
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll0?/??llpp???-???
Volume 20, Number 1, February 2015

A Survey of Bitmap Index Compression Algorithms for Big Data

Zhen Chen�, Yuhao Wen, Junwei Cao, Wenxun Zheng, Jiahui Chang, Yinjun Wu,
Ge Ma, Mourad Hakmaoui, and Guodong Peng

Abstract: With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet

traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems (ITAS) for packets

or flow records have become more and more widely used in network monitoring, network troubleshooting, and user

behavior and experience analysis. As one of three key technologies in ITAS, we focus on bitmap index compression

algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes

include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, and COMPAX. Based on differences in segmentation,

chunking, merge compress, and Near Identical (NI) features, we provide a thorough categorization of the state-

of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms,

such as SECOMPAX, ICX, MASC, PLWAH+ and present the state diagrams for their encoding algorithms. We then

evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and

discuss the future direction of bitmap index compression algorithms. Beyond the application in network security

and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space,

are widely used in analysis in genome data, geographical information system, graph databases, image retrieval,

Internet of things etc. It is expected that bitmap index compression will thrive and prosperous again in Big Data era

since 1980s.

Key words: Internet traffic; big data; traffic archival; network security; bitmap index; bitmap compression algorithm

� Zhen Chen and Junwei Cao are with the Research Institute of
Information Technology, Tsinghua University, Beijing 100084,
China. E-mail: fzhenchen, jcaog@tsinghua.edu.cn.
�Yuhao Wen is with Department of Electronic Engineering,

Tsinghua University, Beijing 100084, China.
�Wenxun Zheng is with Department of Physics, Tsinghua

University, Beijing 100084, China.
� Jiahui Chang is with Department of Aerospace Engineering,

Tsinghua University, Beijing 100084, China.
�Guodong Peng is with Department of Mechanical Engineering,

Tsinghua University, Beijing 100084, China.
�Yinjun Wu and Ge Ma are with Department of Automation,

Tsinghua University, Beijing 100084, China.
�Mourad Hakmaoui is with Department of Computer Science

and Technology, Tsinghua University, Beijing 100084, China.
� Zhen Chen, Yuhao Wen, Wenxun Zheng, Jiahui Chang,

Guodong Peng, Yinjun Wu, Ge Ma, Mourad Hakmaoui,
and Junwei Cao are also with Tsinghua National Laboratory
for Information Science and Technology (TNList), Tsinghua
University, Beijing 100084, China.
�To whom correspondence should be addressed.

Manuscript received: 2014-12-05; accepted: 2014-12-28

1 Introduction

1.1 Big data
The Internet has brought with its access to
enormous quantities of rapidly changing data in
all fields. As the leading search engine, Google
provides powerfully customizable search capabilities
to individuals[1]. Google records each users’ search
behavior, including their Web access path and the
access time for each page. The system is able to process
more than 34 000 requests per second. Important
scientific events can generate staggering quantities of
data, at enormous rates of growth. For example, the
experiments of the European Large Hadron Collider
(LHC) produced more than 15 petabytes of data at up
to 1.5 gigabytes per second[2].

Network monitors, communication services,
sensor networks, and financial services produce
unlimited continuously streaming data, growing in real

2 Tsinghua Science and Technology, February 2015, 20(1): 000-000

time. Streaming data is characterized by its growing
data volume. Traditional relational database has been
unable to meet the requirements of the storage, index,
query and analytics of the growing streaming data
which is critical to make timely decisions.

1.2 Internet traffic data

With the commercial popularity of Internet applications
and mobile wireless networks, Internet traffic is
growing at an accelerating pace. A report from
Cisco[3] predicts that Internet traffic will grow four-
fold from 2011 to 2016, and reach 1.3 zettabytes
(a zettabyte is one trillion gigabytes) in 2016. On
the Internet, information is transmitted in packets,
and transmitted along different paths in one or more
networks, and reassembled at the destination. Internet
data transmission is based on TCP/IP protocol, which

Fig. 1 Pcap file format.

divides the network packets into IP packets, TCP/UDP
packets, and application packets due to different
information they contain.

Figure 1 shows the format of original data acquired
from a physical link to the Internet. Pcap (Packet
capture) is an internet “packet sniffing” API, which
stores captured data as Pcap files. Raw network
packets are stored sequentially in Pcap files. The
Pcap file header describes the properties of Pcap files
(e.g., file size). Packet header contains the description
information (e.g., timestamps and size). The packet
payload includes the contents of the complete TCP /
IP network packets, see Fig. 2. Figure 2a shows an IP
packet format, including packet header and payload. It
has the following fields: version (4 bits), header length
(4 bits), type of services (8 bits), total length (16 bits),
identification (16 bits), flags (3 bits), fragment offset (13
bits), Time To Live (TTL) (8 bits), protocol (8 bits),
header checksum (16 bits), source IP address (32 bits),
and destination IP address (32 bits).

Figure 2b shows the format of a TCP header
formats, including the packet header and payload. It
has the following fields: source port number (16 bits),

Fig. 2 TCP/IP packet format.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 3

destination port number (16 bits), sequence number
(32 bits), acknowledgement number (32 bits), data
offset (4 bits), reserved (6 bits), emergency bit URG,
confirm bit ACK, reset bit RST, synchronization bit
SYN, termination bit FIN, window size (16 bits),
checksum (16 bits), urgent pointer (16 bits), option
field, and padding field. Network flow records describe
network message and transmission characteristics. The
record can describe a User Datagram Protocol (UDP)
connection or a Transmission Control Protocol (TCP)
connection. The flow usually refers to a quintuple of the
source IP address, source port, destination IP address,
destination port, and protocol.

A network flow record structure obtained from an
Internet router is shown in Table 1. It has the following
fields: source Autonomous System (AS) number,
destination AS number, start and end time, and number
of network packets. This is the Netflow V5 flow record
format, developed by CISCO; it is the most popular
flow record format. Netflow determines which flow
packets belong to based on seven fields: source IP
address, destination IP address, source port number,
target port number, third-layer protocol type, TOS byte
(DSCP), network equipment input (or output), and
logical network port (ifIndex). CISCO’s Netflow V9,
also known as IPFIX (IP Flow Information Export),
became an IETF standard. (The Internet Engineering
Task Force develops and promotes voluntary Internet
standards.) It defines how IP flow information is to
be formatted and transferred from an exporter to a
collector. Mobile Internet operators obtain Call Detail
Records (CDR) traffic information, their format shown
in Table 2. It includes terminal attributes, location area
code, CI number, service gateway, start time, end time,

Table 1 Network flow record structure (Router).

Field Remark
SrcIP Source IP address
SrcPort Source port
DstIP Destination IP
DstPort Destination port
Proto Layer 3 protocol (e.g., TCP UDP)
TCPflags Cumulative TCP flags (e.g., SYN ACK FIN)
SrcAS Source autonomous system number
DestAS Destination autonomous system number
Octs # Bytes exchanged in the flow
Pkts # Packets exchanged in the flow
Start Flow start time
Duration Flow duration
others

Table 2 Flow record format (wireless base station).

Field Remark
Cell phone
number

May not contain a prefix such as +86,0086,86

Location area
code

LAC

CI number Select the first CI when a network switches
Terminal IMEI/ IMSI
Start time YYYY-MM-DD HH:MM:SS.1234567
Duration (s)
RAT type 1 represents 3G, 2 represents 2G
Traffic (Byte) Upstream/ Downstream/total
Terminal IP Traffic(in bytes)
Source port/
Destination
port
APN 3gwap,3gnet,uniwap,uninet,cmwap,cmnet
SGSN/ GGSN
IP

First access IP

Http protocol User Agent/Content-type/URL/Status Code
Others

TCP/IP information, HTTP application information,
etc.

1.3 Traffic archiving and retrieval

Network monitoring has been the core function of
network management, network fault diagnosis, and
network security. In addition to real-time firewalls and
intrusion detection systems, traffic-archiving systems
are important to network forensic. An Internet Traffic-
Archiving System (ITAS) captures packet or flow
records for subsequent analysis and processing. Such
systems have many important applications.

In addition, statistics from China Unicom China
Unicom[4] shows that current mobile Internet users
daily generate more than 30 billion records and 8.4 TB
of data in the telecommunications business, resulting
in trillions of records, requiring petabyte storage
capacity. With mobile Internet users doubling about
every six months, the number of Internet records
they generate will further increase[5]. Network security
has become a major challenge, and technologies such
as intrusion detection systems, signature detection,
and security scanning technology have arisen to meet
it[6]. But Internet data volumes have exceeded current
real-time detection and analysis capabilities. It has
therefore become essential to capture Internet traffic for
forensic analysis[7–9].

This paper is organized as follows: The structure
and function of traffic archive systems is introduced

4 Tsinghua Science and Technology, February 2015, 20(1): 000-000

in Section 2. Section 3 describes the key technologies
of packet capture, compression, and bitmap index
encoding of network flow archiving systems. We
conclude the paper and discuss future work in Section
4.

2 ITAS

2.1 ITAS structures and functions

Internet traffic archiving systems, or ITAS, typically
include flow data acquisition, index storage, and query
processing. There are two categories of flow data-
acquisition, corresponding to two types of data: (1)
packet-level network data and (2) flow-level network
data. A typical traffic-archiving system structure is
shown in Fig. 3.

Figure 3 describes a typical traffic archiving
system. After being captured, network data can be
routed to an index module in real time, or stored to disk
for subsequent processing. The index module updates
the index with the new data, typically compressing it
to reduce storage requirement. The indices are stored
by rows or columns after indices compression. In order
to reduce storage overhead, we adopt the method of
storage compression in the process of , such as zip
etc. When a query arrives, the query processor calls the
current index and returns the corresponding result.

2.2 Key technologies in ITAS

2.2.1 High-performance packet/flow capture
technologies

Internet traffic’s volume and velocity are very large,
and still growing. There are tens of millions of 64-
byte packets to deal with each second and similar
orders of magnitude of flow records from routers. In
a 10 Gbps link, for example, the network will reach

14 million packets per second with 64 bytes per
packet. Even after polymerization, there are still
millions of flow records. Though only dealing with
flow data, a backbone router’s link of telecom operators
would generate millions of records per second which
will reach 30 billion per day[10–13]. Therefore, how to
capture and store high arriving speed of packets and
streams in real time is a major challenge.

2.2.2 High-performance packet/flow storage
technologies

In many ITAS, packets and flow records are stored
in relational databases by rows, this consumes
much storage and exhibits inefficient retrieval
characteristics. Current systems have begun to store
the data in columns, compressing it to reduce storage
overhead. A popular compression method is LZO
(Lempel-Ziv-Oberhumer), known for its focus on
performance. Other new methods such as RasterZip and
BreadZip[14] include information-flow optimization.

2.2.3 High-performance packet/flow indexing
technologies

The accepted approach to indexing large volume
of data is to employ an inverted index, which is
widely used, for example, in search engines. However,
a more efficient approach is using bitmap index
which is a special case of inverted index also
widely used by search engines. Bitmap Index is very
efficient in dealing with the network flow queries,
especially forensic analysis. The “index space” for an
enormous datastore will explode by huge; consequently,
companies such as Google have paid much attention
to its compression[15, 16]. In order to create an efficient
index, the general index space should be fragmented
(i.e., shard or segmentation), and the index file should
be compressed at the same time. Bitmap compression

Fig. 3 The structure of an Internet traffic-archiving system.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 5

algorithm is an effective method for compressing the
bitmap index, to solve the index-space explosion issue.

2.3 Categories of ITAS

We compare and summarize the features of Internet
traffic-archiving systems in Table 3. Raw data
can be stored in a database by rows or by
columns. In bitmap indexes, the usual choice is “by
columns”. For example, NET-FLi, an efficient on-
the-fly compression, archiving and indexing system for
streaming network traffic, stores data in columns, and
uses the LZO compression algorithm to reduce the
storage size. Traffic archiving entails packet capture,
storage, indexing, and querying. Different traffic-
archiving systems focus on different aspects. This
paper takes the bitmap index compression algorithm
as a starting point for understanding traffic-archiving
systems.

3 Key Technologies of Bitmap Index
Compression Coding

Efficient indexing of network packets or flow is central
to traffic archiving systems. Indexing of traffic data
has the following characteristic: (1) Large volume of
data: The number of index messages is massive, even
for brief periods. (2) High rates of incoming data:
To keep up with the rate of packet influx, systems
must be highly efficient. (3) Fixed data structure: The
index information for each network packet has a fixed
format with a fixed length. (4) Appending without
modification: Network packet index information will
increase only. Once the information is generated, it
can’t be changed. (5) High redundancy: Data items of
network data are frequently repeated.

Due to the characteristics of network flow data,
relational databases are not appropriate for this

task. Traditional relational databases are optimized for
handling frequent changes. They use B or B+ trees,
which are not particularly suitable for indexing traffic
data.

Another common technology of large-data retrieval
systems is the inverted index. The core data structure
of the inverted index is the posting list. Sequence of
integers of a KEY is stored in inverted lists, such as a
timestamp and offset, and the most typical KEY is the
position list, which shows the position where a word
appears. Due to the characteristics of network flow data,
net flow archiving systems use bitmap indexing rather
than inverted indexes.

3.1 Introduction to bitmap indexing

The concept of bitmap index was first introduced by
Spiegler and Maayan in 1985[29]. The first commercial
database product was published to implement a bitmap
index in 1987[30–35]. It uses a sequence of bits to
indicate the the presence or absence of an item
in the indexed data. With bitmap indexing, logical
operations, such as AND, OR, NOT and XOR etc.,
can be used to answer complex queries. Bitmap index
once was designed for scientific data and database,
which is usually generated by scientific instruments
or scientific simulation. Scientific data are extremely
large and without further modification change. Bitmap
index databases solve the problem on how to quickly
identify a small amount of selected data in a mass
of scientific data, while the traditional relational
database is not suitable for this work. The technologies
used in bitmap index databases are bitmap indexing,
bitmap compression, and classification. In bitmap index
database, the data are stored in columnar and a
corresponding bitmap index is therein. A bitmap index
example is shown in Table 4.

Table 3 A comparison of different traffic-archiving systems.

Data format Indexing Storage
Packet Flow record Bitmap Hash Tree Column based Row based

TelegraphCQ[17] No Yes PostgreSQL(DBS) No No
Gigascope[18] No Yes No No Yes No No

MIND[19] No Yes No Yes No No No
Hyperion[20] Yes No BloomFilter Multi-level indexing No No No

FastBit[21]+TelegraphCQ No Yes WAH, PostgreSQL(DBS) Yes No
TimeMachine[22] Yes No No Yes No No Yes

NET-FLi No Yes COMPAX No No LZO No
NetStore[23] No Yes No No No Segmentation No

RASTERZip[24] No Yes Yes No No Yes No
PcapIndex[25] Yes No COPMAX No No Yes No
TifaFlow[26–28] Yes No Yes No No No No

6 Tsinghua Science and Technology, February 2015, 20(1): 000-000

Table 4 An example of a bitmap index which consists of six
tuples (rows). The column as a attribute can have one of four
values, 0, 1, 2, and 3.

Row Column
Bitmap index

=1 =2 =3 =4
1 1 1 0 0 0
2 2 0 1 0 0
3 4 0 0 0 1
4 3 0 0 1 0
5 2 0 1 0 0
6 4 0 0 0 1

Currently, classical bitmap index compression
algorithms are Byte-aligned Bitmap Compression
(BBC)[36], Word-Aligned Hybrid (WAH)[37, 38],
Position List Word-Aligned Hybrid (PLWAH)[39],
Enhanced Word-Aligned Hybrid (EWAH)[40],
COmpressed N Composable Integer SEt
(CONCISE)[41], Partitioned Word-Aligned Hybrid
(PWAH)[42], COMPressed Adaptive indeX
(COMPAX)[43], UCB[44], VLC[45], VAL-WAH[46],
RoaringBitmap[47], RLH[48], and DFWAH[49]. There are
improved versions of PLWAH (PLWAH with adaptive
counter), such as PLWAH+[50] and APLWAH. An
improved version of COMPAX (COMPAX + oLSH
and COMPAX2) has also presented. Figure 4 shows

Fig. 4 The advancement of bitmap index compression
algorithm.

the various bitmap index compression algorithms in
chronological order.

3.2 Categories of bitmap index compression
algorithms

To summarize the characteristics of bitmap index
compression algorithms, we compare the bitmap index
compression algorithms based on different dimensions,
i.e. Segmentation, Chunking, Merge Compress, and
Near Identical (NI), as shown in Table 5.

3.3 Bitmap index compression algorithms

3.3.1 BBC
Antoshenkov[36] proposed the byte-aligned bitmap
compression method in 1995, the bitmap bytes are
classified as gaps and maps. Gaps containing only
0’s or only 1’s and maps containing a mixture of
both. Continuous gaps are encoded by their byte length
and a fill bit is used to differ 0 and 1 gaps. Map bytes
are directly compiled after the control byte without
encoding. A pair (gap, map) is encoded into a single
atom which is composed as “control byte + gap length +
map”. Control byte can be divided into four categories:

(1) The bitmap bytes which contain 0-3 gaps and 0-
15 maps can be encoded as follows:

1 [fill bit] [fill length (2 bits)] [tail length (4 bits)].
A fill bit is used to represent all 0’s or all 1’s; fill

length is used to represent the length of gap; and tail
length is used to indicate the length of a map.

(2) Bitmap bytes that contains 0-3 gaps, with 1 bit
different between the gap and the map, can be encoded
as follows:

01 [fill bit] [fill length (2 bits)] [odd bit position (3
bits)].

“Odd-bit position” is the different 1 bit (dirty bit)
position between the map and the gap.

(3) Bitmap bytes that contain more than 3 gaps and

Table 5 Bitmap index encoding algorithms.

Methods Segmentation
Chunking

(bit)

Merge Compress Near Identical

Piggyback LFL/FLF
Dirty Bits Dirty Bytes

NI-0 NI-1 NI-0 NI-1
BBC No 8 Yes No Yes Yes No No
WAH No 31 No No No No No No

EWAH No 31 No No No No No No
PWAH No 63 Yes No No No No No

PLWAH No Yes Yes No Yes No No No
CONCISE No Yes Yes No Yes No No No
COMPAX Yes 31 No Yes No No No Yes

SECOMPAX Yes 31 Yes Yes No No Yes Yes
ICX Yes 31 Yes Yes No No Yes Yes

MASC Yes No No Yes No No Yes Yes
PLWAH+ Yes No Yes Yes Yes Yes No No

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 7

0-15 maps can be encoded as follows:
001 [fill bit] [tail length (4 bits)].
Gap lengths follow the control byte.
(4) Bitmap bytes that contains more than 3 gaps with

1 bit different between the gap and the map can be
encoded as follows:

0001 [fill bit] [odd bit position (3 bits)].

3.3.2 WAH
WAH is the default bitmap index compression
algorithm in Fastbit database. It makes the bit sequences
into 31 bits (63 bits for WAH 64) as a group. There are
two types of group: original Literal, which contains 0
and 1 in 31 bits; and original Fill, which contains all 0’s
or all 1’s in 31 bits. Literal group: The type flag is 0;
the remaining 31 bits are the original Literal group. Fill
group: Divided into 1-Fill and 0-Fill. The type flag is 1,
and the second bit is the sign of Fill type (0-Fill is 0, 1-
Fill is 1). The remaining 30 bits are a counter, which
indicates the number of consecutive 0-Fill (or 1-Fill)
groups.

3.3.3 PLWAH
PLWAH groups the bit sequence into 31-bit units. There
are Literal and Fill groups, but there are some changes
in compression. In WAH, there are an extra flag
to distinct Fill group and Literal group, and each
group codes as 32 bits. For Fill groups, the lower
25 bits are a counter. By introducing the definitions
of “nearly identical” and “position list”, PLWAH
further enriches the codebook, increasing the encoding
types and improving compression efficiency. A slight
improvement over PLWAH is achieved by the method
of “PLWAH + adaptive counter”. When there is a large
number of consecutive 0’s or 1’s, so that a word can’t
fully accommodate a counter, this method uses the same
type of two consecutive Fill-word, making two counters
into a single large counter. The first Fill-word records
the 25 least-significant bits, and the second Fill-word
records the 25 most-significant bits. Meanwhile, the
position list of the first Fill-word is empty, and the
position list of the second Fill-word is calculated as
usual.

3.3.4 EWAH
EWAH defines a 32-bit field that contains consecutive
0’s or 1’s as a “clean” segment and defines a 32-
bit field that contains mixed 0’s and 1’s as a “dirty”
segment. EWAH algorithm also uses two types of
words, where the first type is a 32-bit verbatim word;
the second type of word is a marker word, whose first bit

indicates which clean word will follow, and 16 bits are
used to store the number of clean words. The remaining
15 bits are used to store the number of dirty words
following the clean words. EWAH encoding bitmaps
begin with a marker word, shown in Fig. 5.

Because EWAH uses only 16 bits to store the number
of clean words, it may be less efficient than WAH when
there are many consecutive sequences of clean words.
Three ways are proposed to alleviate this compression
overhead over clean words. First, more than half of
the bits can be allocated to encode the runs of clean
words. Second, when a marker word indicates a run
of 216 clean words, the next word will be used to
indicate the number of remaining clean words. Finally,
this compression penalty is less relevant when using 64-
bit words instead of 32-bit words.

When there are few dirty words in the bitmaps,
WAH might be preferable. Even considering EWAH
and WAH indexes of similar sizes, each EWAH marker
word needs to be accessed three times to determine the
running bits and two running lengths, while no word
needs to be accessed more than twice with WAH. When
there are lots of long runs of dirty words in the bitmaps,
EWAH might be preferable. EWAH will access each
dirty word at most once, while WAH needs to check
the first bit of each dirty word to ascertain it is a dirty
word. The EWAH decoder can skip a sequence of dirty
words, while the WAH decoder must access them all.

3.3.5 CONCISE
CONCISE is based on WAH. In a compressed 32-
bit segment, when the leftmost bit is 1, the following
31 bits are uncompressed; when the leftmost bit is 0,
it means Fill, and the second bit indicates the type
of Fill. The following 5 bits are the position of a
“flipped” bit within the first 31-bit block of the Fill. The
remaining 25 bits count the number of 31-blocks that
compose the fill minus one. When position bits equal

Fig. 5 EWAH encoding method.

8 Tsinghua Science and Technology, February 2015, 20(1): 000-000

0 (binary ‘00000’), the word is a “pure” fill. Otherwise,
position bits indicate the bit to switch within the first 31-
bit block of the sequence represented by the Fill word.

That means that 1 (binary ‘00001’) indicates that it
has to flip the rightmost bit, while 31 (binary ‘11111’)
indicates that it has to flip the leftmost bit.

In Fig. 6, for example, words #0, #3, and #5 are
Literal words, and words #1, #2, and #4 are Fill
words. Word #0 is used to represent integers in the range
0–30; word #1 for integers in the range 31–92; and
word #2 for integers in the range 93–1022. Word #2 also
indicates that integers in the range 94–1022 are missing,
but 93 is in the set, since position bits say that the
first number of the “missing numbers” sequence is an
exception. Word #3 represents for integers in the range
1023–1053, word #4 for integers in the range 1054–
1 040 187 391, and word #5 for integers in the range
1 040 187 392–1 040 187 422.

3.3.6 PWAH
Based on WAH, PWAH extends word length to 64 bits,
and makes a word into P pieces, starting with a P -
bit header, which is used to indicate the type of Fill or
Literal. The length of Literal can be indicated flexibly
to save space. Figure 7 shows the PWAH-4 bitmap
encoding method.

There are three kinds of PWAH algorithm, PWAH-
2, PWAH-4, and PWAH-8. PWAH-2 uses WAH
compression coding. In the experiments, PWAH-8 is
used more frequently than the others. Combined with
the Nuutila algorithm[51], PWAH-8 can be effective in
solving the accessibility query problem of large-scale

Fig. 6 CONCISE encoding method.

graphs.

3.3.7 COMPAX
There are more codewords in COMPAX. The
definitions of Literal and Fill are same as with
WAH and PLWAH. Every 31 bits are a chunk, and
the chunks are divided into four groups according to
the following features: (1) Literal-Fill-Literal (LFL);
(2) Fill-Literal-Fill (FLF); (3) Fill (F); and (4) Literal
(L). The COMPAX+oLSH (online-Locality-Sensitive-
Hashing) compression method is the same as that of
COMPAX, but this compression method needing the
reordering of input data stream in advance, which
improves compression rate considerably.

3.3.8 SECOMPAX/ICX and MASC/PLWAH+
3.3.8.1 New ideas in bitmap index encoding
SECOMPAX/ICX/MASC/PLWAH+ are proposed
based on COMPAX/PLWAH. SECOMPAX/ICX is
based on COMPAX2, introduces the concept of NI-1
Literal, and extends the number of dirty bytes to
2; while MASC/PLWAH+ is based on PLWAH and
introduces new features from run-length encoding. In
terms of “piggyback” (the combination of two
symbols) and “FLF/LFL” (the combination of three
symbols), the current bitmap indexing encoding
algorithm can be classified as two types. According
to these categories, the state-of-the-art bitmap index
compression algorithms are shown in Fig. 8.

(1) Scope Extended COMPAX (SECOMPAX)
SECOMPAX[52] is based on COMPAX2, an enhanced
version of COMPAX. The differences are as follows:
(a) Nearly Identical Literal (NI-L) SECOMPAX
extends the “dirty byte” concept to consist of 0-NI-L
and 1-NI-L, i.e., a Literal word can be nearly identical to
a 0-Fill word or a 1-Fill word. This maintains symmetry
in the codebook. (b) Extended LFL: In addition to the
0-NI-L + F + 0-NI-L type, there are three others: 0-NI-
L + F + 1-NI-L, 1-NI-L + F + 0-NI-L, and 1-NI-L + F +
1-NI-L. Extended FLF: In addition to the 0F + 0-NI-L
+ 0F1F+0-NI-L+1F type, there are six others: 0F + 1-
NI-L + 0F, 1F + 1-NI-L + 1F; 1F + 1-NI-L + 0F, 0F +
1-NI-L + 1F; 1F + 0-NI-L + 0F, and 0F + 0-NI-L + 1F.

By the inclusion of new codewords, some kinds

Fig. 7 PWAH-4 bitmap encoding method.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 9

Fig. 8 New ideas in bitmap index encoding.

of origin sequences that COMPAX cannot further
compress can be dealt with by SECOMPAX:

(a) In the form of FLF, if two Fill words are of
different types, or a Literal word is nearly identical
to Fill word, COMPAX does not try to encode them
as FLF. COMPAX encodes them as an F, an L,
and an F, while SECOMPAX can encode them as
FLF. Obviously, in this circumstance, the result encoded
by COMPAX is twice as long as those encoded by
SECOMPAX.

(b) In the form of LFL, COMPAX can only deal with
that both of the two Literal-words are nearly identical
to 0-Fill words. If one or both of the Literal words
are identical to a 1-Fill word, COMPAX encodes them
as an L-word, an F-word, and an L-word (L+F+L, 3
words in total), not as LFL (1 word in total). However,
SECOMPAX can encode all of those circumstances as
LFL, which saves a great deal of room compared with
COMPAX.

(2) Improved COMPAX (ICX) ICX is proposed
to further compress the bitmap by considering the
possible two dirty-bytes cases, which are not considered
in the COMPAX. And we extend PLWAH nearly
identically concept to consider one or two dirty bytes
case, and represent these cases with Nearly Identical
bits in the new codebook. By this new codebook, more
possible LF combinations can be encoded, and they can
be easily compressed into one word. ICX can achieve
a better compression ratio than COMPAX. In the cases

where the number of 1’s is comparable to the number
of 0’s, ICX performs especially better than both WAH
and COMPAX, since they haven’t taken those cases into
consideration.

(3) MAximized Stride with Carrier (MASC)
MASC is proposed to further improve the
compression performance without impairing query
performance. MASC uses as long a stride size as
possible—not limited to 31bits as in PLWAH and
COMPAX—to encode the consecutive zero bits and
nonzero bits in a more compact way. MASC records
origin bitmap index sequences into a new format.

MASC is a new extended version of PLWAH. The
concept “carrier” in MASC and “piggybacked” in
PLWAH are similar. However, the carrier can carry at
most 30 nonzero bits, while PLWAH can piggyback
only a single nonzero bit. In addition, we generalize the
concept of Literal word and eventually obsolete it. As
a consequence, several (no more than 30) nonzero bits
can be carried by the former 0-Fill word and output a 1-
carried 0-Fill word, while PLWAH has to encode them
in a Literal word, or two Literal words in the worst
case, when consecutive nonzero bits are located in two
adjacent chunks. Considering zero bits’ and nonzero
bits’ distribution in real data sets, they usually appear
in batches—especially after being sorted by the hash
value of each record. Thus MASC can perform better
than PLWAH.

(4) Position List Word-Aligned Hybrid Plus

10 Tsinghua Science and Technology, February 2015, 20(1): 000-000

(PLWAH+) We propose the PLWAH+ bitmap
compression scheme based on PLWAH. First, we add
the definition of an LF word that can piggyback more NI
words, which is not considered in PLWAH. According
to the experiment, with about a 20% reduction in
the amount of Literal words, it can save 3% or
more of the storage, compared to PLWAH. And the
result shows that the PLWAH+ is more suitable for
streaming network traffic. Furthermore, the definition
of the NI Chunk is enlarged, which performs better
in some cases, where the ratio of set bits is not at
a low level. PLWAH+ further classifies NI into two
kinds: Nearly Identical 0 Fill word (NI-0 word) and
Nearly Identical 1 Fill word (NI-1 word). According
to a number of tests, a prediction can be made that
PLWAH+ is more suitable for complex databases than
PLWAH.

3.3.8.2 Encoding algorithm state diagrams
The state diagrams of SECOMPAX, ICX, MASC,
and PLWAH+ are shown in Figs. 9–12. Figure 9
shows the state diagram of the SECOMPAX encoding
algorithm. The states of the encoder represent the
different word types that have been stored.

Figure 10 introduces the encoding state diagram for
ICX. As ICX handles new cases when the number
of “dirty bytes” is 2, there are more edges than in
SECOMPAX.

Figure 11 shows the state diagram of the MASC
encoding algorithm. As MASC encodes the maximu

A, Fill; B, NI-Fill; C, Literal

Fig. 9 Encoding algorithm of SECOMPAX. (x, y) means the
next character is x, and the output is y except if y=null, output
nothing, and if y is underlined, the output is a codeword as a
whole.

A, Fill; B, NI-Fill; C, Literal

Fig. 10 Encoding automaton in ICX.

Fig. 11 Encoding automaton in MASC. States 0: 0-Fill; 1:
1-Fill; and C: 1-carried-0-Fill (0-Fill word carried 1’s). The
meaning of transfer edge (x, y, z) is as follows: x, input bit
(0 or 1); y, output bit; z, the counter. If label (x, y) does not
occur, the counter will increase by 1, by default.

Fig. 12 Encoding automaton in PLWAH+. “Start” is the
start state of a compression procedure, symbol “F” stands
for codeword Fill word, symbol “P” stands for codeword NI
word, and symbol “L” stands for codeword Literal word.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 11

Fig. 13 Bitmap index encoding with PLWAH/COMPAX2/
SECOMPAX/ICX/MASC.

length of consecutive 0’s or 1’s, the counter is not in
multiples of 31, as in WAH.

The PLWAH+’s FSM is shown in Fig. 12. The pair
(x; y) labels the edge to stand for an action taken at a
shift of states, which means when x is the input from
a WAH result, the state moves along the corresponding
edge and y is the output to the final result. In particular,
if y equals “null”, it outputs nothing. If y has one
symbol like “FP”, it outputs a combination of the two
codewords, i.e., FL. If y has two symbols, such as “F”
and “L”, it outputs two codewords, “F” and “L”.
3.3.8.3 Implementation and evaluation
We evaluate SECOMPAX, ICX, MASC, and PLWAH+
with a real Internet traffic trace from CAIDA[53]. This
Internet traffic trace was anonymized and captured from
a core router by CAIDA at the end of 2013. There
are 13 581 181 packets in this trace. First, we reorder
packets with the mechanism based on the principle
of locality-based hashing used in Ref. [54]. Then we
convert five-tuples hSIP, sport, DIP, dport, protoi to
bitmaps, and compress the bitmaps in each column
with a fixed block size of 4 Kb, which is also used
in Ref. [54]. In these experiments, source IP (4 bytes),
destination IP (4 bytes), source port (2 bytes), and
destination port (2 bytes) are compressed with PLWAH,
COMPAX, and SECOMPAX. For SrcIP, there are
four bytes, and each byte expands to 256 columnar
files. There are 1024 columnar files, which contain
13 581 181 bits (the number of packets in the trace). The
situation is similar for the DstIP and Ports fields.

Figure 13 shows the average size of a compressed
columnar file with PLWAH, COMPAX2, and
SECOMPAX, ICX, and MASC, where each original
columnar file has 13 581 181 bits (the number of packets

in the trace). Compared with PLWAH, COMPAX2
and SECOMPAX reduce the size of the index for a
source IP address by 6.74%, and for a destination
IP by 6.05%. While compared with COMPAX2,
SECOMPAX reduces the size of the source IP by
4.01%, and destination IP by 3.97%. ICX and MASC
show further reduction in compressing the bitmap
files. A detailed comparison is illustrated for source IP
(4 bytes), destination IP (4 bytes), source port (2 bytes),
and destination port (2 bytes) in Figs.14–17. From
Figs.14–17, it is clear that SECOMPAX/ICX/MASC
have a better compression ratio and smaller space
consumption than COMPAX2 and PLWAH, especially
in Byte 0 in SrcIP and DstIP. Compared with PLWAH,
SECOMPAX can reduce the size of the index for SrcIP
Byte 0 by 7.62% and DstIP by 8.32%. Among these,
MASC has the best performance, as the improvement it
shows reaches about 16%–18%.
3.3.8.4. GPU implementation
Usually, the encoding and decoding operation in the
process of compressing runs in a CPU. To further

Fig. 14 Size after compression using five encoding schemes
in DstIP.

Fig. 15 Size after compression using five encoding schemes
in DstPort.

12 Tsinghua Science and Technology, February 2015, 20(1): 000-000

Fig. 16 Size after compression using five encoding schemes
in SrcIP.

Fig. 17 Size after compression using five encoding schemes
in srcPort.

accelerate the compression, we propose a GPU-based
solution, to offload the indexing and parallelize the
encoding. As the CPU is also responsible for overall
system operation, in consideration of total performance
issues, it is better to offload the bitmap indexing
operation to a GPU. Andrzejewski and Wrembel[55, 56]

introduced GPU-based WAH and PLWAH. However,
those implementations could not avoid extending the
original data into bitmap form before processing,
which increased memory consumption and decreased
performance. A new way to compress bitmaps without
extending the original data was introduced in Ref. [40],
which will be also used in this paper. Especially in
Ref. [57], Fusco et al. evaluated the GPU-based WAH
and PLWAH with a sequence of random integers to
mimic the five-tuples of Internet trace, and prove the
potential of a GPU to achieve the speed of indexing a
million of packets per second.

GPU-based SECOMPAX, ICX, and MASC
algorithms are implemented with Thrust, a C++
library provided with the NVIDIA SDK, designed
to enhance code productivity and, more importantly,

performance and portability across NVIDIA GPUs. To
evaluate the performance of our implementation, we
used a similarly priced CPU and GPU: a 3.4-GHz Intel
i7-2600K processor with 8 Mb of cache and an NVIDIA
GTX-760 GPU, fitted in a PCI-e Gen 2.0 slot. The
input data we used is an anonymous Internet trace data
set from CAIDA of 13 581 810 packets too. We extract
their five tuples (source IP, destination IP, source port,
destination port, and protocol number). For simulating
circumstances in practice, we cut those packets by 3968
(128�31), and created bitmap indexes for 14 (bytes) �
3968 one at a time.

We construct and compress a bitmap index using
GPU-MASC, and compare its result with the encoding
result of MASC. The memory consumption is the same,
and is shown in Fig. 18. However, GPU-MASC can
build bitmap indexes for 128�31 packets in 8.057 ms,
while MASC takes 157.3 ms, because MASC cannot
encode in parallel on a CPU. Thus, GPU-MASC
improves encoding speed by 19.5 times.

Based on Fig. 19, the throughput of GPU-MASC
is 492 491 packets per second. However, GPU-MASC
constructs and encodes bitmap indexes for all 14 bytes
in the five tuples for Internet trace packets, while other
algorithms on GPU only construct two bytes of the five
tuples, one at a time. So the equivalent throughput for

Fig. 18 Encoding-speed comparison between GPU-MASC
and CPU-MASC.

Fig. 19 Encoding time of GPU-WAH and GPU-MASC.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 13

GPU-MASC is 3 447 437 packets per second.

4 Outlooks

Bitmap Indexing is a powerful technique to accelerate
ad-hoc query in Big Data. Bitmap index compression
with potentially higher compression rates, faster
bitwise-logical operations, and reduced search space,
are booming research area since 1980s and thriving and
prosperous again in Big Data era. Beyond scientific data
management[58–60], novel bitmap data representation
and compacting of index has a wide usage in many
other area, e. g., biological network[61], gene context
analysis[62], RFID-based Item Tracking[63], Relational
XML Twig Query Processing[64], geographical data
warehouses[65], Geographical Information System
(GIS)[66], Graph Databases[67], Content-based image
retrieval (CBIR)[68], inverted indexes in Search
engines[70?] and many other data analysis area etc.

5 Conclusions and Futures Works

We introduce and analyze the traffic-archiving
systems and the key technologies of bitmap index
compression. First, we provide an introduction to
classical traffic-archiving systems in recent years; then
we present a survey of bitmap index compression
algorithms. We summarize bitmap index compression
algorithms in terms of Segmentation, Chunking,
Merge Compress, and Near Identical. We also propose
some new bitmap encoding algorithms, such as
SECOMPAX, ICX, MASC, and PLWAH+, and show
their state diagrams for encoding procedures. We
also evaluate their CPU and GPU implementations
with a real Internet trace from CAIDA. Finally, we
summarize and discuss the future direction of bitmap
index compression algorithms.

With the rapid growth of Internet traffic, traffic-
archiving systems and bitmap index compression
scheme research will face new challenges, which
must be overcome to design more efficient high-speed
indexing technologies. These improved bitmap index
compression schemes will have important research
value, which will provide powerful technical support for
high-performance network-traffic archiving systems.

Acknowledgements

We are grateful to the teachers and students both in
NSLAB and QoSlab. The authors would like to thank
Prof. Jun Li of NSLAB from RIIT for his guidance.

This work was supported by the National Key Basic

Research and Development (973) Program of China
(Nos. 2012CB315801 and 2011CB302805), the National
Natural Science Foundation of China A3 Program
(No. 61161140320), and the National Natural Science
Foundation of China (No. 61233016). This work was
also supported by Intel Research Council with the title of
Security Vulnerability Analysis based on Cloud Platform
with Intel IA Architecture.

References

[1] Google, Web History, http://www.google.com/psearch,
2008.08.10.

[2] Business Intelligence Lowdown, http://www.
businessintelligeneelowdown.corn/2007/02/top 10 largest.
html, 2008.08.10.

[3] Cisco Visual Networking Index: Forecast and
Methodology, 20132018, http://www.cisco.com/c/en/us/
solutions/collateral/serviceprovider/ip-ngn-ip-next-
generationnetwork/white paper c11-481360.html,
2014.06.10.

[4] W. Huang, Z. Chen, W. Dong, H. Li, B. Cao, and
J. Cao, Mobile internet big data platform in China Unicom,
Tsinghua Science and Technology, vol. 19, no. 1, pp. 95–
101, 2014.

[5] Z. Chen, W. Huang, and J. Cao, Big Data Engineering
for Internet Traffic, (in Chinese). Beijing, China: Tsinghua
University Press, 2014.

[6] R. Lin, B. Wu, F. Yang, Y. Zhao, and J. Hou, An efficient
adaptive failure detection mechanism for cloud platform
based on volterra series, Communications, China, vol. 11,
no. 4, pp. 1–12, 2014.

[7] Y. Meng, Z. Luan, and D. Qian, Differentiating
data collection for cloud environment monitoring,
Communications, China, vol. 11, no. 4, pp. 13–24, 2014.

[8] L. Pu, J. Xu, B. Yu, and J. Zhang, Smart cafe: A mobile
local computing system based on indoor virtual cloud,
Communications, China, vol. 11, no. 4, pp. 38–49, 2014.

[9] M. Li, A. Lukyanenko, S. Tarkoma, and A. Yla-Jaaski,
MPTCP incast in data center networks, Communications,
China, vol. 11, no. 4, pp. 25–37, 2014.

[10] L. Rizzo, Device polling support for FreeBSD,
http://info.iet.unipi.it/luigi/polling/, 2002.

[11] L. Deri, Improving passive packet capture: Beyond device
polling, in Proceedings of SANE, 2004, pp. 85–93.

[12] L. Rizzo, Netmap: A novel framework for fast packet I/O,
in Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX Association, 2012, p. 9.

[13] A. Papadogiannakis, M. Polychronakis, and E. P.
Markatos, Scap: Stream-oriented network traffic capture
and analysis for high-speed networks, in Proceedings
of the 2013 Conference on Internet Measurement
Conference, 2013, pp. 441–454.

[14] G. Ma, Z. Guo, X. Li, Z. Chen, J. Cao, Y. Jiang, and
X. Guo, BreadZip: A combination of network traffic
data and bitmap index encoding algorithm, in Systems,
Man and Cybernetics (SMC), in 2014 IEEE International
Conference on IEEE, 2014, pp. 3235–3240.

kira
在文本上注释
[69,70]

14 Tsinghua Science and Technology, February 2015, 20(1): 000-000

[15] L. A. Barroso, J. Clidaras, and U. Hlzle, The datacenter
as a computer: An introduction to the design of
warehouse-scale machines, Synthesis Lectures
on Computer Architecture, 2013, doi:10.2200/
S00516ED2V01Y201306CAC024.

[16] J. Dean, Challenges in building large-scale information
retrieval systems, in Proceedings of the Second
International Conference on Web Search and Web
Data Mining, WSDM 2009, Barcelona, Spain, 2009.

[17] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, and M. A. Shah,
TelegraphCQ: Continuous dataflow processing, in
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data ACM, 2003, p. 668.

[18] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk,
Gigascope: A stream database for network applications,
in Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data ACM, 2003, pp. 647–
651.

[19] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, and
W. H. Hong, Advanced indexing techniques for widearea
network monitoring, in Data Engineering Workshops,
2005. 21st International Conference on IEEE, 2005,
pp. 1184–1184.

[20] P. Desnoyers and P. J. Shenoy, Hyperion: High volume
stream archival for retrospective querying, in USENIX
Annual Technical Conference, 2007, pp. 45–58.

[21] K. Wu, FastBit: An efficient indexing technology for
accelerating data-intensive science, Journal of Physics:
Conference Series, vol. 16. no. 1, pp. 556–560, 2005.

[22] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson,
and F. Schneider, Enriching network security analysis with
time travel, ACM SIGCOMM Computer Communication
Review, vol. 38, no. 4, pp. 183–194, 2008.

[23] P. Giura and N. Memon, NetStore: An efficient storage
infrastructure for network forensics and monitoring, in
Recent Advances in Intrusion Detection. Springer Berlin,
2010, pp. 277–296.

[24] F. Fusco, M. Vlachos, and X. Dimitropoulos, RasterZip:
Compressing network monitoring data with support for
partial decompression, in Proceedings of the 2012 ACM
Conference on Internet Measurement Conference, 2012,
pp. 51–64.

[25] F. Fusco, X. Dimitropoulos, M. Vlachos, and L. Deri,
PcapIndex: An index for network packet traces with
legacy compatibility, ACM SIGCOMM Computer
Communication Review, vol. 42, no. 1, pp. 47–53, 2012.

[26] J. Li, S. Ding, M. Xu, F. Y. Han, X. Guan, and Z. Chen,
TIFA: Enabling real-time querying and storage of massive
stream data, in Networking and Distributed Computing
(ICNDC), 2011 Second International Conference on,
2011, pp. 61–64.

[27] Z. Chen, L. Ruan, J. Cao, Y. Yu, and X. Jiang, TIFAflow:
Enhancing traffic archiving system with flow granularity
for forensic analysis in network security, Tsinghua Science
and Technology, vol. 18, no. 4, pp. 406–417, 2013.

[28] Z. Chen, X. Shi, L. Ruan, F. Xie, and J. Li, High
speed traffic archiving system for flow granularity storage
and querying, presented at ICCCN 2012 Workshop on
PMECT, 2012.

[29] I. Spiegler and R. Maayan, Storage and retrieval
considerations of binary data bases, Information
Processing and Management, vol. 21, no. 3, pp. 233–254,
1985.

[30] P. Cheng, Bitmap index techniques and its research
advancement, Science and Technologies Information,
vol. 27, no. 26, pp. 134–135, 2010.

[31] Z. Huang, W. Lv, and J. Huang, Improved BLAST
algorithm based on bitmap indexes and B+ tree, Computer
Engineering and Applications, vol. 49, no. 11, pp. 118–
120, 2013.

[32] B. Yang, Y. Qi, Y. Xue, and J. Li, Bitmap data structure:
Towards high-performance network algorithms designing,
Computer Engineering and Applications, vol. 45, no. 15,
pp. 1–5, 2009.

[33] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database
System Implementation, Second Edition. Prentice Hall,
2009.

[34] P. E. O’Neil, Model 204 architecture and performance, in
High Performance Transaction Systems. Springer Berlin
Heidelberg, 1989, pp. 39–59.

[35] P. O’Neil and D. Quass, Improved query performance
with variant indexes, ACM Sigmod Record, vol. 26, no. 2,
pp. 38–49, 1997.

[36] G. Antoshekov, Byte-aligned bitmap compression,
in Proceedings of the Data Compression Conference
(DCC’95), 1995, p. 476.

[37] K. Wu, E. J. Otoo, and Arie Shoshani, Compressing
bitmap indexes for faster search operations, in
Scientific and Statistical Database Management,
2002. Proceedings. 14th International Conference on,
2002, pp. 99–108.

[38] K. Wu, E. J. Otoo, and A. Shoshani, Optimizing bitmap
indices with efficient compression, ACM Transactions on
Database Systems (TODS), vol. 31, no. 1, pp. 1–38, 2006.

[39] F. Deli’ege and T. B. Pedersen, Position list word aligned
hybrid: Optimizing space and performance for compressed
bitmaps, in Proceeding of the 13th International
Conference on Extending Database Technology, 2010.

[40] D. Lemire, O. Kaser, and K. Aouiche, Sorting improves
word-aligned bitmap indexes, Data & Knowledge
Engineering, vol. 69, no. 1, pp. 3–28, 2010.

[41] A. Colantonio and R. Di Pietro, Concise: Compressed
ncomposable integer set, Information Processing Letters,
vol. 110, no. 16, pp. 644–650, 2010.

[42] S. J. van Schaik and O. de Moor, A memory efficient
reachability data structure through bit vector compression,
in Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, 2011, pp. 913–924.

[43] F. Fusco, M. P. Stoecklin, and M. Vlachos, Net-fli: Onthe-
fly compression, archiving and indexing of streaming
network traffic, Proceedings of the VLDB Endowment,
vol. 3, nos. 1&2, pp. 1382–1393, 2010.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 15

[44] G. Canahuate, M. Gibas, and H. Ferhatosmanoglu, Update
conscious bitmap indices, in 19th IEEE International
Conference on Scientific and Statistical Database
Management SSBDM’07, 2007.

[45] F. Corrales, D. Chiu, and J. Sawin, Variable length
compression for bitmap indices, in Database and Expert
Systems Applications, A. Hameurlain, S. W. Liddle, K.-
D. Schewe, and X. Zhou, eds. Springer Berlin Heidelberg,
2011.

[46] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin, A tunable
compression framework for bitmap indices, in IEEE
International Conference on Data Engineering (ICDE
2014), 2014, pp. 484–495.

[47] S. Chambi, D. Lemire, O. Kaser, and R. Godin, Better
bitmap performance with Roaring bitmaps, arXiv preprint
arXiv:1402.6407, 2014.

[48] M. Stabno and R. Wrembel, RLH: Bitmap compression
technique based on run-length and Huffman encoding,
Information Systems, vol. 34, no. 4, pp. 400–414, 2009.

[49] A. Schmidt, D. Kimmig, and M. Beine, A proposal of
a new compression scheme of medium-sparse bitmaps,
International Journal on Advances in Software, vol. 4,
nos. 3&4, pp. 401–411, 2011.

[50] J. Chang, Z. Chen, W. Zheng, Y. Wen, J. Cao, and
W. L. Huang, PLWAH+: A bitmap index compressing
scheme based on PLWAH, in Proceedings of the Tenth
ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, 2014, pp. 257–258.

[51] E. Nuutila. An efficient transitive closure algorithm for
cyclic digraphs. Information Processing Letters, vol. 52:
207–213, 1994.

[52] Y. Wen, Z. Chen, G. Ma, J. Cao, W. Zheng, G. Peng, and
W. L. Huang, SECOMPAX: A bitmap index compression
algorithm, in Computer Communication and Networks
(ICCCN), 2014 23rd International Conference on, IEEE,
2014, pp. 1–7.

[53] M. F. Oberhumer, The Lempel-Ziv-Oberhumer Packer,
http://www.lzop.org/, November 2010.

[54] F. Reiss, K. Stockinger, K. Wu, A. Shoshani, and
J. M. Hellerstein, Enabling real-time querying of
live and historical stream data, in Scientific and
Statistical Database Management, 2007. SSBDM’07. 19th

International Conference on, IEEE, 2007, p. 28.
[55] W. Andrzejewski and R. Wrembel, GPU-WAH: Applying

GPUs to compressing bitmap indexes with word aligned
hybrid, in Database and Expert Systems Applications,
P. G. Bringas, A. Hameurlain, and G. Quirchmayr,
eds. Springer Berlin Heidelberg, 2010, pp. 315–329.

[56] W. Andrzejewski and R. Wrembel, GPU-PLWAH: GPU-
based implementation of the PLWAH algorithm for
compressing bitmaps, Control & Cybernetics, vol. 40,
no. 3, pp. 627–650, 2011.

[57] F. Fusco, M. Vlachos, X. Dimitropoulos, and L. Deri,
Indexing million of packets per second using GPUs,
in Proceedings of the 2013 Conference on Internet
Measurement Conference, 2013, pp. 327–332.

[58] S. Lakshminarasimhan, D. A. Boyuka, S. V. Pendse, X.
Zou, J. Jenkins, V. Vishwanath, and N. F. Samatova,
Scalable in situ scientific data encoding for analytical
query processing, in Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed
Computing, 2013, pp. 1–12.

[59] R. R. Sinha, S. Mitra, and M. Winslett, Bitmap indexes
for large scientific data sets: A case study, in Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, 2006, pp. 10–pp.

[60] R. R. Sinha, and M. Winslett, Multi-resolution bitmap
indexes for scientific data, ACM Transactions on Database
Systems (TODS), vol. 32(3), no. 16.

[61] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J.
Chesler, M. A. Langston, and N. F. Samatova, Genome-
scale computational approaches to memory-intensive
applications in systems biology, in Proceedings of the
ACM/IEEE SC 2005 Conference on Supercomputing’2005,
2005, p. 12.

[62] A. Romosan, A. Shoshani, K. Wu, V. Markowitz, and
K. Mavrommatis, Accelerating gene context analysis
using bitmaps, in Proceedings of the 25th International
Conference on Scientific and Statistical Database
Management, 2013, p. 26.

[63] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan,
Supporting RFID-based item tracking applications in
Oracle DBMS using a bitmap datatype, in Proceedings of
the 31st international conference on Very large data bases,
2005, pp. 1140–1151.

[64] K. H. Lee and B. Moon, Bitmap indexes for relational
XML twig query processing, in Proceedings of the
18th ACM conference on Information and knowledge
management, 2009, pp. 465–474.

[65] T. L. Lopes Siqueira, R. R. Ciferri, V. C. Times, and C.
D. de Aguiar Ciferri, A spatial bitmap-based index for
geographical data warehouses, in Proceedings of the 2009
ACM symposium on Applied Computing, 2009, pp. 1336–
1342.

[66] J. Zhang and S. You, Dynamic tiled map services:
Supporting query-based visualization of large-scale raster
geospatial data, in Proceedings of the 1st International
Conference and Exhibition on Computing for Geospatial
Research & Application,2010, p. 19.

[67] N. Martnez-Bazan, M. . guila-Lorente, V. Munts-Mulero,
D. Dominguez-Sal, S. Gmez-Villamor, and J. L. Larriba-
Pey, Efficient graph management based on bitmap
indices, in Proceedings of the 16th International Database
Engineering & Applications Sysmposium, 2012, pp. 110–
119.

[68] G. H. Cha, Bitmap indexing method for complex similarity
queries with relevance feedback, in Proceedings of the 1st
ACM international workshop on Multimedia databases,
2003, pp. 55–62.

[69] M. Fontoura, M. Gurevich, V. Josifovski, and S.
Vassilvitskii, Efficiently encoding term co-occurrences
in inverted indexes, in Proceedings of the 20th ACM

16 Tsinghua Science and Technology, February 2015, 20(1): 000-000

international conference on Information and knowledge
management, 2011, pp. 307–316.

[70] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G.

Lohman, Dynamic faceted search for discovery-driven
analysis, in Proceedings of the 17th ACM conference on
Information and knowledge management, 2008, pp. 3–12.

Zhen Chen is an associate professor
in Research Institute of Information
Technology in Tsinghua University. He
received his BEng and PhD degrees
from Xidian University in 1998 and
2004, respectively. He once worked
as postdoctoral researcher in Network
Institute of Department of Computer

Science in Tsinghua University during 2004 to 2006. He is also
a visiting scholar in UC Berkeley ICSI in 2006. He joined
Research Institute of Information Technology in Tsinghua
University since 2006. His research interests include network
architecture, computer security, and data analysis. He has
published around 80 academic papers.

Yuhao Wen is an undergraduate student
studying in Department of Electronic
Engineering at Tsinghua University. His
research interests include big data and
networks.

Wenxun Zheng is an undergraduate
student studying in Department of
Physics at Tsinghua University. His
research interests is now on bitmap index
compression.

Jiahui Chang is an undergraduate student
studying in Department of Aerospace
Engineering at Tsinghua University. He
majors in Engineering Mechanics.

Guodong Peng is an undergraduate
student studying in Department of
Mechanical Engineering at Tsinghua
University. His research interests include
mechanical design and network security.

Yinjun Wu is an undergraduate student
studying in Department of Automation at
Tsinghua University. His research interests
include bitmap indexing algorithms.

Ge Ma is currently a master student
studying in Department of Automation
at Tsinghua University. He got his BEng
degree from Tsinghua University in
2013. His research interests include future
network and bitmap index compressing.

Mourad Hakmaoui is a postgraduate
student studying for PhD degree in
Department of Computer Science and
Technologies at Tsinghua University. He
got his master and bachelor degrees from
University of Mohammed 5th-Morocco
in 2008 and 2012, respectively. His
research interests include bitmap indexing

algorithms and fast query for Big Data.

Zhen Chen et al.: A Survey of Bitmap Index-Compression Algorithms for Big Data 17

Junwei Cao is currently a professor
and deputy director of Research
Institute of Information Technology,
Tsinghua University, China. He is also
the Director of Open Platform and
Technology Division, Tsinghua National
Laboratory for Information Science and
Technology. His research is focused on

advanced computing technology and applications. Before
joining Tsinghua in 2006, Junwei Cao was a research scientist
of Massachusetts Institute of Technology, USA. Before that
he worked as a research staff member of NEC Europe Ltd.,

Germany. Junwei Cao got his PhD degree in computer science
from University of Warwick, UK, in 2001. He got his MEng
and BEng degrees from Tsinghua University in 1998 and 1996,
respectively. Junwei Cao has published over 130 academic
papers and books, cited by international researchers for over
3000 times. Junwei Cao is a senior member of the IEEE
Computer Society and a member of the ACM and CCF.

