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Abstract 

 
Data streaming applications, usually composed 

with sequential/parallel data processing tasks 
organized in a workflow manner, bring new challenges 
to workflow scheduling and resource allocation in grid 
environments. Due to high volumes of data and 
relatively limit storage capability, resource allocation 
and data streaming have to be storage aware. Also in 
order to improve system performance, data streaming 
and processing have to be carried out concurrently. In 
this paper, Genetic Algorithm is adopted for workflow 
scheduling, based on on-line measurement and fractal 
prediction. On-demand data streaming is introduced to 
avoid data overflow using repertory strategies. 
Experimental results show that balance among task 
executions with on-demand data streaming is required 
to improve overall performance, avoid system 
bottlenecks and backlogs of intermediate data, and 
increase data throughput of data processing workflows 
as a whole. 
 
1. Introduction 
 

Grid computing [1] enables cross-domain resource 
sharing of CPU cycles, data storage and even scientific 
instruments. Some grid resources, e.g. astronomical 
observatories, large simulations and sensor networks, 
are generating large amount of data every day. It 
brings more challenges to process these data streams. 

While most existing research on data grids prefer to 
a bring-program-to-data approach, data streaming 
applications require bring-data-to-program supports. 
For example, modern physical experiments, such as 
LIGO (Laser Interferometer Gravitational-wave 
Observatory) [2], may produce terabytes of scientific 
data per day without enough data processing capability 
onsite. In order to make use of CPU cycles provided 
by some open grid infrastructures, e.g. the Open 
Science Grid [3], data have to be streamed constantly 
to remote grid sites for processing. 

In order to make good use of all grid resources, e.g. 
CPU cycles, storage and network bandwidth, data 
streaming and processing have to be cooperative，i.e., 
they should be scheduled to match each other as much 
as possible to gain high processing efficiency with just 
reasonable resources. For example, if data arrive faster 
than the processing speed, accumulated data will 
require more storage; if data arrival is slower than the 
processing speed, CPUs have to be idle and waiting for 
available data. What’s more, data supply and 
processing should be carried out in a concurrent way, 
i.e., data supply and processing are running 
simultaneously and constantly, rather than 
subsequently, to make full utilization of resources. A 
scheduler is required to coordinate these separate 
processes to make better use of all these grid resources. 
Due to the dynamism of resources performance, such 
scheduling scheme should be made periodically with 
updated information based on measurement and 
prediction. 

Since most of open grid sites may be CPU-rich and 
storage-limit with no data available, storage 
availability has to be considered during task 
scheduling and resource allocation. Data streaming 
have to be storage-aware, which means data should 
arrive on-demand instead of the-faster-the-better. 
Meanwhile, processed data have to be cleaned up to 
save storage space for the subsequently coming data. 

In this work, a grid data streaming application is 
decomposed into several tasks that interact with each 
other. Tasks are executed in a manner of workflows, in 
which preceding tasks’ outputs are used as inputs of 
subsequent ones. Task execution times on different 
computational nodes vary as CPUs, memories, 
software and workloads are different. In the computing 
pool where the workflow is deployed and executed, 
data from the remote source and the medium products 
of each stage are stored in a network file system (NSF), 
which guarantees that the communication time, or 
more exactly, transfer time for medium items to its 
direct children can be neglected. So only the execution 



times for tasks (or in another name, stages) here are 
counted. Genetic Algorithm (GA) [4] is adopted for 
workflow scheduling, based on on-line performance 
measurement and fractal prediction. Due to extremely 
high volumes of data to be streamed and processed and 
relatively shortage of available storage, on-demand 
data streaming is introduced to avoid data overflow 
using repertory strategies [reference], and implemented 
using GridFTP [5] of the Globus Toolkit [6][7]by 
tuning the data transfer parallelism [more reference]. 
Experimental results included in this work show that 
our approach makes better use of CPU cycles as well 
as improving data throughput of overall workflows 
with storage constraints. 

This paper is organized as follows: Section 2 
provides a formal description of grid data streaming 
issues; system implementation is described in Section 
3 with algorithms for online measurement and fractal 
prediction, the genetic algorithm for task scheduling, 
and repertory strategies for on-demand data streaming; 
experimental results are included in Section 4. A 
summary of technical discussion and related work can 
be found in Section 5 and Section 6 respectively; 
Section 7 concludes the paper with a brief introduction 
to future work. 
 
2. Problem Statement 
 

Computational resources and bandwidth should be 
allocated in an integrated and cooperative way, to gain 
high throughput and small backlogs (both of these 
terms will be defined later) with just reasonable 
resources, just as revealed in our previous work [8]. 

A data streaming workflow is usually composed 
with sequential/parallel tasks. Grid resources, 
including computational and storage resources, are 
allocated to tasks so as to meet the quality of service 
(QoS) requirement of the overall application. 

A workflow can be represented using a coarse-grain 
directed acyclic graph (DAG), denoted as G=(V,E), 
where, V is the set of tasks and E is the set of edges, 
with a data stream input. Each node si of a graph 
represents a continuously running application task with 
directions of data flows denoted by edges. Each edge 
(i,j)∈ E represents a direction of a data flow such that 
task sj waits for data to arrive from task si before 
execution, namely, task si is the immediate parent of 
task sj. The goal of our resource allocation is to 
maximize data throughput of the whole workflow, 
while being aware of storage requirements. 

Define two sets S and R, denoting the set of tasks 
and resources respectively: 

miSsi ,,2,1, L=∈  

njRrj ,,2,1, L=∈ , 

where m and n are tasks and candidate resource 
numbers, respectively. We are trying to find a mapping 
from S to R: 
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from the nm possible mapping schemes to get the 
optimal performance in terms of data streaming 
throughput. The searching scope can be diminished if 
constraints of application QoS and eligible resources 
for si are considered: 
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Then our task is to select the optimal or at least 

satisfying one from the N possible choices. Data 
streaming also plays a key role in our scenario, and our 
approach is to tune the data transfer parallelism p on-
the-fly in the GridFTP tool to get appropriate speed of 
data transfer for corresponding tasks to optimize 
performance with maximum data throughput. Other 
parameters for data streaming, such as the TCP buffer 
size, also influent data provision, but so far these are 
not taken into account. 

In a scheduling scheme, workflow deployment is 
fixed, i.e., tasks are assigned to certain computing 
resources and they will not be migrated to others. But 
the data supply speed is adjusted periodically 
according to processing speed and storage usage, by 
adjusting parallelism of GridFTP. To match data 
processing and supply, performance prediction of both 
of them is needed and fractal prediction is applied to 
give the clues of them in the coming scheduling period 
with information of past. Tasks are monitored to get 
information on corresponding data requirements, and 
at the same time, on-line measurement and prediction 
of data transfer speed with different parallelisms are 
carried out. Repertory strategies are applied for on-
demand data streaming, where upper and lower limits 
of repertory are used to stop and resume data transfers, 
to guarantee data provision with reasonable size of 
storage. The system architecture and detailed 
description of algorithm implementation will be 
described in the following sections. 

Just as mentioned above, primitive data items from 
remote data sources and medium data items produced 
by tasks in the workflow are stored in the network file 
system, which means that medium data items can be 



transferred to its destinations in a negligible time span. 
So, when deploy a workflow, only execution times of 
tasks will be taken into account.  

In our scenario, data are transferred and processed 
in the form of tuples, or more exactly, in successive 
small files which are even in size. For example, each 
input file of this workflow contains data acquired in 16 
seconds, and each medium data item also exists in 
form of small files. We esteem the small files as the 
least unit of data, and definition of throughput and 
backlogs are made in this metric.  

Throughput is defined as the number of small files 
(transferred from their remote sources) processed in 
the given evaluation time span, while backlog of each 
task means the number of data files (as their input from 
their direct parents) accumulated in its stage which are 
not processed in time. Obviously, high throughput with 
low backlogs is desirable, which requires high 
utilization of computing and bandwidth resources and 
balance among tasks in the workflow, as we will see in 
the evaluation part of this paper. 

 
3. System Implementation 
 

This part elaborates on the system architecture and 
some key algorithms, which will be evaluated in the 
next section. 

 
3.1 System Architecture 

Our system for grid data streaming workflows is 
based on Globus for grid data transfers using GridFTP 
and Condor [9] for local task management, as shown in 
Figure 1. 
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Figure 1. System Architecture 

Through authentication and authorization (e.g. Grid 
Security Infrastructure), grid resources, including CPU 
cycles, storage, networks and so on, form a virtual 
organization to share resources and collaborate to 
provide support for data streaming applications, 
whereas data sources are at remote sites and data are 

streamed to application workflows to be processed and 
cleaned up subsequently. Information and network 
services are used to provide static and dynamic 
information about grid resources, such as hardware 
configurations, CPU workloads and network 
bandwidth in real time. GRAM (Grid Resource 
Allocation and Management) is responsible for task 
management, which is integrated with Condor in our 
case. The details of these modules are out of the scope 
of this paper. We concentrate on performance 
measurement and prediction, resource allocation for 
tasks in workflows and on-demand tuning of data 
transfers, with detailed information below. 

As mentioned in Section 2, our goal is to maximize 
data throughput of the whole application workflow by 
allocating appropriate resources to tasks with 
constraints of available storage. In our resource 
allocation and scheduling, we also take into account 
static information of available resources, dynamic 
information of available processing capabilities in the 
target environment. We execute resource filtering to 
select available resources based on application and 
resource specific policies, to reduce the scope of 
candidate resources and allocation complexity. 
Dynamic performance information of resources is 
mainly used to make an updated allocation scheme 
over time. 

 
3.2 Measurement and Prediction 

Both of data requirement (data processing speed) 
and data supply speed should be predicted to make as 
good a match as possible. Tasks in a workflow are 
deployed to certain computing resources according to 
the average execution times over a long time, which 
forms an execution time matrix, e.g. T in subsection 
4.1. Tasks are executed repeatedly on successive data 
files, so such an average execution time matrix makes 
sense in the long run. But as long as a short scheduling 
period is concerned, both execution times of tasks and 
data supply with different parallelism are varying. It is 
desirable to make prediction of such performance from 
measured historical values for the next scheduling 
period, to carry out just on-demand data transfers. As 
such scheduling is performed periodically, 
performance measurement and prediction will be made 
repeatedly. Obviously, there is a tradeoff between 
precision and calculation speed of such measurement 
and prediction. 

There are many available prediction methods, 
including nonlinear time-series analysis, wavelet 
analysis, rough and fuzzy sets. Our implement of 
fractal prediction for CPU usage can be calculated 
rapidly with reasonable precision, which can meet our 
requirement though not necessarily the best algorithm. 



The fractal distribution can be described as: 

Dr
CN = , 

where r is the sample time, an independent variable; N 
is the usage percent of CPU, a variable corresponding 
to r; C is a constant to be calculated and D stands for 
the fractal dimension. 

Define a series of initial data Nj (j=1,…,m) and the 
aggregate sum of ith order can be calculated as: 
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The fractal dimension Di,j and the constant Ci,j can 
be calculated as: 
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where rj=j ( j=1,…,m-1). 
Here the second order aggregated sum is applied 

since for most cases its prediction result is good 
enough and its computing overhead is reasonable. In 
this case the prediction is: 
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Table 1. Fractal prediction of CPU usage (m=15) 
Nj S1,j S2,j S3,j S4,j D1,j D2,j D3,j D4,j

39.6 39.6 39.6 39.6 39.6 -1.0641 -1.6280 -2.0324 -2.3479 
43.2 82.8 122.4 162 200 -1.2830 -1.8742 -2.3712 -2.7917
56.5 139.3 261.7 424 630 -1.1941 -1.9462 -2.5477 -3.0579
57.1 196.4 458.1 882 1510 -1.1331 -1.9700 -2.6498 -3.2319
56.5 256.9 711.0 1593 3100 -0.9513 -1.9351 -2.6974 -3.3451
47.9 300.8 1011.8 2605 5700 -0.9716 -1.9243 -2.7274 -3.4239
48.6 349.4 1361.2 3966 9670 -0.9035 -1.9046 -2.7445 -3.4805
44.8 394.2 1755.4 5721 15390 -0.7084 -1.8544 -2.7451 -3.5191
34.3 428.5 2183.9 7905 23300 -0.8288 -1.8414 -2.7453 -3.5471
39.1 467.6 2651.5 10557 33850 -0.8653 -1.8385 -2.7469 -3.5689
40.2 507.8 3159.3 13761 47570 -0.8567 -1.8355 -2.7490 -3.5866
39.3 547.1 3706.4 17422 64990 -0.7597 -1.8204 -2.7489 -3.6008
34.3 581.4 4287.8 21710 86700 -0.8260 -1.8171 -2.7492 -3.6126
36.7 618.1 4905.9 26616 113320 -0.8692 -1.8198 -2.7507 -3.6229
38.2 656.3 5562.2 32178 145500 ----- ----- ----- -----
Predicted 

N16 
36.9 Measured 

N16 
38.4 Relative 

error 3.91% 

One of prediction results is given in Table 1. Nj is 
an average CPU usage (%) during a 10 seconds’ 
interval. While D1,j varies to some extent, D2,j, D3,j and 
D4,j approach to a stable value respectively. This means 
that fractal dimensions tend to be fixed and can be 
applied to make prediction. As shown in Table 1, the 
relative error of the prediction N16 is reasonably good. 

A predication of 100 samples is included in Figure 
2. While there are some difference between the 
prediction and measurements, prediction results does 
follow the trend of CPU usage measurements. 
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Figure 2. Comparison of 100 prediction and 

measurements of CPU usage 
With some initial performance data in a relatively 

small amount, we can make a prediction of future 
performance, such as the execution time of a task on 
certain resource and data transfer speeds with different 
parallelisms. These are used by heuristic algorithms for 
task scheduling and resource allocation. 
 
3.3 Heuristic Task Scheduling 

Essentially, it is NP-Complete to make an allocation 
of resources for a flow of tasks, where the computation 
is tremendously intensive, especially when a large 
number of tasks and candidate resources are involved. 
Heuristic algorithms are preferable, among which the 
genetic algorithm (GA) is adopted. Derived from the 
life world with the mechanism of inheritance, 
aberrance, competition and selection, GA is believed to 
be promising to find satisfactory solutions, not 
necessarily the globally optimal ones, in a relatively 
short time. 

It is the most important to set the evaluation index 
(i.e., fitness), which will be used to determine which 
individuals, called chromosomes, are to be reserved or 
distorted, and the individual with the best evaluation 
index will be kept as the optimal solution to our 
problem. Here the fitness of each chromosome is its 
throughput, and at that time we suppose that adequate 
data can be supplied, so as to separate task mapping 
and data supply. When calculating the throughput of 
each chromosome, the predicted task execution time 
on corresponding resources should be adopted, and 
much attention should be paid to task dependencies. 

The coding of chromosome is another item of great 
importance, which reveals the possible form of the 
optimal solution to our problem. Our chromosomes in 
this allocation can be expressed as a vector: 

{ } nichrochro ×= 1
, 

where each element of the vector stands for the 
allocated resources for task i from 1 to n. With online 



measurement and prediction mentioned in subsection 
3.2, taking into account execution time for each task, 
every chromosome in the candidate group is checked 
to find the optimal one. With the mechanism of 
inheritance, aberrance, competition and selection, after 
some generation of evolution, we can find at least a 
satisfactory chromosome, i.e., the solution for our 
problem. 

Note that backlogs are not taken into fitness index, 
for excessive backlogs can be avoided with on-demand 
data streaming, including on-the-fly adjustment of 
transfer parallelism and repertory policy, without 
decreasing the total throughput. 
 
3.4 On-demand Data Streaming 

Data for each task have its own magnitude and the 
total available storage is limit. The data streaming will 
be stopped if the sum of magnitudes exceeds the total 
available storage and resumes when the backlog of 
data is processed. If there are too much data for a 
certain task, the data streaming will be intermittent 
rather than continuous. The data for a task is cleaned 
up after output data have been transferred to its 
subsequent tasks to save space for subsequent data. 
Tasks run constantly to perform data processing if 
there are waiting data, otherwise they are just idle. 

Too much data occupy redundant resources, such as 
storage, network bandwidth, which is out of initial 
intention of data streaming applications; on the other 
hand, insufficient data supply will make tasks in a 
workflow lack of data to process, become idle and 
waste CPU cycles. On-demand data streaming is 
proposed in our work, which tries to supply data as 
much as required. Ideally, if data are streamed in a 
same speed as that are processed, data storage could be 
kept minimum. In our case, this is achieved by 
adjusting GridFTP parallelisms and controlling start 
and end times of data transfers using repertory 
strategies. 
 
3.4.1 GridFTP parallelism tuning.  

After resources are allocated to tasks, required data 
are streamed to corresponding tasks, which is another 
factor influencing the ultimate data throughput. 
GridFTP is applied as the data transfer protocol for 
cross-domain data replication. The GridFTP 
parallelism can be tuned to get optimal transferring 
performance. Here our goal is to guarantee data supply 
and get maximum throughput, meanwhile keep a 
minimum amount of medium data. 

It is a non-trivial task to determine the proper 
amount of bandwidth to be allocated for data streaming 
applications. As far as our assignment algorithm 
concerns, it is transformed to set appropriate GridFTP 

parallelisms for applications. For convenience, the 
parallelism is set to 1, 2, 4, 6 or 8 according to data 
processing speed and status of network. 

Monitoring the data processing tasks and the 
storage, we can get information on data requirements, 
denoted as Sopt. By transferring trace packages of data, 
data transfer speeds can be estimated with parallelisms 
of 1, 2, 4, 6 and 8, denoted as S1, S2, S4, S6 and S8, 
respectively, where we have S1＜S2＜S4＜S6＜S8 in 
general. Then it is transformed to a matchmaking 
problem to find the appropriate parallelism p, as the 
GridFTP parallelism parameter. 

If Sopt＞S8, let p=8, and in our scenario this is just 
best-effort; if Sopt＜S1, let p=1; otherwise, we try to 
find the p which satisfies Sp-1＜Sopt≤Sp, p∈{2,4,6,8}. 
In the latter two cases, some repertory strategies should 
be applied to prevent data overflow in a long period of 
data processing. 

A well-set parallelism may not always match data 
requirements over a long period, which makes it 
necessary to evaluate these parameters periodically. 
During a time interval, if GridFTP can not be used to 
get enough data, its parallelism should be set to its 
upper neighbor value, e.g., from 6 to 8. But it must be 
cautious to set the parallelism to a lower level unless 
redundant transferring speeds are observed in several 
successive intervals. If even the highest parallelism can 
not meet data processing requirements, the 
corresponding processor has to be inevitably idle and 
wait for more available data; if the data transferring 
speed is high enough, some repertory policy should be 
applied to avoid data overflow. 

Among the parameters of GridFTP which can be 
adjusted to get optimal transferring performance, 
including parallelism, TCP buffer size and buffer size. 
The parallelism has the most direct impact on data 
transfer speeds. Our experiments show that the optimal 
number of data channels is between 8 and 10, as 
shown in Figure 3. The curve stands for average time 
of 20 experiments for transferring a data file of 2 GB 
in seconds, using different parallelisms. It is obvious 
the data transfer speed increases dramatically with the 
GridFTP parallelism changing from 1 to 8. When the 
parallelism reaches over 10, the increment does not 
result in better performance further. 

It is a non-trivial task to determine the proper 
amount of bandwidth to be allocated for each 
application running in the Condor pool in terms of 
utilization and quality of service (QoS) satisfaction. As 
far as our assignment algorithm concerns, it is 
transformed to set appropriate GridFTP parallelisms 
for applications. For convenience, the parallelism is set 
to 1, 2, 4, 6 or 8 according to data processing speed 



and status of network. For example, if a certain 
processing program can consume data of 2 GB in 230 
seconds, according to Figure 3, the parallelism can be 
set to 4 or 6 to guarantee data supply with minimum 
bandwidth. 

 
Figure 3. Comparison of data transfer times using 

different GridFTP parallelisms 
 
3.4.2 Repertory strategies. A repertory strategy with 
lower and upper limits for each type of data is applied 
for the scheduler to decide the start and end of data 
transfers and ensure only reasonable local storage is 
required. The lower limit is used to guarantee that data 
processing can survive network collapse when no data 
can be streamed from sources to local storage for a 
certain period of time, which improves system 
robustness and increases CPU resource utilization. The 
upper limit for each application is used to guarantee 
that the overall amount of data in local storage does 
not exceed available storage space. 

Lower and upper limits are mainly used as 
thresholds to control start and end times of data 
transfers: when data amount scratches the lower limit, 
more data should be transferred until the amount 
reaches the upper limit. Since there are also data 
cleanups involved, data amount keeps varying between 
lower and upper limits. 

For the sake of simplicity, the total amount of data 
items, including all the input items from remote 
sources and medium items of tasks are counted 
together to carry out repertory strategy. Status of 
streaming can be described as active and inactive, 
where the former means data are being transferred 
while the latter stands that no more data are supplied. 
A series of variables, named as TS (short for transfer 
status), can be defined to depict such status as 
following 
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where values 1 and 0 of TS(k) (k=0,1,2,…) stand for 
active and inactive status of data transfer respectively; 
U and L are the settled upper and lower limits of 
storage usage; S(k) is the total occupied storage of input 
items and medium items at interval; the upper label k 
means the k-th interval. Thus, given the upper and 
lower limits, measuring the occupied storage every 
interval will decide the transfer status, which is rather 
simple for implementation. 

 
4 Performance Evaluation 
 

A campus computational grid is being established 
in Tsinghua University (Beijing, China) which holds a 
large amount of supercomputers, personal computers 
and other special instruments. Globus toolkit 4.0.1 is 
being deployed to provide common grid services and a 
simple Certificate Authority has been established to 
sign certificates for hosts and users which will be used 
to establish a secure and transparent environment for 
data streaming applications. Among the campus 
computing grid, network file system has been 
established to be a public data holder, which can be 
accessed as if data are stored on local disks. 

To verify our approach described in Section 3, we 
conduct an experiment for a data streaming application 
which contains a flow of 10 tasks, as shown in Figure 
4, where there are dependencies between tasks, 
denoted by directed arrows. The nodes with character I 
and O stand for the input and output of the workflow, 
where the former means data streaming from remote 
source and the latter is the stage to collect the 
processing results.  

Perhaps some explanation of this case is need. 

 
Figure 4. A Case Study 
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4.1 Workflow Deployment 
 
With online measurement of a reasonable period of 

time, we get average execution times for each task on 
different resources in a matrix T:  

, 
where tij represents the execution time in average of 
task i (i=1,2…10) on resource j (j=1,2…10) in a 
normalized unit.   

Notice that the execution time for a task on a certain 
resource is not constant due to dynamic nature of grids 
due to changing workloads and competition with other 
applications, so the execution time matrix is different 
over time. The matrix T given above is just an average 
of such execution matrices for some sample routines, 
and in a long run what really accounts is just the 
average, not some peak values of execution time. 

Now we concentrate on task scheduling and 
resource allocation to get the maximum throughput in 
certain time span. Initially the data streaming is not 
considered and will be discussed in the following 
subsection. 

We set the size of population to be 40, mutation 
probability to be 0.1, total generations to be 100 and 
the crossover probability to be 0.2, as the parameters 
of our genetic algorithm. To evaluate the gross 
throughput, we set the period of time to be 1000 units. 
The chromosomes are coded as a vector: 

[ ]
40,,2,1

,**********
L=

=
i

chroi  

where * represents corresponding resources for tasks 1 
to 10, respectively. Corresponding time for each task 
can be retrieved from the matrix T, and data 
throughput for one chromosome can be calculated as 
its fitness, which decides its fate, reserved or discarded. 

After evolving for some generations, we get the 
optimal chromosome: 

[ ]38541096172=optimalchro , 

which represents tasks 1 to 10 are allocated to 
resources 2, 7, 1, 6, 9, 10, 4, 8, 5, and 3, respectively, 
and the processing time vector is: 

[ ]3142356111=t , 
where ( ) ( )( ) 10,,2,1,, L== iichroiTit optimal . 

 
4.2 On-demand Data Streaming 
 

For grid data streaming applications, data streaming 
and processing interact with each other, and the former 
increases data files in the NFS, while the latter 
decreases the number since data files will be cleaned 
up after being processed. At any time the current 
number of data files reflects combined effectiveness of 
data streaming and processing. If we have relatively 
large data storage or the processing speed is high 
enough, repertory strategies are not required; but, if 
storage is small or the computational resources are not 
powerful enough, some repertory strategies will be 
indispensable to avoid data overflow. We will discuss 
these two situations below. 

 
4.2.1 Large storage with performance bottleneck 
without repertory strategies. In this experiment, the 
GridFTP parallelism is set to be the highest 8 at first 
and then decreased to 2. The backlog of data for each 
task and overall data throughput of the workflow in the 
number of data files are measured as shown in Table 2. 

Table 2. Experimental Result I 
Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9 

Data 
Throughput

8 0 334 335 0 332 0 0 0 0 165 
2 0 84 85 0 85 0 0 0 0 164 

The final data throughput is 165 when the GridFTP 
parallelism is set to 8 with the highest data streaming 
speed. It can be observed that backlogs of data at tasks 
s2, s3 and s5 are also very high. This can be explained 
by the difference of data processing speeds between 
dependent tasks. For example, task s2 has two 
subsequent tasks, s3 and s4. s2 has a much higher data 
processing speed than s4 according to the processing 
time vector t scheduled in Section 4.1. Although s3 can 
process data as fast as s2, output data of s2 can not be 
cleaned up until also received by s4, which causes a 
large backlog of data at s2. There are similar situations 
at tasks s3 and s5. So for an application with a data 
streaming workflow, task scheduling and resource 
allocation has to consider balance between dependent 
tasks, otherwise data processing bottlenecks would 
result in low application performance and resource 
utilization. 
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The GridFTP parallelism is decreased from 8 to 2, 
which dramatically reduces originate data streaming 
speed. Experimental results included in Table 2 shows 
that the same final data throughput is achieved with 
much less backlogs of data at intermediate tasks. So it 
is not the case that the faster data are streamed the 
better, since too fast data transfer would result in 
backlogs of data, which could not be processed in time 
and has to consume unnecessary storage and 
bandwidth, instead of increasing the final data 
throughput. 

 
4.2.2 Large storage without performance bottleneck 
without repertory strategies. The experimental 
results for this scenario are included in Table 3. 

Table 3. Experimental Result II 
Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9 

Data 
Throughput

8 0 167 168 0 166 83 84 0 0 248 
2 0 0 0 0 0 123 123 0 0 124 

It is obvious that tasks s4 and s5 are bottlenecks of 
the whole data processing workflow in Figure 4. In 
this experiment, we increase processing speeds of 
these tasks by allocating more powerful processors to 
them. 

Table 3 shows that eliminating bottlenecks increase 
the ultimate data throughput dramatically (from 165 to 
248), compared with results included in Table 2. And 
the lower data streaming speed starve the whole flow 
of tasks, leading to a much lower final data throughput 
(124). With a relatively fast data processing workflow, 
a too slow data streaming support would also become a 
bottleneck in terms of the ultimate data throughput and 
lead to idle task processes and lower resource 
utilization. 

While s4 and s5 are not bottlenecks any more, a new 
bottleneck s8 appears as indicated in Table 3. The 
result is conformed to the processing time vector t 
scheduled in Section 4.1. The low performance of s8 
leads to backlogs of data at s6 and s7. This is because s6, 
s7 and s8 are parallel branches and parents of s9. s9 has 
to consume output data of s6, s7 and s8 simultaneously. 
If s8 is performed slower than s6 and s7, output data of 
s6 and s7 are accumulated and become backlogs. So 
task scheduling and resource allocation has to consider 
balance among parallel tasks. 

Backlogs of data at s2 over time is also illustrated in 
Figure 5. It is obvious that storage aware resource 
allocation can eliminate bottlenecks, dramatically 
reduce the backlog of data, and improve the final data 
throughput. 

 
Figure 5. Comparison of Backlogs of Data at 

Task s2 (p=8) 

It is also shown in Figure 5 that the backlog of data 
at task s2 increases approximately linearly over time, 
which does not scale well for long running data 
streaming applications. This can be improved if 
repertory strategies are applied in the next experiment. 

 
4.2.3 Limit storage with repertory strategies 
applied. Based on the experiment carried out in 
Section 4.2.1, repertory strategies described in Section 
3.4.2 is applied to avoid data overflow in this 
experiment. If the number of data files in storage 
reaches the upper limit, data transfers are stopped until 
the data storage is decreased to the lower limit. 
Corresponding results are included in Table 4. 

Table 4. Experimental Result III 
Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9 

Data 
Throughput

8 0 12 13 0 11 0 0 0 0 165 
2 0 11 12 0 10 0 0 0 0 164 

Compared with results in Table 2, the same data 
throughput is achieved with much less backlogs of data. 
The data processing workflow is executed without 
unnecessary backlogs of data. In this case, data 
streaming is configured to provide data in an on-
demand manner. As a result, backlogs of data at each 
task do not increase linearly over time as illustrated in 
Figure 6. Note that only 100 time units of data are 
included in Figure 6, instead of 1000 in Figure 5. 

In Figure 6, data are no longer accumulated over 
time since originate data streaming stops at the upper 
limit once a data overflow is detected. This mechanism 
only works when data transfer speed is higher than 
average data processing speed of the workflow. In the 
p=2 situation of the experiment in Section 4.2.2, when 
the workflow already starves for data, the repertory 
strategy cannot be applied 
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Figure 6. Backlogs of Data with Repertory 

Strategies Applied at Task s2 (p=8) 
 
4.2.4 Dynamic adjustment of parallelism. Usually, 

in grid, there are multiple applications (i.e., workflows) 
compete for limited resources, mainly the bandwidth. 
The overall principle is to guarantee just enough rather 
than redundant data supply for each workflow so as to 
alleviate congestion of network. Parallelism of data 
transfers is adjusted on the fly based on prediction, so 
as to match data supply and processing as much as 
possible. Results provided in subsection 4.2.1, 4.2.2 
and 4.2.3 just show the influence of fixed parallelism 
in the evaluation period of time, while in this 
subsection, we will show how the on-the-fly 
parallelism of each data transfer should be adjusted.  

Four workflows are considered simultaneously. 
Their processing speeds gotten by prediction based on 
measurement are shown in Figure 7, and the 
corresponding parallelism (denoted as p) of each data 
transfer is shown in Figure 8. For workflow 1, its 
processing speed is rather high, so data are being 
supplied with the max parallelism constantly, just in 
the best-effort way; for the rest workflows, data 
transfers are intermittent rather than continuous due to 
repertory strategy with appropriate parallelism. The 
blank areas in Figure 8 mean that data supply is not 
active, i.e., no more data are supplied at the 
corresponding time. 
5. Technical Discussions 

Several technical aspects of research are coupled 
with each other in this work: 

Grid computing. The environment is developed in 
context of grid computing, focusing on cross-domain 
resource sharing within virtual organizations. In this 
work, data transfers are performed using GridFTP with 
on-the-fly tuning capability of parallelism. 

Data streaming. A specific type of applications is 
considered in this work. These applications require 
large volumes of data fed continuously to flows of 

sequential / parallel tasks. Intermediate data are also 
required to be streamed among dependent tasks. Data 
streaming and processing are carried out concurrently 
to improve overall system performance in this work. 
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Figure 7. Predicted processing speeds 
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Figure 8. Dynamically adjusted parallelism 

 
Measurement and prediction. Performance 

predication provides a basis for task scheduling and 
resource allocation. In this work, a GM(1,1) method is 
adopted to get performance information on task 
execution time on grid resources. 

Task scheduling and resource allocation. Data 
streaming applications bring new challenges to task 
scheduling and resource allocation. In this work, the 
genetic algorithm is used to solve the NP-Complete 
problem of mapping tasks to available resources using 
heuristic search for optimal solutions. 

Storage management. Storage awareness in grid 
enabling data streaming applications is the major focus 
of this work since such applications always involve 
large volumes of data in time series. On-demand data 
provision and just-in-time cleanup is proposed in this 
work to address the challenge. 

Several experiments are carried out in this work and 
our discoveries are summarized below. 

 The the-faster-the-better principle does not 
apply to data streaming applications in some 
situations. For example, if data streaming 
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speed is higher than processing speed at an 
average, a backlog of intermediate data occurs 
at bottlenecks of data processing workflows, 
which leads to unnecessary storage usage. 
Applying GridFTP with on-the-fly adjustable 
parallelism, we can approach the optimal 
speed as much as possible. 

 Balances among dependent tasks of a 
workflow become essential to achieve high 
performance. Sequential / parallel tasks should 
have similar data processing speed, otherwise 
system bottlenecks and backlogs of data occur 
which consumes unnecessary storage. In a 
flow of tasks, while execution makespan is 
focused in traditional task scheduling and 
resource allocation research, our work focuses 
more on ultimate data throughput since data 
streaming applications always run 
continuously. 

 Implementation of data streaming applications 
not necessarily requires large data storage 
capability. Storage aware resource allocation 
using repertory strategies is proposed in this 
work so that applications can gain high data 
throughput with relatively small storage. 

 
6. Related Work  

There are existing grid resource allocation 
infrastructures, e.g. Legion [10], Globus and Condor, 
with limit task and workflow scheduling supports. 
Issues in task scheduling for grid workflows are 
investigated in [11] and [12] though no data storage 
constraint is considered. While there are existing 
storage management grid middleware, e.g. SRB [13] 
and SRM [14], no specific data streaming supports are 
provided in these tools. 

This work is focused on a resource management 
and scheduling infrastructure for grid data streaming 
applications. Some existing work on data streaming 
management are derived from database management 
systems, e.g. STREAM [15], Aurora [16], NiagaraCQ 
[17], StatStream [18], and Gigascope [19]. Most of 
data streaming research in context of grid computing 
[20][21][22][23] are application specific and 
scheduling issues are not addressed. The following two 
systems are most related to the work described in this 
paper: 

 Streamline [24], a scheduling heuristic based 
on Globus, is designed to adapt to the dynamic 
nature of a grid environment and varying 
demands of a streaming application. 
Streamline is not storage aware since no 
storage scheduling issues are considered. Our 

implementation is storage aware since CPU-
rich grid resources maybe storage-limit. 

 Pegasus [25] has the most similar motivation 
with the work described in this paper. While 
Pegasus handles data transfers, job processing 
and data cleanups in a pipeline manner, in our 
environment, data streaming, processing and 
cleanup are concurrent. By carefully 
optimizing data streaming, our environment 
makes required data available on-demand and 
just-in-time, which dramatically reduces 
storage requirements for executing grid data 
streaming workflows. 

 
7. Conclusions and Future Work 
 

Data streaming applications are becoming very 
popular especially with the development of open grid 
environments and resources. In order to utilize remote 
grid resources that are CPU-rich and storage-limit, data 
streaming has to be performed concurrently with data 
processing with carefully scheduled storage usage. 

Experimental results described in this work show 
that in order to achieve high data throughput with limit 
storage usage for data streaming applications, several 
principles have to be considered that are different from 
traditional job scheduling and resource allocation. For 
example, system performance is improved if data 
streaming and processing are concurrent. Also data 
streaming does not necessarily lead to large amount of 
storage usage, since if data are streamed on-demand 
instead of as-fast-as-possible, and there is a good 
balance of data processing speeds among dependent 
tasks of a workflow, that is to say, if data streaming 
and processing are storage aware, high data throughput 
can be still achieved with relatively small storage. 

Ongoing work include grid enabling several real 
applications using our data streaming environment, 
further performance evaluation of algorithms proposed 
in this work in real time execution of workflows, and 
extension of current approach to work in an evolving 
manner so that grid dynamism can be addressed and 
adaptability of our environment can be improved. 

Experiments discussed in this work only focus on 
individual data streaming applications. This is not the 
case in real situation where there could be multiple 
applications sharing grid resources in the same virtual 
organization. More constraints have to be considered if 
multiple flows of tasks are considered, e.g. network 
bandwidth. Task scheduling and resource allocation 
will also become much more complicated if multiple 
data processing workflows are sharing data streams 



and competing resources. These issues will be 
addressed in our future work. 
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