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CAMP: A New Bitmap Index for Data Retrieval in Traffic Archival
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Jiahui Chang, Jing Zhou, Ziwei Hu, and Jinghong Guo

Abstract— Traffic archival, an indispensable task for network
analysis, has suffered from a huge amount of data. These rapid
growing data can exceed storage capacity and thwart real-time
analysis. In order to take insight from Internet traffic, bitmap
indexing is applied in this field. However, raw bitmap indexes can
consume more space and longer delay for loading larger indexes
into memory. This leads to the invention of various bitmap
index compression algorithms to save storage and ensure query
efficiency. This paper proposes a new algorithm called common
affix merging with partition. By merging common affixes in a
bit sequence, it saves more storage and conducts at least one
order of magnitude faster bitwise operations when compared
with ROARING, WAH, CONCISE, and COMPAX. In practice,
besides bitwise operations, a query should also contain the
operations of loading index files into memory. The experimental
results demonstrate that the speedup is still considerable even
taking loading time into consideration.

Index Terms— Bitmap index, big data, CAMP, compression,
query, traffic archival.

I. INTRODUCTION

CURRENTLY, traffic archival is very important in the
field of data-driven network security, which is beneficial

to prevent malicious network attack, detect network faults,
etc. Unfortunately, it is hard for network analysis because of
the fast increasing amount of data. According to a report [1]
from Cisco, the Internet traffic data will quadruple in recent
years and reach 1.3ZB (that is 1.3 × 1012 GB) in 2016.
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In that case, how to achieve the goal of real-time data retrieval
in archived traffic becomes an enormous challenge.

To achieve efficient query, a reasonable choice is to store
all the incoming data in the form of index files in storage such
as disks. When a query is launched, corresponding index files
are loaded into memory. In order to speed up the following
bitwise operations, bitmap indexing is used.

But the efficiency of bitwise operations is often subject to
many factors, among which I/O operations are most influential.
Because raw bitmap indexes can consume a lot of storage, they
can lead to a serious problem in I/O speed.

In order to relief the problem, various bitmap index
compression algorithms have been devised, such as
BBC [2], WAH [3], PLWAH [4], EWAH [5], PWAH [6],
COMPAX [7], SECOMPAX [8], PLWAH+ [9], BREAD [10],
CONCISE [11], SPLWAH [12], Roaring bitmap [13] etc.
According to a survey [14], some of them are already applied
in traffic archival.

Most of the bitmap index compression algorithms currently
derive from WAH, which is mainly based on Run Length
Encoding (RLE). However, they can increase the time com-
plexity in decompression and the following bitwise operations.
Some novel ideas have been presented to resolve this problem.
One of the most effective methods is Roaring bitmap. When
dealing with in-memory indexes, Roaring can beat WAH
and its derivatives in both spatial and temporal performance.
However, as referred before, in the field of traffic retrieval,
it is inconceivable to store all the data in memory. Thus,
in-memory bitmap index algorithms such as Roaring may lose
their advantages in this application. In order to demonstrate
the advantage of our design, we compare our algorithm with
Roaring in experiments.

In this paper, a new algorithm named CAMP is pro-
posed, which differs from previous algorithms based on WAH.
Its main feature is to divide raw bitmap indexes into many
bitmap snippets and then merge the common affixes. It can
achieve better performance in both storage and speed. We also
propose an improved version of CAMP, CAMP_block, which
is to partition the whole dataset equally into many blocks and
apply CAMP for each block.

The following sections are organized as follows.
In section II, the motivation and design details of CAMP are
presented. In Section III, experimental results based on both
synthetic data and real data are provided. The conclusion is
presented in Section IV.

II. METHODOLOGY

A. Compression Schemes

Fig. 1 shows the compression scheme of CAMP. First,
a raw bitmap index containing n bits is partitioned
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Fig. 1. The compression scheme of CAMP.

TABLE I

THE DISTRIBUTION SEQUENCE OF THE SPACE
OVERHEAD OF INTEGER LIST

into many bit snippets in the same length (denoted by
interval) and common affixes will be merged among all the
bit snippets. The common affixes are stored in an array named
as α[i ](i = 0, 1 · · · ) and all the bits in each bit snippet
between two adjacent common affixes will compose an array
named as β[i ](i = 0, 1 · · · ) . In our application, the value of
interval is assigned as �0.1

√
n�.

B. Index Storage
α and β should be stored in the index files after encoding.

Details about how to store α and β are described below.
1) Storage Description: Since long sequences of zeros are

expected in the real case, run-length encoding is better to
compress α, i.e. the numbers of continuous zeros and ones
are recorded alternatively.

When the density of 1 is very low, nearly approaching zero,
integer list is better to record all the positions of 1s in each
β[i ](i = 0, 1 · · · ). Otherwise, it is stored with bit sequence
directly. Obviously, there exists a threshold for the conversion
between integer list and bit sequence and we found that the
threshold depends on the size of given datasets, which could
be illustrated via a mathematical model.

2) A Mathematical Model for Calculating the Threshold:
In this model, we assume that each β[i ](i = 0, 1 · · · )
contains w bits and bit 1s obey uniform distribution. The
density of 1 is denoted as p. Detailed calculation process is
shown at https://github.com/thuwuyinjun/CAMP/blob/master/
threshold.nb.

In practice, both the integer list and bit sequence will be
held in the form of integer arrays in memory and then stored
in disks. The occupied space in index files is determined by the
number of decimal digits of these integers and other characters
such as minus signs.

•Integer li st
If β[i ] is stored as an integer list which denotes the

positions of bit 1s, according to the space overhead of the
integers, a distribution sequence is presented in Table I. Since
bit 1s follow the uniform distribution, the number of bit 1s is
proportional to the density of 1s. So Table I shows expected
number of bit 1s within interval [10k , 10k+1).

Fig. 2. Binary form of v .

According to Table I, the expected space consumed
(denoted as Sinteger_list ) of β[i ] is provided in Equation (1).

Sinteger_list

=
∑�logw�−1

k=1
9 × 10k p(k + 2) + 20 p

+ (�logw� + 2)(w − 10�logw�)p

= p

9
(−170 + 8 × 10�logw� + 9 × 10�logw� × �logw�) + 20 p

+ (�logw� + 2)(w − 10�logw�)p (1)

•Bit sequence
First, we use a function f (v) to represent the probability

that a 64-bit integer is smaller than v. In order to count all
the possible eligible integers smaller than v (these integers
are denoted by I ), we consider each bit from the leftmost bit
(the 63rd bit) to the rightmost bit (the 0th bit). Fig. 2 shows the
binary form of v. According to Fig. 2, the leftmost significant
bit locates at (s − 1)th bit in v.

Since no bit 1 exists from the 63rd bit to the sth bit in v and
I must be smaller than v, the values of the 63rd bit to sth bit
should be also all 0s in I . The probability is (1− p)64−s . Then
for the (s−1)th bit (i.e. the leftmost 1 in v), two possible cases
appear in I . The first case is that the (s − 1)th bit is 0. In this
case, the value of I must be smaller than v no matter what
the following bits are. Corresponding probability is 1 − p.

The other case is that the (s − 1)th bit in I is 1. Since
the following m1 bits in v are all 0s, they should be all 0s
in corresponding positions in I . After that the next 1 appear,
we make the same choices as those in the (s − 1)th bit. The
same procedures proceed recursively. It should be noted that
when the procedures above continue until the rightmost 1
(supposing its position is mt in v), the value in the mth

t bit
in I must be 0. Otherwise, the value of I would be greater
than or equal to v. Before calculating the value of f (v) , an
intermediate result (denoted by P0) can be written as follows
based on the analysis above:

P0 = p(1 − p)m1(1 − p + p(1 − p)m2

× (((1 − p) + p(1 − p)mt−1(1 − p))))p

= p(1 − p)m1h(p)(t ≥ 2) (2)

When t > 2, in equation (2), we omit the terms of the
higher degree in h(p). Then the value of f (v) can be derived
as follows:

f (v) = (1 − p)64−s(1 − p + P0) ≈ (1 − p)64−s(1 − m1 p2)

(3)

When t = 2 or t = 1, f (v) can be calculated directly:

f (v) = (1 − p)64−s(1 − p + p(1 − p)m1+1)

≈ (1 − p)64−s(1 − (m1 + 1)p2)(t = 2) (4)

f (v) = (1 − p)64−s(1 − p) = (1 − p)65−s(t = 1) (5)
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TABLE II

THE DISTRIBUTION SEQUENCE FOR A 64-BIT INTEGER v

Based on equation (3) - (5), we can get the distribution
sequence for the value of each 64-bit integer v, which is
shown in Table II. After considering the sign bit in practice,
the expected value of v is:

Ev =
∑m−1

k=1
p(k + 2)( f (10k+1) − f (10k))

+ 2 × f (10) + (1 − f (10m)(m + 2)

+
∑m−1

k=1
(1 − p)(k + 3)( f (10k+1) − f (10k)) + 3

× f (10) + (1 − f (10m)(m + 3) (6)

In a 64-bit integer, since the leftmost bit denotes the sign, the
value of m in Table II should be 18. So all the value of f (10k)
can be enumerated according to equation (3), (4) and (5).

According to equations above, the value of Sbit_sequence is
shown below, which is a 61st degree polynomial.

Sbit_sequence = Ev × � w

64
� = � w

64
�

× (2 + 559 p − 11033 p2 + 160838 p3) (7)

When Sbit_sequence equals Sinteger_list , corresponding value
of p is the threshold. After derivation, we find that the value
of p depends on the size of w. Supposing a dataset contains r
rows of records, then w = r

�0.1
√

r� . Here we give an example.

It is assumed that there are 106 rows in a database, w will
be 106

�0.1
√

106� = 10000. In this case, when the value of p is

determined as 0.046, Sbit_sequence = Sinteger_list .
3) Further Improvement: To build the indexes using CAMP,

common affixes cannot be built until the entire bitmap is
checked, which means that we cannot append the indexes of
new data onto the end of the existing indexes “on the fly.” This
is a serious limitation for on-line network monitoring. In order
to solve this problem, we propose an improved version called
CAMP_block. At first, the whole dataset is separated into
many blocks equally and then CAMP is used for each block.
Each block contains 1 million rows.

III. EXPERIMENTS

A. Datasets

In order to demonstrate the advantage of CAMP,
two datasets are used in experiments. One is synthetic data
following the uniform distribution. The other is CAIDA
Anonymized Internet Traces 2013 Dataset [15].

1) Synthetic Data: In order to show the overall performance
of the synthetic data, the density ranged from 1×10−6 to 0.1,
which covered most densities in reality. The experiments
simulated the case where 1,000,000 rows exist in a database.
In order to avoid fortuity, 40 diverse datasets were created
for each density. According to Section II-B, the threshold in
CAMP for storing β is 0.046.

Fig. 3. Storage cost and AND operation time with varied density on synthetic
data.

Fig. 4. Storage cost on CAIDA-2013.

2) Real Data: The real data is CAIDA-2013, which traces
the real network traffic. It is composed of up to thirteen million
quintuples, i.e. source IP address, source port, destination
IP address, destination port and protocol type.

The main work in our application was to retrieve the
IP addresses. In the following experiments, each byte of
IP addresses was treated as an attribute and corresponding
indexes were built on these attributes. Since there were 8 bytes
in total and each byte varies from 0 to 255, the total number
of bitmaps used would be 256 × 8 = 2048 and the average
density of each bitmap was 1/256 ≈ 0.4%. Since there were
thirteen million records, according to the mathematical model
in Section II-B, the threshold for CAMP is 0.037.

B. Experimental Settings

In order to compare CAMP and other traditional algo-
rithms, all the experiments were conducted on the same
64-bit machine with single core, whose CPU is Intel Core
i7-3770 and RAM is 18G. All the codes are shown at
https://github.com/thuwuyinjun/CAMP.

In our experiments, we compared the performance between
CAMP and other 4 algorithms, i.e. Roaring, WAH,
COMPAX and CONCISE. COMPAX and CONCISE belong
to the WAHs derivatives and they are frequently applied in
practice. Besides, as referred before, Roaring is a promising
alternative algorithm, which was also used in the experiments.

C. Performance Comparison

1) Synthetic Data: The sizes of index files using various
algorithms are given in Fig. 3. In the given dataset, there
exists only one block in CAMP_block, the structure of which
is same as CAMP except the extra header information in
CAMP_block. So we only compare CAMP and other com-
petitors. As shown in Fig. 3, CAMP creates smallest index
files in disks in all the cases, although when the density is
high enough (greater than 1/16 ≈ 6%), CAMP and Roaring
share nearly the same performance in storage.
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Fig. 5. Time of querying IP addresses.

When conducting bitwise operations (mainly AND opera-
tions in our applications, OR operations are also provided in
github), each bitwise operation is conducted for 100 times
in order to avoid fortuity. Fig. 3 also exhibits the advantage
of bitwise operations in CAMP. When the density increases,
CAMP can beat its competitors gradually and the speedup
can be at least one order of magnitude. It is interesting to see
that when the density varies from 0 to 2%, AND operation
time grows accordingly. This is reasonable because the number
of common affixes will decrease as the density increase.
It demonstrates that the compression brought by merging
common affixes definitely accelerate bitwise operations.

Admittedly, when the density is greater than about 3%, the
operation time keeps nearly the same in CAMP. Obviously,
all the common affixes disappear and only the β parts exist.
In that case, the reason why CAMP is still faster than WAH
and its derivatives is that the bitwise operations in them are
conducted word by word (each word contains 32 bits), which is
not efficient on a 64-bit CPU. Besides, another serious problem
that WAH and its derivatives must face is alignment, which is
a time-consuming procedure.

When the density is greater than 3% but less than 6%,
bitwise operations with CAMP are faster than that with
Roaring. As referred before, all the common affixes disappear
in CAMP and the bitwise operations with CAMP equal to
that in uncompressed bitmaps, which is certainly faster than
intersection between integer lists in Roaring.

When the density is greater than 6%, CAMP and Roaring
both contain uncompressed bitmaps. However, they differ
drastically in bitwise operations. The reason is that after
bitwise operations Roaring needs to convert the result into
integer list when the density of the result is less than 1/16,
which is completely avoided by CAMP.

2) Real Data: The real dataset is CAIDA-2013 in the
experiments. At first, we build indexes on this dataset and
then store them in disks waiting for the following queries.

Fig. 4 gives the size of index files in disks using different
algorithms. Unfortunately, CAMP does not own the best
performance. This is because, in the real network, a single
host is likely to send or receive packets continuously, which
can create a lot of clustered records in this dataset. However,
CAMP_block can have better spatial performance than other
competitors overall.

Fig. 5 shows the results of query operations in CAIDA-
2013. In order to simulate real queries, we randomly selected
1000 source IP addresses and destination IP addresses which
had occurred in our datasets, loaded corresponding index files
from disks to memory and then conducted bitwise operations
to retrieve targeted IP addresses.

When comparing to WAH and its derivatives, CAMP
consumes more time in loading parts. The reason is that the
density of β arrays (average value is 0.4%) is much smaller
than the threshold (3.7%), which means that β array should
be stored as integer list and be added into bit sequence one by
one in loading process. The extra time is needed. However,
CAMP can compensate it through its fast bitwise operations
(up to 10 times). As a result, CAMP is faster than WAH and
its derivatives in the whole querying process. The speedup
is about 1.16x and 1.09x in source IP and destination IP.
Besides, CAMP and CAMP_block consume less querying
time than Roaring. The low density leads to the existence of
integer lists in Roaring. So it shares nearly the same loading
time as CAMP. However, because of smaller index files
according to Fig. 4, CAMP consumes less loading time than
Roaring, which brings about 1.07× and 1.05× speed-up in
the querying process.

IV. CONCLUSION

The faster bitwise operations are critical for retrieval and
query processing of archived network traffic. In this paper, we
proposed a new bitmap index compression algorithm named
CAMP. CAMP not only achieves better performance in stor-
age, but also achieves faster bitwise operations. Experiments
based on synthetic data and real data prove the superiority of
this new algorithm. It can be expected that CAMP will have
an impressive performance in the field of traffic archival.
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