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Abstract—Virtual Synchronous Generator (VSG) control 
strategy is a research hotspot at present, which simulates the 
operating characteristics of conventional generators and 
brings stability to renewable energy power system. To solve the 
difficulties in parameters tuning for a VSG, this paper presents 
a data-driven approach to meet achieve better frequency 
response against disturbances. In the proposed approach, the 
virtual moment of inertia and virtual Damping factor are 
provided by a reinforcement learning agent. In the reward 
function, the deviation of frequency, the rate of change of 
frequency (ROCOF) and the settling time are all considered 
simultaneously. To maximum the reward, this paper employs 
the Deep Deterministic Policy Gradient (DDPG) algorithm, 
whose action space is continuous. Finally, numerical validation 
in MATLAB/Simulink confirms the validity of the algorithm. 
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INTRODUCTION 
With the extensive application of renewable energy 

generation and its characteristics of randomness and 
volatility, the stable operation of the power system is 
confronted with great challenges [1], [2]. The improve the 
stability of the system, the grid-forming control draws more 
and more attention both in scientific literature and industry-
oriented research. The voltage-source converters (VSCs), 
which connect renewable energy and power systems, are 
able to form the system voltage and frequency under grid-
forming control strategy. Various strategies are proposed, 
among whom virtual synchronous generator (VSG) is the 
hottest research spot. 

As the name shows, VSG aims to mimic the inertia and 
damping characteristics of synchronous generators (SGs) [3], 
[4]. Not only that, an advantage of VSG compared to SG is 
its flexibility. In SGs, since the rotor mass is fixed, the 
available inertia is also fixed. While in VSG, since it is 
literally a control algorithm, which is executed by a software, 
its parameters can be made adaptive to the system design [5]. 
Since the dynamic response of the VSG is directly related to 
its parameters, research on parameter self-tuning has been an 
active area in recent years. Current work can be divided into 
two main categories: model-based and model-free methods.  

The mode-based method depends on the accurate system 
model to develop a certain adaptive law for tuning. In [6], an 
adaptive virtual inertia control method is proposed to 
improve the dynamic performance of the system. In [7], both 
virtual inertia and damping are taken into consideration. The 
effect of control parameters on output power and frequency 
have been intuitively studied in [8] and a strategy with the 

features of short response time and small overshoot is 
proposed. 

The mathematical relationship and the interaction 
between a VSG and other part of a grid are often 
complicated. And the exact model may not work well if the 
structure is changed. Model-free methods, relying on data 
measurements instead of the model or structure of the system, 
have become an attractive alternative approach. An RBF 
network is applied to adjust the parameters in [9], which 
shows a good dynamic performance and verifies the 
powerful ability of machine learning (ML). An effective and 
hot research spot among all model-free methods is 
reinforcement learning (RL). In [10], Q-learning is adopted 
to adjust the VSG parameters when frequency changes. 
However, the state space and action space are discrete in Q-
learning, which relies on a lookup table to store Q-value for 
each state-action pair. As a result, when state space and 
action space expands, its performance tends to degrade 
significantly. A DQN algorithm is proposed in [11], which 
replaces the Q-table with a neural network. But the action 
space remains discrete. A DDPG algorithm is applied in [12] 
but the reward function is designed without considering the 
rate of change of frequency. 

Motivated by the above, this paper proposed a RL-based 
parameters self-tuning strategy for a VSG. The main 
contributions of the work are summarized below: 

• A DRL based adaptive controller is designed, 
which adjusts the virtual inertia and damping 
flexibly when operating condition changes; 

• Compared with traditional VSG control method, the 
proposed DDPG method shows better dynamic 
performance. 

• The reward function of DDPG takes ROCOF into 
consideration and the results are compared with 
method in [12]. 

The rest of the paper is organized as follows. The 
structure and principle of VSG are introduced in section II. 
Section III provides a brief introduction of reinforcement 
learning and DDPG algorithm. In section IV, the results of 
simulation carried out in Simulink using proposed method is 
discussed, which verifies the effectiveness of the proposed 
strategy.  

 PRINCIPLE OF VIRTUAL SYNCHRONOUS GENERATOR 

A. Distributed System with VSG Control 



 
Fig. 2. VSG control system 

 
Fig. 3. Control model of VSG 

 
Fig. 1. SG governor workflow 

 
Fig. 4. Virtual governor module 

The basic VSG control system is shown in Fig. 1, where 
𝐿𝐿𝑟𝑟  and 𝐶𝐶𝑟𝑟  are respectively the filter inductance and filter 
capacitance of the inverter, 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the line impedance of the 
inverter output to the AC bus, 𝑃𝑃 and 𝑄𝑄 are respectively the 
active power and reactive power output. The power supply 
on the DC side represents distributed power supplies such as 
photovoltaic and energy storage system. And the AC side 
can either operate in off-grid mode to support local loads, or 
provide inertia to the grid in grid-connected mode.  

The basic VSG control typically consists of an active 
power loop and a reactive power loop. The controller 
collects voltage and current information from the AC side 
and calculates them to obtain the reference signals required 
by PWM generation module to control the converter on and 
off. 

B. Active and Reactive Power Loop 
The virtual inertia is derived from the use of swing 

equation of a SG into the active power loop, which can be 
expressed as: 

 �
𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑙𝑙 = 𝐽𝐽𝜔𝜔0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐷𝐷𝜔𝜔0(𝜔𝜔0 − 𝜔𝜔)

𝜔𝜔 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1) 

where 𝑃𝑃𝑚𝑚  and 𝑃𝑃𝑙𝑙  are mechanic power and output active 
power, 𝐽𝐽  is the moment of inertia, 𝐷𝐷  is the damping 
coefficient, 𝜔𝜔0 and 𝜔𝜔 are rated angular frequency and output 
angular frequency of the VSG, respectively. By simulating 
the second-order model of the rotor, converters under VSG 
control can simulate the virtual moment of inertia and virtual 
damping when disturbance occurs. The control module 
established according to Formula (1) is shown in Fig. 2. 

An important function of SG is to participate in the 
primary frequency modulation of the power grid, which is 
achieved by a governor. Fig. 3 shows the basic workflow of 
a traditional SG governor. When the frequency deviates from 
the rated frequency, the signal is transmitted to the governor, 
and the governor action changes the mechanical power input 
by the prime mover, thus adjusting the generator speed to 
track the rated frequency of the power grid. 

The static regulation equation of SG can be expressed as: 

 𝐾𝐾𝑓𝑓(𝜔𝜔0 − 𝜔𝜔) + (𝑃𝑃𝑚𝑚 − 𝑃𝑃0) = 0 (2) 

where 𝑃𝑃0 is active power reference, 𝐾𝐾𝑓𝑓  is the frequency 
adjustment coefficient, which can be also regarded as the P-f 
droop coefficient.  

By simulating the speed regulation of SG, VSG can 
participate in the primary frequency modulation of power 
system. And it is also conducive to the parallel operation of 
multiple virtual synchronous generators and the realization 
of active power distribution. The virtual governor module is 
shown in Fig. 4.  

Regarding the simulation of the electromagnetic equation 
of the stator of synchronous generator, the researchers have 
different opinions. This paper focuses on the effects of 
virtual moment of inertia and virtual damping coefficient on 
active power and frequency. In order to reduce the 
complexity of the problem, electromagnetic equations are 
not considered. Therefore, the reactive power loop only 
adopts the reactive power-voltage droop control equation, 
which simplifies the model and ensures the ability of primary 
voltage regulation. It can be expressed as: 

 𝐾𝐾𝑢𝑢(𝑄𝑄0 − 𝑄𝑄) + (𝑈𝑈0 − 𝐸𝐸) = 0 (3) 

where 𝑄𝑄0  and 𝑄𝑄  are the reactive power reference and 
reactive power output, 𝐾𝐾𝑢𝑢  is the voltage adjustment 
coefficient as well as the Q-V droop coefficient. The reactive 
power control module is shown in Fig. 5. 

DEEP DETERMINISTIC POLICY GRADIENT ALGORITHM 
In this paper, an agent trained by DDPG algorithm is 

applied for parameter adaptive control of VSG. The key 
parameters 𝐽𝐽  and 𝐷𝐷  in VSG control are automatically 
adjusted in the operation by the agent.  



 
Fig. 5. Reactive power control module 

 

Fig. 6. Detailed DDPG agent 

A reinforcement learning problem can be described as a 
Markov Decision Process (MDP), which consists of a set of 
interacting objects, the agent and environment. A 
reinforcement learning agent can make decisions by sensing 
the state of external environment, take actions and adjust 
decisions through the feedback of the environment. The 
environment refers to all things outside the agent in the MDP 
model, the state of whom is changed by the actions of the 
agent. The changes can be fully or partially perceived by the 
agent. A positive change may give a reward to the agent 
while a negative one can bring a punishment, causing the 
agent to adjust accordingly.  

MDP can be described as a tuple 〈𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅〉, where: 

• 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑑𝑑} stands for the state space, which 
can be either discrete or continuous. It refers to the 
state of environment observed by the agent. In this 
paper, the state 𝑆𝑆  at each time step 𝑡𝑡  can be 

described as 𝑠𝑠𝑑𝑑 = �𝑃𝑃𝑑𝑑 ,𝜔𝜔𝑑𝑑 ,
𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑
� , where 𝑃𝑃𝑑𝑑  is the 

active power output, 𝜔𝜔𝑑𝑑  is the output angular 

frequency, 𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

 is the ROCOF. 

• 𝐴𝐴 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑑𝑑}  stands for the action space 
taken by agent, which can be either discrete or 
continuous. 𝑎𝑎𝑑𝑑  refers to the action produced by 
agent decision at each time step 𝑡𝑡. After each action, 
the environment will enter the next state. The action 
𝐴𝐴 in this paper consists of the virtual moment of 
inertia 𝐽𝐽 and the virtual damping 𝐷𝐷. 

• 𝑃𝑃 refers to the transfer probability function, which 
represents the possibility that the system moves to 
the next state after the agent takes a certain action 
in the current state.  

• 𝑅𝑅 refers to the reward function. By interacting with 
the environment, the agent will receive a reward for 
its action. A positive reward indicates the action is 
effective while a negative reward, also known as a 
punishment, indicates a wrong action. The goal of 
an agent is to maximize the expected future rewards 
by optimizing the policy. In this paper, the 
deviation of output angular frequency from rating 
and ROCOF are taken into consideration. 

Besides the elements above, a policy 𝑢𝑢(𝑎𝑎𝑑𝑑|𝑠𝑠𝑑𝑑)  is a 
function that maps the state 𝑠𝑠𝑑𝑑 to the action 𝑎𝑎𝑑𝑑. The ultimate 
goal of a DDPG algorithm is to find out a certain policy to 
maximize the benefits. The reward function is designed as: 

 𝑟𝑟𝑑𝑑 = −𝛼𝛼(∆𝜔𝜔𝑑𝑑)2 − 𝛽𝛽 �𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑
�
2
 (4) 

𝑄𝑄𝑢𝑢(𝑠𝑠𝑑𝑑 ,𝑎𝑎𝑑𝑑) is the action value function, which is used to 
evaluate the long-term benefits of taking action 𝑎𝑎𝑑𝑑  in the 
current state 𝑠𝑠𝑑𝑑. It can be expressed as: 

 𝑄𝑄𝑢𝑢(𝑠𝑠𝑑𝑑 ,𝑎𝑎𝑑𝑑) = 𝔼𝔼𝑢𝑢 �𝑅𝑅(𝑠𝑠𝑑𝑑 ,𝑎𝑎𝑑𝑑) + 𝛾𝛾max
𝑎𝑎𝑡𝑡+1

𝑄𝑄𝑢𝑢(𝑠𝑠𝑑𝑑+1,𝑎𝑎𝑑𝑑+1)� (5) 

The implementation process of the DDPG algorithm in 
this paper is shown in Fig.6. The Actor network is a neural 
network with parameters 𝜃𝜃𝑢𝑢 that works as the policy 𝑢𝑢(𝑠𝑠𝑑𝑑) 
to decide how the network should act in current state. The 
Critic network is another neural network with parameters 𝜃𝜃𝑄𝑄 
to evaluate the action value function 𝑄𝑄𝑢𝑢(𝑠𝑠𝑑𝑑 ,𝑎𝑎𝑑𝑑).  

Additionally, target actor network and target critic 
network are used in the algorithm to stabilize the process. 
It has been verified in [13] that learning with target 
networks performs better in many reinforcement 
learning tasks. The updating for parameters in target 
networks, denoted as 𝜃𝜃𝑢𝑢′  and 𝜃𝜃𝑄𝑄′ , slowly tracks the 
parameters in actor and critic network. 

Algorithm 1 shows how the DDPG agent is trained. 
During the training process, the agent has no experience in 
how to act in the environment at the beginning. To prevent 
the agent from acting only within the explored action space, 
a noise decaying with time is added to encourage exploration. 
The predicted action 𝑎𝑎𝑑𝑑  based on the current state 𝑠𝑠𝑑𝑑  is 
applied to the environment and then the system goes to a 
new state 𝑠𝑠𝑑𝑑+1 . The reward 𝑟𝑟𝑑𝑑  is calculated by the 
consequence of taking the action 𝑎𝑎𝑑𝑑  to measure how good 
the action is. Such sequence of events can be denoted as a 
tuple (𝑠𝑠𝑑𝑑 ,𝑎𝑎𝑑𝑑 , 𝑟𝑟𝑑𝑑 , 𝑠𝑠𝑑𝑑+1), which can be saved in a replay buffer 
𝑩𝑩 as an experience. Experiences are randomly sampled and 
used during the training process.  



Algorithm 1: Deep Deterministic Policy Gradient  

Initialize actor network 𝑢𝑢(𝑠𝑠𝑑𝑑|𝜃𝜃𝑢𝑢) and critic network 𝑄𝑄𝑢𝑢(𝑠𝑠𝑑𝑑 ,𝑎𝑎𝑑𝑑|𝜃𝜃𝑄𝑄)  with 

random weights 𝜃𝜃𝑢𝑢 and 𝜃𝜃𝑄𝑄. 

Initialize target networks 𝑢𝑢′ and 𝑄𝑄′ with  𝜃𝜃𝑢𝑢′ ← 𝜃𝜃𝑢𝑢, 𝜃𝜃𝑄𝑄′ ← 𝜃𝜃𝑄𝑄. 

Initialize replay buffer 𝑩𝑩.  

for episode = 1 to M do 

Receive initial observation state 𝑠𝑠1. 

for t=1 to T do 

    Select action 𝑎𝑎𝑑𝑑 = 𝑢𝑢(𝑠𝑠𝑑𝑑|𝜃𝜃𝑢𝑢) + 𝛿𝛿𝑑𝑑 according to policy and exploration 

disturbance. 

    Calculate reward 𝑟𝑟𝑑𝑑. Observe new state 𝑠𝑠𝑑𝑑+1. 

    Store transition (𝑠𝑠𝑑𝑑 , 𝑎𝑎𝑑𝑑 , 𝑟𝑟𝑑𝑑 , 𝑠𝑠𝑑𝑑+1) in 𝑩𝑩. 

    Randomly sample mini-batch of N transitions (𝑠𝑠𝑙𝑙 , 𝑎𝑎𝑙𝑙 , 𝑟𝑟𝑙𝑙 , 𝑠𝑠𝑙𝑙+1) from 𝑩𝑩. 

    Set 𝑦𝑦𝑙𝑙 = 𝑟𝑟𝑙𝑙 + 𝛾𝛾𝑄𝑄′�𝑠𝑠𝑙𝑙+1,𝑢𝑢′(𝑠𝑠𝑙𝑙+1|𝜃𝜃𝑢𝑢′)|𝜃𝜃𝑄𝑄′�. 

    Update critic network by minimizing loss: 𝐿𝐿 = 1
𝑁𝑁
∑ �𝑦𝑦𝑙𝑙 −𝑙𝑙

𝑄𝑄𝑢𝑢(𝑠𝑠𝑙𝑙 ,𝑎𝑎𝑙𝑙|𝜃𝜃𝑄𝑄)�2. 

    Update actor network by deterministic policy gradient: 

 ∇𝑑𝑑𝑢𝑢𝐽𝐽 = 1
𝑁𝑁
∑∇𝑎𝑎𝑄𝑄𝑢𝑢(𝑠𝑠, a|𝜃𝜃𝑄𝑄)|𝑎𝑎=𝑢𝑢(𝑠𝑠𝑖𝑖) × ∇𝑑𝑑𝑢𝑢  𝑢𝑢(𝑠𝑠|𝜃𝜃𝑢𝑢) |𝑠𝑠=𝑠𝑠𝑖𝑖. 

    Update the target networks: 𝜃𝜃𝑢𝑢′ ← 𝜏𝜏𝜃𝜃𝑢𝑢 + (1 − 𝜏𝜏)𝜃𝜃𝑢𝑢′ , 𝜃𝜃𝑄𝑄′ ← 𝜏𝜏𝜃𝜃𝑄𝑄 +

(1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′. 

end for 

end for 

PROPOSED METHODOLOGY 
To verify the effectiveness of proposed method, a 

simulation built on MATLAB/Simulink platform is carried 
out in this section. The power system parameters are 
depicted in Table.1.  

At the beginning, the system operates in a stable state 
with active power reference 𝑃𝑃0 = 13 𝑘𝑘𝑘𝑘 and reactive power 

reference 𝑄𝑄0 = 0. At 5𝑠𝑠, the active power reference is  

changed to 8 𝑘𝑘𝑘𝑘 , causing the system enter a transient 
process. In order to verify the performance of proposed 
DDPG method, fixed parameter VSG control, model-based 
adaptive parameter VSG control and RBF method in [9] are 
all employed as comparison cases. Fig. 7 shows the active 
power response and frequency response with different 
controller when disturbance occurs. Compared with other 
methods, the DDPG algorithm proposed in this paper 
provides the best performance with the smallest overshoot 
and the least settling time. 

Fig. 8 shows the different dynamic performance when 
ROCOF is taken into consideration or not. It can be derived 
from the active power response and frequency response that 
when ROCOF is considered, the curve changes more gently 
and smoothly, leading to a smaller overshoot and a relatively 
longer settling time. 

TABLE I.  PARAMETERS AOR A VSG SYSTEM 

Parameters Values 
DC bus Voltage 1000 V 

Filter inductance 2 𝑚𝑚H 

Filter capacitance 50 𝜇𝜇F 

Filter resistance 0.02 Ω 

Rated frequency 50 Hz 

Grid-side inductance 1.2 𝑚𝑚H 

Grid-side resistance 0.05 Ω 

 

 

 
Fig. 7. System responses to active power reference change with 

different methods:(a) Active power response (b) Frequency 
response 

 



CONCLUSION 

This paper presents a DDPG algorithm based VSG 
controller to achieve parameters tuning and better dynamic 
performance. The superiority of proposed method is shown 
by comparing its response with other methods. Besides, 
ROCOF is taken into account when designing the reward 
function and the performance shows smaller overshoot in 
dynamic process compared with DDPG without taking 
ROCOF into consideration. In the future work, DDPG 
algorithm based VSG in islanded-mode and multiple VSGs 
operating in parallel should be further studied. The effects of 
different elements with different weights in reward function 
should be also explored. 
[1] Lasseter, R.H., Z. Chen, and D. Pattabiraman, Grid-Forming Inverters: 

A Critical Asset for the Power Grid. IEEE Journal of Emerging and 
Selected Topics in Power Electronics, 2020. 8(2): p. 925-935. 

[2] Chen, M., D. Zhou, and F. Blaabjerg, Enhanced Transient Angle 
Stability Control of Grid-Forming Converter Based on Virtual 
Synchronous Generator. IEEE Transactions on Industrial Electronics, 
2022. 69(9): p. 9133-9144. 

[3] Vasilakis, A., et al., The Evolution of Research in Microgrids Control. 
IEEE Open Access Journal of Power and Energy, 2020. 7: p. 331-343. 

[4] Cheema, K.M., A comprehensive review of virtual synchronous 
generator. International Journal of Electrical Power & Energy 
Systems, 2020. 120. 

[5] She, B., et al., Virtual inertia scheduling for power systems with high 
penetration of inverter-based resources. arXiv preprint 
arXiv:2209.06677, 2022. 

[6] Alipoor, J., Y. Miura, and T. Ise, Power System Stabilization Using 
Virtual Synchronous Generator With Alternating Moment of Inertia. 
IEEE Journal of Emerging and Selected Topics in Power Electronics, 
2015. 3(2): p. 451-458. 

[7] Li, D., et al., A Self-Adaptive Inertia and Damping Combination 
Control of VSG to Support Frequency Stability. IEEE Transactions 
on Energy Conversion, 2017. 32(1): p. 397-398. 

[8] Wang, F., et al., An Adaptive Control Strategy for Virtual 
Synchronous Generator. IEEE Transactions on Industry Applications, 
2018. 54(5): p. 5124-5133. 

[9] Yao, F., et al., RBF Neural Network Based Virtual Synchronous 
Generator Control With Improved Frequency Stability. IEEE 
Transactions on Industrial Informatics, 2021. 17(6): p. 4014-4024. 

[10] 1Zhang, K., et al. A Virtual Synchronous Generator Control Strategy 
with Q-Learning to Damp Low Frequency Oscillation. in 2020 Asia 
Energy and Electrical Engineering Symposium (AEEES). 2020. 

[11] Wu, W., et al., Deep Q-Network based Adaptive Robustness 
Parameters for Virtual Synchronous Generator, in 2022 IEEE 
Transportation Electrification Conference and Expo, Asia-Pacific 
(ITEC Asia-Pacific). 2022. p. 1-4. 

[12] Xiong, K., et al., Deep reinforcement learning based parameter self-
tuning control strategy for VSG. Energy Reports, 2022. 8: p. 219-226. 

[13] Wang, X., et al., Deep Reinforcement Learning: A Survey. IEEE 
Trans Neural Netw Learn Syst, 2022. PP. 

 

 

Fig. 8. System responses to active power reference 
change with different reward functions:(a) Active 
power response (b) Frequency response 


	Introduction
	Principle of Virtual Synchronous generator
	A. Distributed System with VSG Control
	B. Active and Reactive Power Loop

	Deep Deterministic Policy Gradient Algorithm
	Proposed Methodology
	Conclusion

