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Abstract—We proposes a data-driven approach for voltage 
sag diagnosis in this paper. Rather than traditional features such 
as frequence, amplitude and duration, we apply temperal 
distribution as a new feature to distinguish whether the sag is 
caued by power system faults or heavy load switching. Sags 
caused by these two reasons have different distribution pattern, 
and this work interprets it from a number of perspectives. We 
also perform voltage sag source location by clustering. This 
approach don’t use any physical level analysis and can find the 
fault source faster. 
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I. INTRODUCTION 
Ideal waveforms of power systems should be perfect sine 

waves with constant frequency. In three phases AC, the voltage 
and current of each phase are expected to have the same 
amplitude, symmetric phases. However, because the 
nonlinearity and asymmetry of generators, transformers and 
circuits, all the parameters in power systems may not meet with 
the design. Additionally, outside interference, wrong operation 
and load unbalance intensify the power grid to deviate from 
normal. In reality, power quality problems can make a threat to 
the safety and stability to the whole power grid, and result in 
financial loss. 

Voltage sags have been present in power systems for many 
years, but only recently catch researchers' attention due to the 
inconvienience caused by them. Nowadays, many devices in a 
factory are using microcontrollers, which have high 
requirements for power quality. Possible consequences of poor 
power quality include unexpected power supply failures, 
equipment failures or malfunctioning, overheating, or damage 
to sensitive equipments such as PCs, workstations, and 
controllers. 

Among power quality problems, voltage sags are the most 
common ones, which take about 60 percent. According to the 
IEEE definition, a voltage sag is a momentary reduction (i.e., 
0.5-30 cycles) in the supply voltage between 10 and 90 percent 
of the nominal voltage[1][2]. There are 3 important indexes in 
evaluating voltage sags: amplitude, duration and frequency. 
Sag amplitude is the ratio of effective voltage value when sag 
occurs and nominal effective voltage value. Duration is the 
lasting time between sag starting and ending. Sag frequency is 
the number of times per unit the sag occurs. 

Voltage sags are causing billions of financial loss in 
America every year. The main causes of voltage sags can be 
divided into two classes: system failures and non-system 
failures. System failures are short circuit and ground 
connection mostly caused by thunderstorm, strong wind, and 
other external forces. System failures also have two types: 
recoverable failures and permanent failures. Recoverable 
failures always last for a short time, and the voltage will come 
back to normal when interference factors disappear. In contrast, 
permanent failures make protective device work and then 
automatically reclose. If the reclose is successful, there will be 
only interruptions (or deep sags) for a short time. Non-system 
failures mostly refer to heavy load starting, especially large 
motors. 

The purpose of voltage sag diagnosis can be mainly divided 
into two groups, to find the fault causes and to locate the sag 
source. Traditional methods to study voltage sags is by 
experiment and simulation. Researchers impose a failure into 
the simple system they build themselves, and then measure the 
wave forms and frequency to extract the characteristics. 
However, the actual system is much more complicated. The 
existing model can’t take all factors into consideration and is 
excessively simplified. The data-driven approach can be 
applied to solve this problem. This approach regards  
complicated systems as a black box to focus on inputs and 
outputs. Nowadays, with PMUs and all types of instruments 
are widely installed in smart grid, it is easy get status 
information. How to use data to enhance power quality and 
further improve security and stability is the key issue. 

There have been some researchers that try to analyze power 
quality based on data analysis. A classification method is 
proposed in [3] to locate sag sources based only on the voltage 
magnitude and phase-angle jump. A new approach for power 
quality time series data mining is presented in [4] using S-
transform based fuzzy expert systems (FES). Power quality 
events are classified in [5] using Wavelet Packet Transform 
(WPT) and Support Vector Machines (SVM). Features of 
disturbance signals are extracted using WPT and input to the 
SVM for effective classification. All these methods have two 
problems: 

• using too much circuit level analysis, which doesn’t 
take full advantage of machine learning algorithms; 

• features are too complicated, and further interpretion 
can’t be easily performed. 



 

In this paper, comprehensive statistical analysis is 
performed based on voltage sag data from the Shenzhen city in 
China. Except common features such as sag magnitude, 
duration and frequency, we extract new features about how 
sags are distributed in time. Based on all these features, a 
decision tree is finally built to determine the cause of a new 
voltage sag. In section 3, we proposed a new method to locate 
voltage sag source totally based on data clustering. 

II. DATA FEATURES 
We get voltage sag data of Shenzhen from 2010 to 2012 for 

3 years. Since many big companies have factories in Shenzhen, 
industrial power consumption takes 62.1% of total power 
consumption, which bring high requirements for power quality. 

To improve power quality, Shenzhen has installed power 
quality monitors in all 110kV and 220kV substations. The data 
we get have 22000 records in all, and in each record, there are 
7 dimensions, including substation, bus, phase, event type, start 
time, duration and amplitude. 

A. Asymmetry in Three Phases 
Voltage sags are always accompanied with asymmetry in 

three phases. Two main causes of voltage sag are transmission 
line fault and heavy load switching.  

Transmission line faults can be divided to 1-phase earth, 2-
phase earth, 3-phase earth, 2-phase short circuit and 3-phase 
short circut. Except for 3-phase earth faults, the others all lead 
to voltage sags with asymmetry in three phases. The work [6] 
discusses shares and features of different transmission fault 
types in transmission systems. In the work [7] why asymmetry 
exists from a physical perspective is discussed. 

Shenzhen is located in a coastal region, which belongs to 
sub-tropical maritime climate. Such climate makes thunders 
frequent and great impact to transmission lines. Thunders lead 
to insulator arc-over and short circuits. 

B. Amplitude and Duration 
Different types of voltage sags are caused by different 

external reasons. And whether they can show different features 
in amplitude and duration will be discussed in this chapter. 

Figure 1 shows the magnitude of measured voltage sags in 
Shenzhen. Most of the voltage sags are 0-10% of nominal 
voltage (momentary interruptions). Because detectors in 
Shenzhen only takes 0-80% of nominal voltage as voltage sags, 
data between 80% and 100% are not recorded. In fact, 
according to the analysis in paper [8], voltage sags between 
80% and 100% should be the majority. 

 
Fig. 1. Shares of different magnitudes of voltage sags 

The length of duration not only has connected with the type 
of events but also the protective devices in the system. For the 
data of Shenzhen, there is no sag last for over 10 seconds 
because of protective device actions. Furthermore, the duration 
mostly concentrates below 1 seconds, so using log plot will 
have better effects. 

Figure 2 shows the frequency histogram of three-phase sags. 
The height of bar represents number of events.There are two 
clusters. One is at top left, which equals to shallow depth and 
short duration. The other is at bottom right, which equals to 
deep depth and long duration. 
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Fig. 2. Frequency histogram of three-phase sags 



 

Figure 3 shows the frequency histogram of events in which 
one phase sags and two phases swell. It can be found that most 
events have deep depth (<40%). There is a line near at duration 
of 1 second, which may be caused be protective devices. 
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Fig. 3. Frequency histogram of one phase sags and two phases swell 

Figure 4 shows the frequency histogram of events in which 
two phase sags and the other phase remains. There is just peak 
in area where amplitude is between 60-80% and duration is 
below 0.1 seconds. Because the kind of events is caused by 
interphase short circuit, it can be inferred that most interphase 
short circuit faults remain for a short time and don’t have 
severe impact in the whole system. 
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Fig. 4. Frequency histogram of  two phases sags and the other phase remains 

Based on all the analysis in this chapter, Figure 5 is a 
summary of all the conclusions. Because sags caused by 
different reasons share different characteristic in amplitude and 
duration, we can make a simple judgement using amplitude 
and duration. In this plane, the whole plane is divided into four 
quadrants. Every quadrant has its most possible cause. Of 
course, all the boundary are absolute.  

 
Fig. 5. Cause classification by amplitude and duration 

C. Temporal Distribution 
Voltage sags caused by different reasons also display 

different characteristics in happening time. Because the record 
of each sag is low, effective information is limited. If some 
features can be extracted from temporal distribution, 
classifications can be more accurate. 

Figure 6 shows the temporal distribution in one day.  Figure 
6(a) is the analytical result of three phase sags. There are 2 
peaks at 10 o’clock (10a.m.) in the morning and 15 o’clock 
(3p.m.) in the afternoon. Number of events gets bottom at night 
from 0 to 8 a.m. In comparison, Figure 6(b) is the analytical 
result of one phase sags. What is apparent is that it is equally 
distributed, and no obvious peaks and bottoms. 

According to analysis in previous part, three phase sags are 
mostly caused by heavy load switching. The factories who owe 
big motors produce only in working hours, and there will two 
peaks in morning and afternoon separately. One-dimension 
sags are mostly caused by transmission line faults, which is due 
to external force, especially thunder. These factors don’t show 
characteristic in temporal distribution. For example, thunder 
and strong wind won’t happen at exact time in one day, and 
thus leads to a uniform distribution. 

In Figure 6(b), there are still two less obvious peaks in 10 
and 15. Because the three phase of big motors may be 
asymmetry, big motor starting also leads to one-dimension sags. 
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(a) three-phase sags 
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(b) one-phase sags 

Fig. 6. Temporal distribution in one day 

Besides temporal distribution in one day, temporal 
distribution in year also has certain regularity. Figure 7(a) 
shows the temporal distribution of three phase sags in a year. 
There is one peak in July. Before July, the number of events 
increase month by month, and after July, it decreases. This 
accords perfectly with the distribution of thunders in one year. 
In contrast, Figure 7(b) is the temporal distribution of one 
phase sags, which has no obvious regularity and characteristic. 
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(a) three-phase sags 
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(b) one-phase sags 

Fig. 7. Temporal distribution in one year 

In conclusion, temperal distribution can be used as a new 
feature to judge the source of a voltage sag. Since power 
system faults caused by external force can happen at any time 
in a day but have higher probability in summer. In contrast, 
sags caused be heavy load swithching could only happen at 
work hours, and at the same time, won’t show any pattern in a 
year.  

III. CLASSIFICATION WITH NAÏVE BAYESIAN 
After getting all the features in Section II, it is important 

to choose a classifier to comprehensively utilize all the 
imformation. Naïve Bayes is a classification algortithm which 

can deal with both continuous and non-continuous features. 
Suppose that we have m  causes of voltage sags 

1 2, , mω ω ω  
with a specific observation of an event x , we want to find the 
max posterior probability 

max ( | )
i iP xω  

where 1 2( , , )nx x x x=  ,and each dimension corresponds to 
a feature. The posterior probability is computed by Bayes 
formula 

( | ) ( )( | )
( )
i i

i
P x PP x

P x
ω ωω =  

with assumption that all the features are independent, we have 

1 2( | ) ( | ) ( | ) ( )( | )
( )

i i n i i
i

P x P x P x PP x
P x

ω ω ω ωω =


 

Therefore, we only need to know the prior probability (also 
the shares of different causes) and likelihood (discussed in 
Section 2). 

After applying these to the data in Shenzhen, we get a 
classification accuracy of 0.87. 

IV. VOLTAGE SAG LOCATION 
Voltage sag location is not a new issue on power system 

research[9][10][11]. Only the specific the locations of faults 
are got, we can perform some remedial measures. The 
locations that have faults frequently can be regarded as 
“important locations”, and some preventive measures can be 
installed at these places. 

Traditional location methods are all implemented based on 
the analysis at the circuit level. In fact, the pattern of voltage 
sag spread have natural time sequence. A series of events 
caused by the same source are close to each other in timeline, 
and the events caused by different sources are far from each 
other. This characteristic is fit for clustering. In addition, 
frequency is also a good indicator to distinguish if they are 
belong to the same group. Therefore, we use occurrence time 
and frequency to achieve a k-means clustering. 

After all the events are clearly divided into different groups, 
and how to pick up the source event is the next issue. Because 
the occurrence time in the same group are extremely close, 
which may result from measuring errors, we cann’t simply use 
time to judge which is the first one. 

We use graph theory [12] to locate the voltage source. If 
two points in a power system are directly connected, we define 
their distance is 1. If they are not directly connected, but can 
get each other by a third point, their distance is 2 and so on. 
After getting the topology structure of a system, we can build a 
distance matrix as below: 
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 The center point can be determined be two criterions: 

 Sum of distance 

1
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i j
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∑  

 Variance of distance 
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d d

= ≠
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These two criterions are also intuitive. Sum of distance can 
measure whether a point is at a central position. If a point is on 
the edge, a number of points will be far from it, and thus the 
sum will high. At the same time, due to the point that are close 
to it, the variance will be high. 

In this section, we perform a clustering method to locate the 
sag source. Because of the natural sparsity of events in timeline,  
sags caused by the same source are close to each other. After 
dividing them into different groups, a distance matrix is 
constructed to find the central point, which is also the source 
location. 

V. CONCLUSIONS 
This paper presents a comprehensive data-driven voltage 

sag diagnosis. Except for traditional features such as  
asymmetry, amplitude and duration, we also discover the 
different pattern in temporal distribution caused by  power 
system fault and heavy load switching. A Naïve Bayes 
classifier is trained using all the features, and achieve an 
accuraccy of 0.87. In Section 4, a new method on sag source 
location algorithm is propose. Due to the natural sparsity of 
events in timeline, we simply accomplish the clustering by 
occurance time. After the events are divided into groups, the 
distance matrix is used to find the central point, and also the 
source location. 

Unlike the other data mining work, all the features and 
results are instuitive and accord with our common sense and 
experience. Since without labels of which points are the 
sources, we can’t test the effectiveness of our approach. In 
future work, we will generate data by power simulation 
software to test the effectiveness. 
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