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COMBAT: A new bitmap index coding algorithm for Big Data

Yinjun Wu, Zhen Chen ∗, Yuhao Wen, Wenxun Zheng, Junwei Cao

Abstract: Bitmap indexing has been widely used in various applications due to its speed in bitwise operations.

However, it can consume large amounts of memory. To solve this problem, various bitmap coding algorithms have

been proposed. In this paper, we present COMBAT (COMbining Binary And Ternary encoding), a new bitmap

index coding algorithm. Typical algorithms derived from WAH are COMPAX (COMPressed Adaptive indeX) and

CONCISE (Compressed ‘n’ Composable Integer Set), which can combine either two or three continuous words

after WAH encoding. COMBAT combines both mechanisms and results in more compact bitmap indexes. Moreover,

querying time of COMBAT can be faster than that of COMPAX and CONCISE, since bitmap indexes are smaller

and it would take less time to be loaded into memory. To prove the advantages of COMBAT, we extend a theoretical

analysis model proposed by our group, which is composed of the analysis of various possible bitmap indexes. Some

experimental results based on real data are also provided, which show COMBAT’s storage and speed superiority.

Our results demonstrate the advantages of COMBAT and codeword statistics are provided to solidify the proof.
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1 Introduction

The boom in streaming data, such as IoT (Internet
of Things) sensing data, network traffic, and machine
operational logs, requires powerful data processing
systems, necessitating more efficient data structures
and algorithms than before. Many applications are
experiencing challenges in querying and searching such
Big Data. For example, as the biggest 3G wireless
networks operator, China Unicom is experiencing
difficulties in processing queries in their CDR (call
detail records) billing data and returning real-time
results to mobile users. Although advancements in
CPUs and other hardware devices have relieved the
pressure of real-time query demands to some degree,
this problem is far from being fully resolved. Moreover,
CDR data from 3G and 4G wireless networks are
increasing dramatically [1] and as a result, it would take
several days for users to access their usage information.
So many telecom operators have already paid much
attention to accelerating traffic data queries[2-3].

Bitmap indexing [4-8] has been widely used to solve
problem of quick response to queries for traffic data,
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such as netflow data and CDR data. A bitmap index
[9] is a bit sequence that represents a specified property
and indicates which data items in the dataset satisfy
this property. The bit sequence has a 1 in position
i if the i-th data item satisfies the property, and 0
otherwise. Queries are executed using fast bitwise
logical operations and binary vectors supported by
hardware. Bitmap indexing has more flexible encoding
schemes and takes less time to answer the query than
other indexing schemes[10]. However, since bitmap
indexing can consume a large amount of memory and
disk space, powerful query systems and corresponding
algorithms are indispensable when processing.

Many kinds of systems have been devised and
implemented to deal with such challenges. For
example, Druid [11], an emerging real-time data
analytics system, has satisfying performance in storing
and querying real-time streaming data. Moreover, to
deal with the storage requirements, a series of bitmap
index coding algorithms have been proposed, such as
BBC[13], CONCISE [12], WAH [14-15], UCB [16],
RLH [17], PLWAH [18], EWAH [19], PWAH [20]
, COMPAX [21], GPU-WAH [22-23], GPU-PLWAH
[24], VLC [11], SECOMPAX [25], PLWAH+[26],
DFWAH [27] and Roaring bitmap[28]. A detailed
survey of these diverse coding schemes is given in [29].
We deemed CONCISE(Compressed ‘n’ Composable
Integer Set) and COMPAX (COMPressed Adaptive
indeX) better than others for our purposes because they
have relatively simple coding schemes.

In the following sections, a new coding algorithm
called COMBAT (COMbining Binary And Ternary
encoding) is introduced, which includes more coding
schemes than COMPAX and CONCISE. In the
following sections, details about COMBAT encoding
are shown and a mathematical proof is provided
to demonstrate its advantage. This proof includes
memory consumption analyses for two kinds of bitmap
indexes-sparse bitmaps and dense bitmaps in uniform
distribution. Besides theoretical analysis, experiments
were also conducted to compare COMBAT with
CONCISE and COMPAX. Two real datasets were used
for representing two kinds of bitmap indexes separately.
The results show that COMBAT performs better in
terms of storage demands and querying time than
COMPAX and CONCISE.

2 THE STATE OF THE ART

2.1 Basic Definitions

A bitmap index is composed of a large number of bit
sequences. An operation unit in bitmap index can be
a byte, a word, a Dword, or a qword, to suit different
CPUs. In this paper, all operations are word-based.

Here are some definitions. In a bit sequence, a bit set
to zero or one is called a unset bit or set bit. A group
of 31 continuous bits is defined as a chunk and a raw bit
sequence will be divided by chunk. If the bits in a chunk
are different, then this chunk will be defined as literal.
If 31 bits in a chunk are all set bits or unset bits, then it
is called fill. A fill is called a 0-fill or a 1-fill according
to whether all its bits are unset bits or unset bits.

2.2 WAH

WAH(Word Aligned Hybrid) is a classic bitmap index
coding algorithm, which uses a word to contain a chunk
in memory by adding a most significant bit (MSB). In
WAH, this bit is used to distinguish fill and literal. If a
chunk is literal, then the MSB is a set bit. An unset-bit
MSB is used to denote a fill. The type of fill is denoted
in the bit next to the MSB, and the remaining bits are
used to store the number of consecutive fills of the same
type. The merged word is still called a fill in WAH.

2.3 CONCISE

CONCISE [12] is used to represent a series of
integers in a set; it is used as further compression
after WAH encoding. It is proposed for handling
sparse bitmaps. In order to simplify our analysis in
the following sections, some concepts in CONCISE are
redefined here. CONCISE introduces a new type of
codeword based on fill; it includes information in each
encoded word in addition to the number of continuous
fills. After WAH encoding, if there exists a chunk with
only one set bit, and this chunk is just before a fill, then it
is defined as an N-fill. It is combined with the following
fill, and the position of the sole set bit is recorded in the
newly created word by using five bits to represent the
set bit’s position. This codeword is denoted as [NL-F].
Other literals remain unchanged in CONCISE. Fig. 1
shows an example of CONCISE.

2.4 COMPAX

COMPAX (COMPressed Adaptive indeX) provides
a different strategy from CONCISE. While CONCISE
focuses on merging two contiguous words, COMPAX
can deal with three contiguous words after WAH
encoding. Thus it consumes less memory to store
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Fig. 1 An examples of CONCISE

bitmap indexes. In COMPAX, besides fill and literal
(borrowed from WAH), another two encoding schemes
are introduced.

Fig. 2 An examples of WAH and COMPAX

In a literal, if only one byte contains both set bits and
unset bits, while other bits in this word are composed
of only set bits or unset bits, this byte is called a dirty
byte and this literal is called L for short. In an L, if the
three bytes other than the dirty byte are all composed
of only unset bits, then this dirty byte is classified as
0-dirty and this L is defined as 0-L. 1-dirty and 1-L are
similarly named.

There are also [LFL] and [FLF] codewords in
COMPAX. An [LFL] codeword combines three
consecutive WAH words (L + fill + L), and an [FLF]
codeword combines three consecutive WAH words (fill
+ L + fill). In COMPAX, F only represents 0-fill and L
only represents 0-L. Fig. 2 shows how COMPAX works
and achieves better compression than WAH.

2.5 COMBAT

COMBAT (COMbining Binary And Ternary
encoding) is similar to CONCISE and COMPAX
in that two or three contiguous words can be combined
into a single word. Its specific coding schemes are
introduced below.

In COMBAT, the definitions of [FLF] and [LFL]
codewords are extended from those of COMPAX. But
unlike COMPAX terminology, F in COMBAT can
denote both 0-fill and 1-fill, and L can also denote both
0-L and 1-L. The composition of the [FLF] and [LFL]

codewords is shown in Fig. 3 and Fig. 4.
COMBAT also shares some characteristics with

CONCISE in coding schemes. If there already exist
two contiguous words, L and fill (but without another
L following), they can be combined in COMBAT. This
codeword is called [LF]; and it is shown in Fig. 5.

Another definition, NI2-L, is introduced in COMBAT,
leading to a new kind of codeword. NI2-L refers to
a literal containing only two dirty bytes (of the same
type). If in an NI2-L, the two dirty bytes that are not the
dirty bytes are composed of only unset bits, this NI2-L
is called a 0-NI2-L. We define 1-NI2-L similarly. So if
an NI2-L is just before a fill after WAH encoding, then
these two words can be merged into a new one, called
an [NI2-LF]. This kind of codeword is shown in Fig. 6.

Fig. 3 [FLF] codeword in COMBAT

Fig. 4 [LFL] codeword in COMBAT

Fig. 5 [LF] codeword in COMBAT

Fig. 6 [NI2-LF] codeword in COMBAT

3 THEORETICAL ANALYSES

In this section, we discuss an ideal distribution in
bitmap index-uniform distribution, which is a part of the
theoretical analysis found in [30]. Similar to [30], We
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list some assumptions below that simplify our analysis.
The following analysis is composed of three different
possible cases, i.e. sparse bitmaps, dense bitmaps, and
bitmaps following a Zipf distribution.

i. The positions and density of set bits are
independent from each other.

ii. According to the encoding schemes of COMBAT,
COMPAX and CONCISE, only three chunks occur
in a raw bitmap index.

3.1 Sparse Bitmap

In the case of sparse bitmaps, we assume that the
density of set bits (denoted by d) is very small, which
can facilitate Taylor expansion. Only terms of the
first and second degree are retained in the following
analysis.

According to [30], the theoretical compression results
of CONCISE and COMBAT (denoted by LCONCISE

and LCOMBAT ) are shown below:

LCONCISE = 1 + 62d+ 1922d2; (1)

LCOMBAT = 1 + 31d+ 496d2; (2)

Although [30] does not provide the theoretical
compression results of COMPAX, they should be
the same as the compression results of SECOMPAX
in [30], because the two algorithms share the same
compression schemes, in the case of sparse bitmaps. So
the corresponding result of COMPAX is:

LCOMPAX = 1 + 62d− 210d2; (3)

Fig. 7 The simulation results in sparse bitmaps

We can now compare spatial performance in
COMBAT with COMPAX and CONCISE according
to the equations above. When the value of d is very

close to 0, more space can be expected to be saved
after COMBAT encoding because the coefficient of the
monomial term in LCOMBAT is smaller than those in
the other two.

In order to show the differences between COMBAT
and other algorithms, some simulation results are
provided in Fig. 7, where the value of d ranges from
0 to 0.1. Since in most cases the density of real datasets
does not exceed 10%, the simulation results can be a
reflection of reality.

From Fig. 7, it is obvious that COMBAT can
beat CONCISE and COMPAX in the given density
interval, and its savings are 10% on average. This
result is expected because COMBAT provides more
compression schemes than COMPAX or CONCISE in
this case. Although the savings are not enormous in
terms of percentage, in the context of Big Data when
the data can reach ZB levels, the actual savings are still
considerable.

3.2 Dense Bitmap

In practice, sparse bitmaps represent most cases.
However, we cannot omit a special case when the
bitmap is very dense. For example, in the field
of network intrusion detection, when explosive traffic
appears, clustered set bits can be expected. Or
within local area networks, the number of possible IP
addresses is limited and thus continuous set bits can
be expected. In the following analysis, the value of d
is assumed to be very large, approaching one. Taylor
expansion is also applicable in this subsection, but in
order to simplify it, another variable r is introduced and
assigned the value of 1 - d . Thus r approaches zero
here. This is similar to what is seen in subsection 3.1-
only the first and second degree terms are kept in the
Taylor expansion.

As in [30], the Basic probabilities, i.e. the
probabilities of fill, L, NI2-L, literal, and N-fill in an
uncompressed bit sequence can be calculated. But here,
we denote these values using r, which is realized by
replacing d in the probability value from [30] with 1
- r. These new probability values and their simplified
values are presented in Table 1.

Probabilities of all kinds of compressible three-word
combinations with corresponding compressed lengths
from COMBAT, COMPAX and CONCISE can be
computed by replacing d with 1 - r in corresponding
values from [30]. All these values are presented in Table
2.
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Table 1 Value of Basic probabilities
chunk type symbol Value Simplified value

0-fill p1 r31 0
1-fill p2 (1 − r)31 1−31r+465r2

0-L p3 (1 − r7)r24 + 3(1 −
r8)r23

0

1-L p4 (1 − (1 − r)7)(1 −
r)24 + 3(1 − (1 −

r)8)(1 − r)23

31r − 825r2

0-NI2-L p5 3(1−r7)(1−r8)r16+
3(1 − r8)2r15

0

1-NI2-L p6 3(1 − (1 − r)8)2(1 −
r)15 + 3(1 − (1 −

r)7)(1 − (1 −
r)8)(1 − r)16

360r2

literal p7 1 − (1 − r)31 − r31 31r − 465r2

N-fill p8 C1
31r(1 − r)30 +
C1

31(1 − r)r30
31r − 930r2

Table 2 Probability value (COMBAT)
word combination and corresponding

algorithms
Compressed

length
Calculated value

0-fill+0-fill+0-fill (all) 1 0
1-fill+1-fill+1-fill (all) 1 1− 93r + 4278r2

0-fill+0-fill+1-fill (all) 2 0
1-fill+0-fill+0-fill (all) 2 0
1-fill+1-fill+0-fill (all) 2 0
0-fill+1-fill+1-fill (all) 2 0

0-fill + 0-L + 0-fill(COMPAX) 1 0
fill + L + fill(COMBAT) 1 31r − 2747r2

0-L + 0-fill + 0-L(COMPAX) 1 0
L + fill + L(COMBAT) 1 961r2

fill + fill + literal (all) 2 31r − 2387r2

literal + fill + fill (the same type of
fill,COMPAX)

2 31r − 2387r2

literal(not N-fill) + fill + fill (the same
type of fill, CONCISE)

2 0

literal + L + fill([LF], COMBAT) 2 961r2

L + fill + literal(not L,[LF],
COMBAT)

2 0

literal (not L) + fill + fill (COMBAT) 2 360r2

L+ fill + fill(COMBAT) 1 31r − 2747r2

NI2-L + fill +literal ([NI2-LF],
COMBAT)

2 360r2

NI2-L + fill + fill ([NI2-LF],
COMBAT)

1 360r2

Any type + NI2-L + fill ([NI2-LF],
COMBAT)

2 360r2

N-fill+0-fill+ 0-fill(CONCISE) 1 0
N-fill+1-fill+1-fill (CONCISE) 2 0

Any type of word + N-fill + 0-fill
(CONCISE)

2 0

Based on the probabilities above, the mathematical
expectation of the compressed length after COMBAT,
COMPAX, CONCISE encoding(denoted by
LCOMBAT ,LCOMPAX and LCONCISE) are shown as
follows:

LCOMBAT ≈ 1 + 31r + 856r2 (4)

LCOMPAX ≈ 1 + 124r − 3782r2 (5)

LCONCISE ≈ 1 + 124r − 3782r2 (6)

Likewise, the monomial coefficient in LCOMBAT

is smaller than those of LCOMPAX and LCONCISE .
That means that when the value of r is approaching
zero, i.e., the value of d is approaching one, COMBAT
has better compression performance than the other two
algorithms.

In fact, in the case of dense bitmaps, the codewords
[FLF], [LFL] in COMPAX and [N-LF] in CONCISE
have nearly no influence on the compression, thus
degenerating into WAH.

Similarly, simulation results in this case are presented
in Fig. 8 and the superiority of COMBAT can be
shown more explicitly. As shown in Fig. 8, when the
value of d ranges from 0.99 to 1, COMBAT has much
better spatial performance than the other two algorithms
while COMPAX has nearly the same performance as
CONCISE in this case.

Fig. 8 The simulation results in dense bitmaps

3.3 Bitmaps Following Zipf Law

The dataset in reality follows a zipf distribution,
which contains N possible values. Based on the
Zipf law, the key values v1, v2...vN belonging to one
column of a dataset rank 1st, 2nd...N th separately. The
probability of the ith common key value would be
p(i) = c

iα

For every single bitmap index, which represents one
single key value, we assume that it follows a uniform
distribution. But the density of these bitmap indexes
will not approach zero or one. Similar to the previous
analysis, the value of each of its Basic probability is
derived and listed in Table 3.

Since all the compressible three-word combinations
in COMBAT, COMPAX and CONCISE are known
to us, their values with respect to newly derived
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Table 3 Value of Basic probabilities for the ith common key value

chunk
type

symbol Original value

0-fill p1(i) (1− p(i))31

1-fill p2(i) p(i)31

0-L p3(i) (1− (1− p(i))7)(1− p(i))24 +

3(1− (1− p(i))8)(1− p(i))23

1-L p4(i) (1− p(i)7)p(i)24 + 3(1−
p(i)8)p(i)23

0-NI2-
L

p5(i) 3(1− (1− p(i))7)(1− (1−
p(i))8)(1− p(i))16 + 3(1− (1−

p(i))8)2(1− p(i))15

1-NI2-
L

p6(i) 3(1− p(i)8)2p(i)15 + 3(1−
p(i)7)(1− p(i)8)p(i)16

literal p7(i) 1− p(i)31 − (1− p(i))31

N-fill p8(i) C1
31(1− p(i))p(i)30 +

C1
31p(i)(1− p(i))30

Basic probabilities can be calculated, which is the
same for the following compressed length (denoted by
LCOMBAT (i), LCOMPAX(i), LCONCISE(i) for the
ith common key value). The total compressed length
of COMBAT, COMPAX and CONCISE is:

LCOMBAT =
n∑

i=1

LCOMBAT (i) (7)

LCOMPAX =
n∑

i=1

LCOMPAX(i) (8)

LCONCISE =
n∑

i=1

LCONCISE(i) (9)

Since the calculation of LCOMBAT , LCOMPAX and
LCONCISE is complex, some simulation results from
Matlab are provided in Fig. 9, Fig. 10 and Fig. 11.
Since the Zipf law is restricted to two factors, i.e. α

and c, the simulated compressed length changes with
the two variables in the three figures.

From Fig. 9, Fig. 10 and Fig. 11, it is obvious that the
length of compressed words in COMBAT is less than
those in COMPAX and CONCISE with the change of
α and c. The savings range from 5% to 10%, which
demonstrates that COMBAT consume less memory and
storage in theory than COMPAX and CONCISE.

4 EXPERIMENT ANALYSIS

4.1 Datasets and Experimental Setting

Two real datasets are used in our experiments. One is
netflow data from CAIDA 2013, which is composed of
up to 13 million records including source IP, destination

Fig. 9 The simulation results of COMBAT with the change
of α and c

Fig. 10 The simulation results of COMPAX with the change
of α and c

Fig. 11 The simulation results of CONCISE with the change
of α and c

IP, source port, destination port and protocol type.
The other dataset is CDR (call detail records) billing
data from China Unicom. One file contains all the
communication logs from one day. Two files were
selected for the following experiments. Up to 900,000
communication records are contained in one file, each
of which is composed of a time stamp denoting the
starting time of a call, sending end number, receiving
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end number, etc.
The codes for the following experiments originate

from parts of codes in Druid. And all the experiments
are executed in the same JVM (Java virtual machine) in
a 64-bit Ubuntu Server with a Intel Core i7 CPU with
18GB RAM. In order to avoid mutual interference, only
one program runs in the machine at one time.

4.2 Experiment Results

4.2.1 CAIDA data
Fig. 12 to 14 give the experimental results from

CAIDA 2013 data. Four features are selected for the
experiments-source IP address, destination IP address,
source port and destination port. Four separate bytes (0-
255) comprise a single IP address, which facilitates the
creation of a bitmap index for each byte. A port number
occupies two bytes in memory, which corresponds two
separate bitmaps in the following experiments.

Fig. 12 is the storage comparison after compressing
with CONCISE, COMPAX, COMBAT and WAH
respectively. It contains the total size of index files,
as well as the corresponding storage ratio to that of
COMBAT. From the figure, it is obvious that COMBAT
beats the other three algorithms. The savings are 7%,
8%,4% and 4% in source IP, destination IP, source
port and destination port when compared to COMPAX,
which consumes the least storage among the other three
algorithms. Although the improvement is not enormous
at first glance, the savings can be still considerable in
practice when considering the huge amount of data.

Fig. 12 Storage comparison with CAIDA data

Fig. 13 shows a comparison of querying time,
including time consumed by the loading process. In
order to avoid fortuity, up to 500 diverse queries are
created. For each query, an IP address or a port number
is retrieved from the index files which are created
randomly in the experiments.

The results from Fig. 13 show that querying with
COMBAT is faster than that with the other three

algorithms in most cases. Admittedly, it is slightly
slower when it comes to destination port number.
However, the speed-up is still about 4%, 3% and 1% in
other three cases. The speedup in COMBAT is traceable
to its smaller index files, resulting in quicker loading.
To verify this point, the loading time is also recorded in
Fig. 14.

Fig. 13 Querying time comparison with CAIDA data

In Fig. 14, all the index files are loaded sequentially,
showing that the loading process of COMBAT is faster
than those of its competitors, and the speed-up can
reach 7%, which is proportional to the savings in
index files. The faster loading process is the main
reason for the speed-up in the querying process. This
apparently minor improvement matters a lot when
taking various practical factors into account. For
example, in distributed systems, data are uploaded and
downloaded frequently, and thus IO speed is a major
issue in system performance, which can be largely
determined by index file loading time.

The improvement in querying can be also accounted
for by the coding schemes themselves. COMBAT is an
extended version of compression scheme of COMPAX,
which differs from CONCISE. According to the coding
schemes of CONCISE, in the query process, Boolean
operations are conducted between two indexes; they
conclude by retrieving the position of the combined
set bits in a compressed word. The retrieval processes
slow down the Boolean operations because the position
calculations are complex. In contrast, because fast
shifting operations can be performed directly by a CPU,
and thus all the dirty bytes inside words encoded by
COMBAT or COMPAX at the top possible speed. The
Boolean operations that follow are also performed very
efficiently.

In order to verify the workability of the coding
schemes, the codeword statistics of CAIDA data are
presented in Fig. 15. Obviously, all kinds of COMBAT
codewords are used in CAIDA data. The numbers
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Fig. 14 Loading time with CAIDA data

Fig. 15 Codeword statistics with CAIDA data

of codewords other than fill and literal are nearly the
same order of magnitude, which differs somewhat from
the theoretical analysis. The reason is that all data
in CAIDA 2013 are reordered, which leads to more
concentrated distribution of set bits and unset bits and
thus to a higher probability of various codewords after
COMBAT encoding.

Fig. 16 Storage comparison with CDR data

Fig. 17 Querying time comparison with CDR data

4.2.2 CDR Data
As noted earlier, two CDR data files were used in our

experiments. Within each file, various features compose
a single record; here we are only concerned about phone

Fig. 18 Loading time comparison with CDR data

Fig. 19 codeword statistics with CDR data

numbers (both the sending end and the receiving end)
because only this feature is non-numerical, and thus
corresponding bitmap indexes can be built.

Similar to what we present in section 4.2.1, Fig
16 to 18 compare the performance of the different
algorithms on CDR data. Spatial performance with
CDR data under the various algorithms is shown in Fig.
16. COMBAT has 6% better spatial performance than
COMPAX.

Query performance on CDR data is provided in
Fig. 17, which has nearly the same trends as CAIDA
data results. However, when it comes to CDR data,
the querying speed-up is as much as 16%. This
demonstrates that the advantage of COMBAT is more
obvious with specifically distributed data. In order to
figure out where the savings originate, loading time is
also presented in the following figure.

According to Fig. 18, COMBAT consumes the least
loading time, and the improvement is nearly the same as
that in CDR data. However, it is not convincing enough
to become the top factor for the savings in querying time
because the speed-up in the second sending-end dataset
varies from that in the other datasets.

In order to resolve this contradiction, all kinds of
codewords of COMBAT with CDR data are counted in
Fig. 19. From Fig. 19, we can see that the statistical
results differ greatly from those of CAIDA data. Not
all the codewords exist and the number of codewords,
i.e., 0-fill, 0L1-0F-0L2, 0F1-0L-0F2, 0NL2-0F, 0L-0F
and literal, are nearly the same. Among the existing
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codewords, 0NL2-0F and 0L-0F do not appear in
COMPAX- which ensures the superiority of COMBAT
in storage. So the smaller indexes can reduce the
overhead in loop operations in the process of Boolean
operations processes. Moreover, since many other
codewords disappear in this case, the coding schemes
become relatively succinct, which can leave out a lot of
unnecessary conditional judgments.

5 CONCLUSION AND FUTURE WORK

In this paper, a new bitmap index coding algorithm
named COMBAT is proposed, and its superiority
is both theoretically and practically demonstrated
in comparison with COMPAX and CONCISE, two
well-known bitmap index coding algorithms. The
theoretical analysis extends the mathematical model in
[30] for analysis of bitmap index performance, which
contains more possible cases, including sparse bitmaps,
dense bitmaps, and bitmaps following Zipf’s law.
According to the analysis, COMBAT beats COMPAX
and CONCISE in terms of spatial performance because
COMBAT can provide more coding schemes, and can
provide compression in more cases.

Experiments based on real data sets from CAIDA
2013 and CDR data also prove that COMBAT has a
strong advantage in both storage and querying time.
The savings are up to 7% in storage and 16% in
querying. Although they are not enormous, the
improvement can play an important role in improving
the existing systems in both spatial and temporal
performance. The statistics of codewords in COMBAT
also demonstrates that COMBAT is suitable for a
variety of datasets. When more codewords in COMBAT
are used, better compression effects can be expected;
and when the opposite conditions obtain, smaller
indexes can give rise to less overhead in Boolean
operations in the querying process.

In the future, in order to demonstrate the effectiveness
of our algorithm in practice, more experiments in
COMBAT will be conducted, including experiments on
GPUs and real Big Data platforms. Then COMBAT will
be integrated into real data management systems and
make a contribution to solving the real-time querying
problem in Big Data.
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