with the same five tuple (SrcIP, 

SrcPort, DstIP, DstPort, proto). In this paper, SPLWAH is 

proposed to adapt to Internet traffic based on PLWAH. In 

SPLWAH, a new codebook is introduced to fit the characteristics 

of Internet traffic. We also conduct several performance 

evaluation experiments based on real network flow data from 

CAIDA. The results show that SPLWAH reduces the space 

consumption with a factor of 20% or more without incurring 

extra encoding and decoding cost. This work also shows that the 

design space in bitmap index compression is still a fruitful 

unknown frontier and worth further exploring to adapt to the 

emerging data spaces. 
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III.  INTRODUCTION 

A. Bitmap Index 

Bitmap indexing [4-6] was proposed by P'O Neil in 1987, 
and deployed in a commercial database system called Model 
204 for the first time [4]. And it uses a bit vector or a sequence 
of bits to indicate the value of the index whether exists in the 
indexed data, which can efficiently use bit logical operations 
(AND/OR/NOT/XOR, etc.) to answer the complex queries. A 
simple bitmap indexing example is shown in Fig. 1. 

Bitmap index is designed for scientific data and databases. 
The scientific data are usually generated by scientific 
instruments or mathematical simulation, and it is characterized 
by an extremely large amount of data without changing. 
Bitmap index database solves the problem of how to quickly 

identify a small amount of data in a mass of scientific data, 
while traditional relational databases are not suitable for this 
work. 

 

Fig. 1. An example of bitmap index. 

B. Bitmap Index Compression 

In bitmap index based database, data are usually stored in a 
columnar way, where every column is stored together and a 
bitmap index is created correspondently. The core technology 
used in bitmap indexing includes bitmap index compression 
and others. 

 

Fig. 2. The advancement of bitmap index compression algorithms. 

Currently, the representative bitmap index compression 

schemes include BBC [7], WAH [8-9], UCB [10], RLH [11], 



PLWAH [12], EWAH [13], CONCISE [14], COMPAX [15] 

and VLC [19], PWAH [20], VAL-WAH [21], DFWAH [22], 

Roaring Bitmap [23], BREAD [24], etc. GPU 

implementations of WAH and PLWAH are introduced in [16-

18]. A more detailed survey of bitmap index compression 

algorithms is presented in [25]. Fig. 2 also shows the various 

bitmap index compression algorithms appearing in 

chronological order. 

PLWAH has some minor improved versions such as 

APLWAH (PLWAH with adaptive counter), and enhanced 

variants such as PLWAH+ [26]. COMPAX also has minor 

improved versions such as COMPAX with oLSH, COMPAX2, 

and enhanced variants such as SECOMPAX [27]. 

C. Internet Traffic 

With the popularity of Internet applications and mobile 
wireless networks for large-scale commercialization, huge 
amounts of information content greatly enriches users. The 
outbreak of mobile Internet which allows users from anywhere 
and anytime access to any content of the network, results in 
generating more traffic data. The entire Internet traffic 
maintains a rapid growth as a normal Internet company 
generates and accumulates users. Internet traffic is quite large, 
which cannot use gigabit (G) or trillion (T) to measure. Cisco's 
report [1] predicts that Internet traffic data will grow four-fold 
from 2011 to 2016 and reach 1.3 ZB in 2016. Internet traffic is 
a typical streaming data and needs to be explored with big data 
platform based on bitmap indexing [2, 15].  

D. Main Contribution 

For faster retrieval and better space efficiency, bitmap 
indexes are usually sorted in practice. However, It is observed 
that PLWAH does not perform well in the dense bitmap with 
few dirty bit positions, especially when it comes to Internet 
traffic and other sorted data. 

Based on the observation of the compression results of 
current state-of-the-art bitmap index compression algorithms, 
this paper presents a new bitmap index compression technique 
that outperforms PLWAH in both storage and query 
performance perspectives. This new bitmap index compression 
scheme is named as SPLWAH (Position List Word Aligned 
Hybrid algorithm for Sorted data). 

The remainder of this paper is structured as follows. A more 
detailed encoding scheme is provided in Section 2 while 
Section 3 presents a FSM model to describe the encoding 
procedure of SPLWAH. Section 4 shows the experiments 
conducted in real network flow data from CAIDA. Finally, we 
conclude and discuss future research directions in Section 5. 

IV. SPLWAH ENCODING 

A. The Main Idea 

SPLWAH keeps the idea of the “Position List” in PLWAH 

to record “Switch Positions” in Literal Chunk, which is more 

efficient in the case where the fraction of the set bit is not at a 

low level. For isolated “1” in the middle position of a Literal 

Chunk, SPLWAH pays double bits than PLWAH to store its 

position. However, when the number of continuous “1” is 

larger than two, SPLWAH uses less bits to store the positions 

than PLWAH [12]. 

Furthermore, the new definition of Simple Chunk which 
can be piggybacked by Fill codeword abandons the concept of 
the diverse types, which is definitely different from other 
algorithms. 

 At last, the definitions of FSF and SFS codewords perform 
better in cases where the bitmap indexes are sorted well. 
According to a number of experiments, a conclusion can be 
naturally made that SPLWAH is more suitable for the dense 
and clustered bitmap index. 

Details of the definitions and compression processes will be 
discussed in later subsections. 

B. Definitions for Chunks 

The original bitmap consists of columns which have a large 
amount of sequences of bits divided into 31-bit-long chunks to 
ensure they fit into the L1 cache. All processes being carried 
out are based on the chunks, which is more suitable for modern 
CPU architecture. Firstly, each chunk is classified into different 
types as follows: 

0-Filled Chunk: If the 31 bits of a chunk are all “0”, the 
chunk is called “0-Filled Chunk”. 

1-Filled Chunk: If the 31 bits of a chunk are all “1”, the 
chunk is called “1-Filled Chunk”. 

Generally, 0-Filled Chunk and 1-Filled Chunk are two 
types of Filled Chunk. 

Literal Chunk: If a chunk cannot be classified into 0-Filled 
Chunk or 1-Filled Chunk, it is called “Literal Chunk”. 

Switch Position: If the bit before the position is different 

from current one, the bit position is called “Switch Position”. 

Specially, SPLWAH takes the  position of first “1” bit in a 
Literal Chunk as the first Switch Position. Obviously, each 
Switch Position occupies 5 bits to represent the number from 1 
to 31. 

Simple Chunk: If a Literal Chunk can be represented by no 
more than four Switch Positions, it is called “Simple Chunk”. 

C. Definitions for Codewords 

After the categorization of chunks, we begin to encode the 
bitmap roughly into the codewords as shown below: 

0-Fill: If there are some continuous 0-Filled Chunks, 
SPLWAH replaces them with a 0-Fill codeword which 
indicates the number of the replaced chunks. 

1-Fill: If there are some continuous 1-Filled Chunks, 
SPLWAH replaces them with a 1-Fill codeword which 
indicates the number of the replaced chunks. 

Obviously, 0-Fill and 1-Fill are two types of Fill which is 
similar to WAH [8]. 

Furthermore, the 2-tuple codewords are shown as below: 

FS: For a continuous 2-tuple in the sequence, if the first 
element is a Fill and the second element is a Simple Chunk, 
this 2-tuple is encoded into a FS codeword, including 0-Fill-S 
and 1-Fill-S. 

SF: For a continuous 2-tuple in the sequence, if the first 
element is a Simple Chunk and the second element is a Fill, 



this 2-tuple is encoded into a SF codeword, including S-0-Fill 
and S-1-Fill. 

At last, the 3-tuple codewords are shown as follows: 

FSF: For a continuous 3-tuple in the sequence, if the first 
and the third elements are both Fill codewords and the second 
element is a Simple Chunk with no more than 2 Switch 
Positions, this 3-tuple is encoded into a FSF codeword, 
including 0-Fill-S-0-Fill, 0-Fill-S-1-Fill, 1-Fill-S-0-Fill and 1-
Fill-S-1-Fill. 

SFS: For a continuous 3-tuple in the sequence, if the first 
and the third elements are Simple Chunks and the second 
element is a Fill codeword, this 3-tuple is encoded into a SFS 
codeword, including S-0-Fill-S and S-1-Fill-S. 

Literal: If a Literal Chunk survives after the encoding 
procedure above, it is called a Literal codeword with a “0” bit 
added as shown in Fig. 4. 

For easy understanding, let symbol [F] be Fill codeword, [L] 
be Literal codeword. 

So far, the whole process of SPLWAH compression has 
finished. The result of the encoding scheme consists of Fill, 
Literal, FS, SF, FSF and SFS codewords. 

D. Bit-Represented Codebook 

In this subsection, the final result of every codeword is 
represented by 4 bytes. The first four bits of word are used as a 
header of codeword. The details are shown as follows: 

 

Fig. 3. A Fill codeword. 

The first bit of Fill codeword is set to “1” and the second bit 
(“t”) is used to encode Fill codeword type (“0” means 0-Fill 
codeword while “1” means 1-Fill codeword). Only the lowest 
byte will be used because of the 4,096-bit-long segment in the 
later experiments as shown in Fig. 3. However, it is easy to find 
that a Fill codeword actually has 23 bits for storing a counter. 

 

Fig. 4. A Literal codeword. 

For Literal, a “0” bit is added before the 31 bits as the flag 
for identifying as shown in Fig. 4. 

For FS, SF, FSF and SFS codewords, the third and fourth 
bits of the codeword are used to identify the types of the 
codewords. Especially, the first Switch Position can’t be zero 
so that FS codeword can be distinguished from Fill codeword. 
However, the second, third and fourth Switch Positions are 

optional, which is the reason why the number of Switch 
Positions used to represent Simple Chunk is no more than four. 

 

a. FS codeword. 

 

b. SF codeword. 

Fig. 5. FS and SF for the 2-tuple codewords. 

Fig. 5 shows the difference between FS and SF codeword. 
The third bit represents the type of 2-tuple codewords (“0” 
means FS codeword and “1” means SF codeword) with the 
fourth bit set to “0”. The second bit (“t”) is used to encode the 
type of the Fill codeword (“1” means 1-Fill codeword and “0” 
means 0-Fill codeword). 

 

a. SFS codeword. 

 

b. FSF codeword. 

Fig. 6. FSF and SFS for 3-tuple codewords. 

As shown in Fig. 6, the 3-tuple codewords make full use of 
bits. Actually, the bits to represent the third and the fourth 
Switch Positions in 2-tuple codewords are used to carry a new 
tuple with the fourth bit set to “1” (“11” means a SFS 
codeword and “01” means a FSF codeword considered with the 
third bit). For FSF codeword, the 15th bit (“t2”) of the codeword 
represents the type of the second Fill codeword while the 
following 8 bits are used as the counter of the second Fill 
codeword (Fig. 6. b), which is more adaptive to encode Fill 
codeword. 



V. FINITE STATE MACHINE REPESENTATION FOR SPLWAH 

SPLWAH encoding can be regarded as a re-encoding based 
on the result of the WAH encoding scheme. The re-encoding 
process can also be described as a finite state machine (FSM) 
in coding theory [28]. 

Firstly, two types of codewords from WAH are defined as 
follows: 

1) Fill: 0-Fill or 1-Fill codeword. 

2) Literal: Literal codeword which contains Simple Chunk 

in this case. 
The FSM model of the encoding procedure with SPLWAH 

is shown in Fig. 7, where “Start” is the start state of a bitmap 
index compression procedure. The meanings of symbols are 
also defined as follows: 

1) Symbol “F” stands for codeword Fill. 

2) Symbol “S” stands for Simple Chunk. 

3) Symbol “L” stands for codeword Literal. 

 

Fig. 7. Finite state machine model of SPLWAH. 

The pair (x, y) labels the edge to stand for an action taken at 
a shift of states, which means when x is the input from WAH 
encoding scheme, the state moves along the corresponding 
edge and y is the output to the final result. Particularly, if y 
equals “null”, it outputs nothing. If the output is a 2-tuple 
codeword or a 3-tuple codeword, e.g. FS codeword and FSF 
codeword, y is one symbol like “FS” or “FSF” underlined. If 
the outputs are two codewords, e.g. a Fill codeword and a 
Literal codeword, y consists of two symbols like “F L”. 

According to the FSM, a hardware implementation of 
SPLWAH can be easily designed and implement in a FPGA 
platform. 

VI. EXPERIMENTS AND RESULTS 

A. Input / Output Data 

In the experiments, the real network flow data from CAIDA 
is parsed using libpcap library. Internet trace is collected from 
a core router and anonymized by CAIDA, which is widely 
accepted for the experiments for Internet traffic measurement. 
The fields of source IP, source port, destination IP, destination 
port and protocol ID are extracted from the pcap archive, and 
are saved into a plain text file in columnar way. 

The record ID of a file is the same as the Row ID in the 
bitmap as shown in Fig. 1, which means a row is corresponding 
to a particular record. A row in the file is in the form of 
<SRC_IP SRC_PORT DEST_IP DEST_PORT PROTOCOL>. 
The total space consumption for a row is 14 bytes (4 bytes for 
src_ip, 2 bytes for src_port, 4 bytes for dest_ip, 2 bytes for 
dest_port, 4 bytes for dest_ip, 2 bytes for dest_port, 2 bytes for 
protocol). Generally, the input data is 14 vectors of bytes. 

All in all, the output data for one vector will be one bitmap 
with 256 bit sequences as a column. For 14 vectors, there will 
be totally 14 bitmaps, or 3584 (14*256) bit sequences. 

B. Experiments 

In this subsection, the compression process of SPLWAH is 
presented. The whole process is roughly divided into three 
steps, all of which adopt bitwise operations with high 
performance. 

1) Step 1. Create a bitmap 

Firstly, a vector is created to store the Record ID of each 
input. There are totally 13,581,810 packets in this trace. And 
then we reorder packets with the mechanism based on the 
principle of locality-based hashing used in [15]. 

After sorting, a sequence of tuples like (input, Record ID), 
where the input data listed in ascending order are obtained. 
And then, the Record ID is converted into a pair (Chunk ID, 
offset). 

Now the output data can be easily created by the Chunk ID 
and offset including the 14 uncompressed bitmaps with 3,584 
bit sequences which are divided into 31-bit-long chunks, 
corresponding to the word length of the CPU architecture. As 
mentioned before, the bitmap is compressed in each column 
with a fixed block size of 3968 (128*31) rows as a segment in 
each loop which is also used in [15], generating a series of 
result files. 

After the first step, bit sequences can be compressed in 
parallel. 

2) Step 2. Merging (WAH Encoding) 

The merging step merges the adjacent homogenous Filled 
Chunks into a Fill codeword. And the bit sequence is divided 
into 1-Fill, 0-Fill, Literal Chunk (contains Simple Chunk) as 
mentioned in [8-9]. 

 

Fig. 8. An example of FSF codeword. 

3) Step 3. Combining 

After the merging step, the bit sequence has been divided 
into words. According to SPLWAH, the result of the step 2 can 
be compressed with the combination of 2-tuple and 3-tuple 



codewords. The rough algorithm is shown in Algorithm 1. And 
a more detailed example is shown in Fig. 8. 

 

Fig. 9. The space consumption of the algorithms. 

 

Fig. 10. The compression result of the algorithms. 

Algorithm 1: Combining( B, n) 

Require: the result of WAH Encoding B and the length n 

Ensure: Compressed Bitmap C 

1:   length ← 0 

2:   for (i ← 0 to n − 2 ){ 

4:   if( Combinable(B[i], B[i+1], B[i+2])) 

3:   // can be combined as a 3-tuple codeword 

5:       C[length]=Combined( B[i] , B[i+1] , B[i+2] ) 

6:       ++i 

7:   else if( Combinable(B[i] and B[i+1])) 

8:   // can be combined as a 2-tuple codeword 

8:       C[length]=Combined( B[i],B[i+1]) 

9:       ++i 

10: else 

11:       C[length]=B[i] 

12:  end if 

13:      ++i 

14:      ++length 

15: end for 

“Combinable” and “Combined” referred in the algorithm are both 

functions which can classify the types of codewords based on WAH Encoding 
and do Combine procedure. 

C. Results 

The length in Dword (4 bytes) of the compressed result is 
shown in Fig. 9. There are totally 15,536,413 Dwords in the 
final compressed files. The original data size is 13,581,810 
multiplied by 14 bytes, equaling to 47,536,335 Dwords. Then 
the compression ratio is roughly 32%.  

Besides, Fig. 9 shows that the result of SPLWAH reduces 
about 24.3% of the storage of PLWAH+ and 37.0% of the 
storage of the WAH. 

It is obvious that COMPAX performs better than PLWAH 
and PLWAH+ when it handles sorted data as shown in Fig. 10. 
However, SPLWAH makes up for the shortcomings of the 
PLWAH+ and reduce the storage about 23.9% compared with 
COMPAX. 

 

Fig. 11. The distribution of codeword(in logarithmic scale). 

 

Fig. 12. The compression result of current state-of-the-art algorithms. 

 

Fig. 13. The compression result of SPLWAH compared with PLWAH. 

As shown in Fig. 10, PLWAH, PLWAH+ and COMPAX, 
which can be regarded as re-encoding based on WAH, all 
perform well in the bitmap index compression procedure. 
However, SPLWAH outperforms these algorithms in both 
storage and performance perspective. 

The statistics distribution of each codeword in all 
compressed bitmaps is given in Fig. 11. From left to right, the 
labels in the X-axis represents Literal, 0-Fill, 1-Fill, S-0-Fill, S-
1-Fill, 0-Fill-S, 1-Fill-S, 0-Fill-S-0-Fill, 0-Fill-S-1-Fill, 1-Fill-
S-0-Fill, 1-Fill-S-1-Fill, S-0-Fill-S and S-1-Fill-S codewords. 

From Fig. 11, it is obvious that the definitions of the 2-tuple 
and 3-tuple codewords in SPLWAH encoding scheme are 



much more useful in the compression procedure than PLWAH 
and COMPAX. 

D. Insight of Results 

As shown in Fig. 12, it is easy to see that SPLWAH is more 
adaptive to the dense bitmap index, especially for sorted data, 
and thus improves the compression ratio directly. 

As shown in Fig. 13, SPLWAH improves PLWAH in this 
case with about a 26.3% reduction in storage space. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we present SPLWAH, a bitmap index 
compression scheme that compresses bitmaps better than both 
PLWAH and COMPAX. According to the statistics of Internet 
traffic data, the clustered effect of ones is quite obvious in 
generated bitmap indexes because traffic data are composed of 
flows with the same five-tuple. As an enhanced PLWAH, 
SPLWAH adapts well to this data characteristic with new 
designed codebook. Based on real Internet traffic data from 
CAIDA, we also conduct several performance evaluation 
experiments. The results show that SPLWAH reduces the 
space consumption with a factor of 20% or more without 
incurring extra encoding and decoding cost. SPLWAH can be 
easily applied into query for Internet traffic data. In general, 
this work also shows that the design space in bitmap index is 
still a fruitful unknown frontier and worth to further explore to 
adapt to the different emerging data spaces, such as machine 
logs, IoT sensing data and monitoring data etc.  

There are still many works need to be done. Future works 
includes: Optimizing the performance of SPLWAH 
implementation, applying more parallelism in bitmap index 
compression and exploiting GPU to accelerate, and giving a 
more detailed and accurate analytical model of SPLWAH. 
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