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Abstract—A new prediction model is proposed in 

transient stability analysis based on machine learning in this 

paper. It extracts features ahead from the time point that we 

want to make prediction, which produce an interval to take 

actions. The proposed model also takes network information 

into consideration, and tried to analyze how nodes in power 

grid influence each other. Compared to traditional algorithms 

which just use data from a single node in the past, this model 

has higher prediction accuracy. Logistic regression is chosen 

to be the classifier because the learning parameters can be 

regarded as the significance of variables. At the end, we also 

develop a practical system called RGAS by mixing Hadoop 

and Storm. It can perform learning off-line with high 

throughout, and make predictions on-line with low delay. 
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I. INTRODUCTION  

Since 1970s a series of power blackouts bring huge 
economic losses all over the world. Transient voltage 
stability has become a focus issue in power system 
operation. With the continuing growth in system 
interconnection sizing and loading near to the limits, 
transient voltage stability turns to be more difficult.  

Traditional analysis methods are all based on models 
such as time domain simulation method and transient energy 
function method [1]. Time domain simulation method builds 
a set of higher order differential equations, and when the 
system become more complex, the calculation time to solve 
these equations increases sharply. In addition, the 
parameters in these models have great influence on the final 
results. However, in a practical application, we usually 
make a lot of assumptions making the model to be 
oversimplified. Therefore, we need a new method that can 
both simulate complex system and have higher computation 
speed. 

As Wide Area Measurement System (WAMS) based on 
Phasor Measurement Units (PMU) are widely installed in 

power grid, real-time monitoring of each node becomes 
possible. With these data, we can have situation awareness 
of the whole network and furthermore know if it will remain 
stable or not. Data-based method can fit the relationship 
between input and output without knowing how the real 
system works. Power system is the most complicated 
nonlinear system, machine learning can perform better and 
faster compared to traditional approaches. 

In recent years, the cost of data storage decreases 
significantly, and at the same time, a number of distributed 
computing platforms, such as Hadoop, Storm and Spark, 
make computing tasks can be executed in a distributed 
environment easily. Mahout builds an environment for 
quickly creating scalable performant machine learning 
applications. Thus, big data analysis becomes really easy. 
Since 2006, deep learning becomes a hit which has 
applications in speech recognition, object recognition, etc. 
Data-based approach makes what we used to more 
intelligent and more accurate.  

There have been some previous work that using machine 
learning method to do transient stability analysis, and nearly 
all types of classifiers are applied. [2] shows the suitability 
of support vector machine for transient stability analysis. It 
has high dimensionality of power system data, and tries to 
do sparsity reduction which makes the training process into 
an easier task for MLPs. [3] makes an analysis on voltage 
stability margin firstly, and has the conclusion that voltage 
magnitudes and the phase angles are the best predictors of 
transient stability analysis. Then this paper shows that 
proposed ANN based method can successfully estimate the 
voltage stability margin under both normal operation and N-
1contigency situations. [4] investigates an inductive 
inference method for the automatic building of decision 
trees and the criteria of splitting and stop splitting. 

For the past several years, there are also some works that 
using data-based method to solve Transient Stability 
Analysis(TSA) such as [5][6][7][8][9]. Most of them focus 



on acceleration of learning, and also applies some latest 
achievement in machine learning or pattern recognition area. 

In this paper, we use data-based method to analysis 
transient voltage stability. Different from the previous 
research, we take the influence between the nodes in power 
grid into consideration. Therefore, the features of our 
classifier include not only information from the past, but 
also from the network. The rest of this paper is organized as 
follows. Section 2 introduces how our dataset is produced 
through simulation. In section 3, a delay prediction model is 
proposed and necessity of network information is also 
discussed. In section 4, we developed a system called RGAS 
which can perform off-line learning and on-line prediction. 
Finally, conclusions and some future work are discussed in 
section 5. 

II. DATASET GENERATION AND PREPROCESSING 

As we know, in real power grid, unstable events are 
extremely  rare. Therefore, the stable and unstable samples 
are imbalanced, which may cause bias prediction for 
classifiers. For example, if 99 percent of the all samples are 
stable, the classifier gives stable prediction without any 
learning, which can also get an accuracy at 0.99.  

To avoid this problem, our learning dataset is generated 
from power system simulation software PSASP(Power 
System Analysis Software Package, a simulation software 
developed by China Electric Power Research Institute). We 
choose CEPRI 36-bus system(an example system in PSASP, 
Figure 2.1) which has 36 buses in all, and we choose 9 of 
them to be our targets. These 9 bused are bus16, bus18, 
bus19, bus20, bus21, bus22, bus23, bus29, bus9. 

Considering a specific power system, a list concerning 
all kinds of possible operating conditions and incidents 
based on the operating records and experience is made. 
These concerns include various operating points, load 
compositions (proportions of dynamic load), fault types, 
fault locations, fault clearing time and other possible settings 
of operation. We get a large number of samples by 
combining different fault parameters above. 

Actually, how many cases are enough for practical 
applications depends on the scale and the complexity of the 
specific system. Since a larger system with more buses 
usually includes more possible changes of operation and 
more categories of incidents, the number of cases needed is 
larger as well. In fact, their relationship is non-analytic, 
neither simply linear nor exponential. Given a specific 
region, if internal buses have close connections with each 
other, implying more coupling and interactions, the 
operation conditions may have more possible changes, 
which results in the increasing need of the number of cases. 
On the other hand, if they are far away from each other, 
possible changes of operation conditions could be less than 
the former, and less cases may be needed. In addition, if it’s 
hard to find instability cases in a system under general 
conditions, more extreme and severe situations in practice 
such as cascading failure and higher proportions of dynamic 
load can be taken into account.  

 

Figure 2.1 CEPRI-36 bus system 

After each simulation, the software can export the 
voltage (U), current(I), active power(P) and reactive 
power(Q) of different buses. 

III. MODEL DESCRIPTION 

A. Features  from Network 

In previous works that try to predict transient stability, 
features are just extracted in time domain. With this method, 
only the information from past is used, and what the 
classifier learn is a trend in time line. However, there are 
also much information in the network. All the instability 
events are arisen from some faults or load fluctuations 
somewhere in the power grid. These faults or load 
fluctuations just influenced local voltage at first, and then 
spread to whole system. Thus, data from other nodes also 
contain much information when we want to predict a 
specific node. In our work, we use the information from the 
whole network to predict the stability of a single node. 
Some trends that are not obvious in early stages can be 
found, and further predict the development of the whole 
system. 

B. Delay Prediction 

The ultimate goal of transient stability analysis is to 
realize prediction. We want to take full advantage of the 
data we already have and predict whether the whole system 
will remain stable in the next few seconds or minutes. 
However, in previous works, no one has set an interval 
between prediction moment and the feature period. Because 
the data near the prediction moment includes clear signal of 
whether it will be stable or not, the logic of this method is 
not convincing enough.  

As shown in Figure 3.1, the main contribution of our 
approach is that there is a time interval between prediction 
moment and the feature period, and prediction moment is 
several seconds ahead of feature selection period. By doing 
this, we can discover some indication of instability in early 
stage. After achieving this, we can take full advantage of the 
interval, and further take actions such as SVG to stabilize 
the whole system. 



C. Moving Window 

Because this method will be used in an online system, 
the features are constructed by a ‘moving window’(Figure 
3.1). After the program is started, the data flows into the 
feature matrix successively. When the feature matrix is 
filled up, the classifier begins to output prediction result. As 
time moving forward, not all the features in last moment is 
replaced. The feature period is like a moving window, and 
only the earliest data are discarded. The new data will be 
added at the end. 

 

 

Figure 3.1 Delay prediction and moving window 

IV. CLASSIFIER TRAINING AND RESULTS 

With determining the feature period we discussed in 
section 3,  all the features are: voltage(U), current(I), active 
power(P) and reactive power(Q) at selected buses before 
fault occurrence; U, I, P, Q of the other 8 buses before fault 
occurrence; and we also compute the first derivatives of 
these four variables and tries to reflect their trendency. The 
output variable has been chosen to be the two classes of 
interest: stable(0) or unstable(1). 

A. Feature Selection 

Because of the high dimensionality of the input space, 
feature selection techniques have also been applied to 
achieve a more concise representation of the power system 
and overcome the curse of dimensionality. We use principal 
component analysis (PCA) to perform feature selection. 
PCA is a statistical procedure that uses an orthogonal 
transformation to convert a set of observations of possibly 
correlated variables into a set of values of linearly 
uncorrelated variables, so-called principal components. 

Suppose that we have N samples of n -dimension 

vector x , and each row is a sample, column is 

1 2, , mx x x . We wish to reduce the dimension from n  to 

m . Principal component analysis completes this by finding 

linear combinations,
1 1 2 2, , m ma x a x a x , called principal 

components, which have maximum variance, and subject to 
being uncorrelated with previous principal components. The 
PCA tries to reduce dimensions of data considerably while 
still retaining much of the information in it. 

Specific steps of PCA are derived as follows: 

  Normalize the sample data by: 
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where: 

( )ix  is the mean of 
ix  

( )ix  is the standard deviation of 
ix  

 Compute the covariance matrix of sample data after 
normalization: 

TXX  

 Compute the eigenvalues and eigenvectors of 
TXX  and sort all eigenvalues. Select the 

corresponding eigenvectors the biggest m  
eigenvalues as principal component orientation. 

1 2, , m  
 

 Then we compute the projection of sample data on 
principal component (also the compressed data): 

1 2( ) [ , , ]m Ty t X  
 

Figure 3.2 shows the visualization of 9 buses after 
PCA(2 principal components), black represents unstable 
samples and yellow represents stable samples. As we can 
see, two groups of samples are obviously separated, which 
makes the classification possible.  



 

Figure 3.2 Visualization of 9 buses after PCA 

 

B. Logistic Regression 

About the selection of classifiers, there are many 
candidates, such as SVM, Adaboost, Naïve bayes, logistic 
regression, etc. We finally choose logistic regression. 
Logistic regression can be seen as a special case of 
generalized linear model, and it is categorical and designed 
to deal with dependent variables. The advantage of logistic 
regression compared to other classifiers is that the learning 
parameters have physics meaning. There learning 
parameters can be taken as the significance of each variable, 
and we can finally discover which variable or which node is 
more important than the others. Such information can help 
us to further improve the structure of system. 

C. Classification Results 

All the samples are divided into training set and 
validation set. We also applied 10-fold cross validation to 
make full use of all samples.  

About the evaluation criterion, besides accuracy, we also 
use F1 value, which is a classical criterion in machine 
learning. It balances the precision and recall, and it is 
computed as follows: 
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And the accuracy and F1 value of all 9 bused are presented 

in Table 4.1 

TABLE 4.1 Classification results 

 

Bus Bus16 Bus18 Bus19 Bus20 Bus21 

Accuracy 0.98 0.96 0.78 0.99 0.82 

F1 value 2.42 1.66 1.82 1.70 1.64 

 

BUS Bus22 Bus23 Bus29 Bus9 

Accuracy 0.84 0.82 0.98 0.78 

F1 value 2.15 1.83 1.68 2.32 

 

V. OFF-LINE LEARNING AND ON-LINE PREDICTION 

Real-time Grid Analysis System (RGAS) is a platform 
to analyze grid data and predict grid behavior by machine 
learning algorithm as described above. The basic 
requirements for RGAS is to process grid data in real-time. 
Supervised learning is adopted in GRAS. Considering the 
data features and learning process, the problem settings of 
RGAS are listed as below: 

 Real-time analysis of grid status stream data. The 

grid data is generated in real-time and RGAS 

should continuously analyze the stream data and 

respond the predicted behavior before the actual 

grid behavior actions. 

 Fast training of online grid dataset. The 

conventional training dataset of supervised 

learning is batched and offline. In RGAS, the 

evolvement of grid behavior patterns are taken 

into account. Online data is appended to training 

dataset to incorporate grid behavior pattern 

transition. 

 Real-time analysis model update. The training 

process constantly updates the analysis model. The 

analysis process should consequently updates the 

model parameters or adopts the new model. 



 Basic requirements for big data analysis including 

high performance, high availability and fault-

tolerance. 

Based on the problem settings above, RGAS adopts the 
following software projects to construct the distributed data 
analysis platform. 

 Hadoop HDFS: grid data storage for training 

 Spark: fast machine learning to train the analysis 

model 

 Storm: real-time process for grid stream data 

 Kafka: data channel for data and model exchange 

between training and analysis modules 

 D3.js: data visualization in web frontend 

The architecture of RGAS is shown as the Figure 5.1. 
The initial offline training data is stored in HDFS. The 
initial model is trained by spark and installed into real-time 
analysis storm platform. The online analysis module can be 
segmented into 2 sections: data spout and analysis bolt. Data 
spout is to gather online grid data and transfer to data 
storage module. Analysis bolt is to analyze the grid data by 
latest model. During the process, the online data is 
transferred through kafka data pipeline to retrain the model 
and the updated model is responded to the analysis bolt. The 
data visualization module runs as web server which renders 
the grid status chart with the stream data and results.  

Online Data 
Source

Data Spout Analysis Bolt

Java 
Web 

BackEnd

Data 
Visulization

Storm

Spark Training 
Module

storm training set to spark
spark training model to storm 

Hadoop HDFS

 

Figure 5.1 Architecture of RGAS 

VI. CONCLUSIONS 

A voltage stability prediction scheme based on machine 
learning has been presented in this paper. Our main 
contribution is that we introduce the information of the 
network and consider how different nodes in system 
influences each other rather than just extract features in time 
domain. This model also put a time interval between feature 
period and prediction moment, which makes remedial 
measures possible.  

Our future work will focus on how to describe the 
network accurately and how to present these information in 
machine learning. At present, features are just voltage, 
current, active power, reactive power and their derivatives 

which seems to be relatively simple. Next we will develop 
more complex features such as frequency, flow direction of 
reaction power, etc. 
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