
Concurrent and Storage-aware Data Streaming for Data Processing
Workflows in Grid Environments

Wen Zhang1, Junwei Cao2,3*, Yisheng Zhong1,3, Lianchen Liu1,3, and Cheng Wu1,3

1Department of Automation, Tsinghua University, Beijing 100084, China
2Research Institute of Information Technology, Tsinghua University, Beijing 100084, China

3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
*Corresponding email: jcao@tsinghua.edu.cn

Abstract

Data streaming applications, usually composed

with sequential/parallel data processing tasks
organized in a workflow manner, bring new challenges
to workflow scheduling and resource allocation in grid
environments. Due to high volumes of data and
relatively limit storage capability, resource allocation
and data streaming have to be storage aware. Also in
order to improve system performance, data streaming
and processing have to be carried out concurrently. In
this paper, Genetic Algorithm is adopted for workflow
scheduling, based on on-line measurement and fractal
prediction. On-demand data streaming is introduced to
avoid data overflow using repertory strategies.
Experimental results show that balance among task
executions with on-demand data streaming is required
to improve overall performance, avoid system
bottlenecks and backlogs of intermediate data, and
increase data throughput of data processing workflows
as a whole.

1. Introduction

Grid computing [1] enables cross-domain resource
sharing of CPU cycles, data storage and even scientific
instruments. Some grid resources, e.g. astronomical
observatories, large simulations and sensor networks,
are generating large amount of data every day. It
brings more challenges to process these data streams.

While most existing research on data grids prefer to
a bring-program-to-data approach, data streaming
applications require bring-data-to-program supports.
For example, modern physical experiments, such as
LIGO (Laser Interferometer Gravitational-wave
Observatory) [2], may produce terabytes of scientific
data per day without enough data processing capability
onsite. In order to make use of CPU cycles provided
by some open grid infrastructures, e.g. the Open
Science Grid [3], data have to be streamed constantly
to remote grid sites for processing.

In order to make good use of all grid resources, e.g.
CPU cycles, storage and network bandwidth, data
streaming and processing have to be cooperative，i.e.,
they should be scheduled to match each other as much
as possible to gain high processing efficiency with just
reasonable resources. For example, if data arrive faster
than the processing speed, accumulated data will
require more storage; if data arrival is slower than the
processing speed, CPUs have to be idle and waiting for
available data. What’s more, data supply and
processing should be carried out in a concurrent way,
i.e., data supply and processing are running
simultaneously and constantly, rather than
subsequently, to make full utilization of resources. A
scheduler is required to coordinate these separate
processes to make better use of all these grid resources.
Due to the dynamism of resources performance, such
scheduling scheme should be made periodically with
updated information based on measurement and
prediction.

Since most of open grid sites may be CPU-rich and
storage-limit with no data available, storage
availability has to be considered during task
scheduling and resource allocation. Data streaming
have to be storage-aware, which means data should
arrive on-demand instead of the-faster-the-better.
Meanwhile, processed data have to be cleaned up to
save storage space for the subsequently coming data.

In this work, a grid data streaming application is
decomposed into several tasks that interact with each
other. Tasks are executed in a manner of workflows, in
which preceding tasks’ outputs are used as inputs of
subsequent ones. Task execution times on different
computational nodes vary as CPUs, memories,
software and workloads are different. In the computing
pool where the workflow is deployed and executed,
data from the remote source and the medium products
of each stage are stored in a network file system (NSF),
which guarantees that the communication time, or
more exactly, transfer time for medium items to its
direct children can be neglected. So only the execution

times for tasks (or in another name, stages) here are
counted. Genetic Algorithm (GA) [4] is adopted for
workflow scheduling, based on on-line performance
measurement and fractal prediction. Due to extremely
high volumes of data to be streamed and processed and
relatively shortage of available storage, on-demand
data streaming is introduced to avoid data overflow
using repertory strategies [reference], and implemented
using GridFTP [5] of the Globus Toolkit [6][7]by
tuning the data transfer parallelism [more reference].
Experimental results included in this work show that
our approach makes better use of CPU cycles as well
as improving data throughput of overall workflows
with storage constraints.

This paper is organized as follows: Section 2
provides a formal description of grid data streaming
issues; system implementation is described in Section
3 with algorithms for online measurement and fractal
prediction, the genetic algorithm for task scheduling,
and repertory strategies for on-demand data streaming;
experimental results are included in Section 4. A
summary of technical discussion and related work can
be found in Section 5 and Section 6 respectively;
Section 7 concludes the paper with a brief introduction
to future work.

2. Problem Statement

Computational resources and bandwidth should be
allocated in an integrated and cooperative way, to gain
high throughput and small backlogs (both of these
terms will be defined later) with just reasonable
resources, just as revealed in our previous work [8].

A data streaming workflow is usually composed
with sequential/parallel tasks. Grid resources,
including computational and storage resources, are
allocated to tasks so as to meet the quality of service
(QoS) requirement of the overall application.

A workflow can be represented using a coarse-grain
directed acyclic graph (DAG), denoted as G=(V,E),
where, V is the set of tasks and E is the set of edges,
with a data stream input. Each node si of a graph
represents a continuously running application task with
directions of data flows denoted by edges. Each edge
(i,j)∈ E represents a direction of a data flow such that
task sj waits for data to arrive from task si before
execution, namely, task si is the immediate parent of
task sj. The goal of our resource allocation is to
maximize data throughput of the whole workflow,
while being aware of storage requirements.

Define two sets S and R, denoting the set of tasks
and resources respectively:

miSsi ,,2,1, L=∈

njRrj ,,2,1, L=∈ ,

where m and n are tasks and candidate resource
numbers, respectively. We are trying to find a mapping
from S to R:

: , , , 1, 2, , , 1, 2, ,i j i jf s r s S r R i m j n→ ∈ ∈ = =L L

from the nm possible mapping schemes to get the
optimal performance in terms of data streaming
throughput. The searching scope can be diminished if
constraints of application QoS and eligible resources
for si are considered:

{ } miRrsforeligibleisrrR kikki ,,2,1,,| L=∈=

U
m

i
iRR

1=

=
.

Let Ni stand for the number of elements in Ri. The
number of possible mapping schemes is:

∏
=

=
m

i
iNN

1 .
Then our task is to select the optimal or at least

satisfying one from the N possible choices. Data
streaming also plays a key role in our scenario, and our
approach is to tune the data transfer parallelism p on-
the-fly in the GridFTP tool to get appropriate speed of
data transfer for corresponding tasks to optimize
performance with maximum data throughput. Other
parameters for data streaming, such as the TCP buffer
size, also influent data provision, but so far these are
not taken into account.

In a scheduling scheme, workflow deployment is
fixed, i.e., tasks are assigned to certain computing
resources and they will not be migrated to others. But
the data supply speed is adjusted periodically
according to processing speed and storage usage, by
adjusting parallelism of GridFTP. To match data
processing and supply, performance prediction of both
of them is needed and fractal prediction is applied to
give the clues of them in the coming scheduling period
with information of past. Tasks are monitored to get
information on corresponding data requirements, and
at the same time, on-line measurement and prediction
of data transfer speed with different parallelisms are
carried out. Repertory strategies are applied for on-
demand data streaming, where upper and lower limits
of repertory are used to stop and resume data transfers,
to guarantee data provision with reasonable size of
storage. The system architecture and detailed
description of algorithm implementation will be
described in the following sections.

Just as mentioned above, primitive data items from
remote data sources and medium data items produced
by tasks in the workflow are stored in the network file
system, which means that medium data items can be

transferred to its destinations in a negligible time span.
So, when deploy a workflow, only execution times of
tasks will be taken into account.

In our scenario, data are transferred and processed
in the form of tuples, or more exactly, in successive
small files which are even in size. For example, each
input file of this workflow contains data acquired in 16
seconds, and each medium data item also exists in
form of small files. We esteem the small files as the
least unit of data, and definition of throughput and
backlogs are made in this metric.

Throughput is defined as the number of small files
(transferred from their remote sources) processed in
the given evaluation time span, while backlog of each
task means the number of data files (as their input from
their direct parents) accumulated in its stage which are
not processed in time. Obviously, high throughput with
low backlogs is desirable, which requires high
utilization of computing and bandwidth resources and
balance among tasks in the workflow, as we will see in
the evaluation part of this paper.

3. System Implementation

This part elaborates on the system architecture and
some key algorithms, which will be evaluated in the
next section.

3.1 System Architecture

Our system for grid data streaming workflows is
based on Globus for grid data transfers using GridFTP
and Condor [9] for local task management, as shown in
Figure 1.
 Virtual Organization

Scheduling Information
Service

Measurement and Prediction

Application Pipelines

GRAM GRAM GRAM

Resource Resource Resource

Authentication & Authorization

Data source

Data source

Data source

……

…… …
…

Network
Service

Figure 1. System Architecture

Through authentication and authorization (e.g. Grid
Security Infrastructure), grid resources, including CPU
cycles, storage, networks and so on, form a virtual
organization to share resources and collaborate to
provide support for data streaming applications,
whereas data sources are at remote sites and data are

streamed to application workflows to be processed and
cleaned up subsequently. Information and network
services are used to provide static and dynamic
information about grid resources, such as hardware
configurations, CPU workloads and network
bandwidth in real time. GRAM (Grid Resource
Allocation and Management) is responsible for task
management, which is integrated with Condor in our
case. The details of these modules are out of the scope
of this paper. We concentrate on performance
measurement and prediction, resource allocation for
tasks in workflows and on-demand tuning of data
transfers, with detailed information below.

As mentioned in Section 2, our goal is to maximize
data throughput of the whole application workflow by
allocating appropriate resources to tasks with
constraints of available storage. In our resource
allocation and scheduling, we also take into account
static information of available resources, dynamic
information of available processing capabilities in the
target environment. We execute resource filtering to
select available resources based on application and
resource specific policies, to reduce the scope of
candidate resources and allocation complexity.
Dynamic performance information of resources is
mainly used to make an updated allocation scheme
over time.

3.2 Measurement and Prediction

Both of data requirement (data processing speed)
and data supply speed should be predicted to make as
good a match as possible. Tasks in a workflow are
deployed to certain computing resources according to
the average execution times over a long time, which
forms an execution time matrix, e.g. T in subsection
4.1. Tasks are executed repeatedly on successive data
files, so such an average execution time matrix makes
sense in the long run. But as long as a short scheduling
period is concerned, both execution times of tasks and
data supply with different parallelism are varying. It is
desirable to make prediction of such performance from
measured historical values for the next scheduling
period, to carry out just on-demand data transfers. As
such scheduling is performed periodically,
performance measurement and prediction will be made
repeatedly. Obviously, there is a tradeoff between
precision and calculation speed of such measurement
and prediction.

There are many available prediction methods,
including nonlinear time-series analysis, wavelet
analysis, rough and fuzzy sets. Our implement of
fractal prediction for CPU usage can be calculated
rapidly with reasonable precision, which can meet our
requirement though not necessarily the best algorithm.

The fractal distribution can be described as:

Dr
CN = ,

where r is the sample time, an independent variable; N
is the usage percent of CPU, a variable corresponding
to r; C is a constant to be calculated and D stands for
the fractal dimension.

Define a series of initial data Nj (j=1,…,m) and the
aggregate sum of ith order can be calculated as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

=
=

∑

∑

=
−

=

1,

1,

1
,1

1
,

iS

iN
S j

k
ki

j

k
k

ji
.

The fractal dimension Di,j and the constant Ci,j can
be calculated as:

1,

1,
, lnln

+

+=
j

j

ji

ji
ji r

r
S
S

D

jiD
jjiji rSC ,

,, ∗= ,

where rj=j (j=1,…,m-1).
Here the second order aggregated sum is applied

since for most cases its prediction result is good
enough and its computing overhead is reasonable. In
this case the prediction is:

() mmD

D
m

m SS
m

mS
N

m

m

,1,2
,2

1 1,2

1,2

1
*

−−
+

=
−

−

+

Table 1. Fractal prediction of CPU usage (m=15)
Nj S1,j S2,j S3,j S4,j D1,j D2,j D3,j D4,j

39.6 39.6 39.6 39.6 39.6 -1.0641 -1.6280 -2.0324 -2.3479
43.2 82.8 122.4 162 200 -1.2830 -1.8742 -2.3712 -2.7917
56.5 139.3 261.7 424 630 -1.1941 -1.9462 -2.5477 -3.0579
57.1 196.4 458.1 882 1510 -1.1331 -1.9700 -2.6498 -3.2319
56.5 256.9 711.0 1593 3100 -0.9513 -1.9351 -2.6974 -3.3451
47.9 300.8 1011.8 2605 5700 -0.9716 -1.9243 -2.7274 -3.4239
48.6 349.4 1361.2 3966 9670 -0.9035 -1.9046 -2.7445 -3.4805
44.8 394.2 1755.4 5721 15390 -0.7084 -1.8544 -2.7451 -3.5191
34.3 428.5 2183.9 7905 23300 -0.8288 -1.8414 -2.7453 -3.5471
39.1 467.6 2651.5 10557 33850 -0.8653 -1.8385 -2.7469 -3.5689
40.2 507.8 3159.3 13761 47570 -0.8567 -1.8355 -2.7490 -3.5866
39.3 547.1 3706.4 17422 64990 -0.7597 -1.8204 -2.7489 -3.6008
34.3 581.4 4287.8 21710 86700 -0.8260 -1.8171 -2.7492 -3.6126
36.7 618.1 4905.9 26616 113320 -0.8692 -1.8198 -2.7507 -3.6229
38.2 656.3 5562.2 32178 145500 ----- ----- ----- -----
Predicted

N16
36.9 Measured

N16
38.4 Relative

error 3.91%

One of prediction results is given in Table 1. Nj is
an average CPU usage (%) during a 10 seconds’
interval. While D1,j varies to some extent, D2,j, D3,j and
D4,j approach to a stable value respectively. This means
that fractal dimensions tend to be fixed and can be
applied to make prediction. As shown in Table 1, the
relative error of the prediction N16 is reasonably good.

A predication of 100 samples is included in Figure
2. While there are some difference between the
prediction and measurements, prediction results does
follow the trend of CPU usage measurements.

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

Sample No.

C
P

U
 U

sa
ge

 (%
)

prediction
measurements

Figure 2. Comparison of 100 prediction and

measurements of CPU usage
With some initial performance data in a relatively

small amount, we can make a prediction of future
performance, such as the execution time of a task on
certain resource and data transfer speeds with different
parallelisms. These are used by heuristic algorithms for
task scheduling and resource allocation.

3.3 Heuristic Task Scheduling

Essentially, it is NP-Complete to make an allocation
of resources for a flow of tasks, where the computation
is tremendously intensive, especially when a large
number of tasks and candidate resources are involved.
Heuristic algorithms are preferable, among which the
genetic algorithm (GA) is adopted. Derived from the
life world with the mechanism of inheritance,
aberrance, competition and selection, GA is believed to
be promising to find satisfactory solutions, not
necessarily the globally optimal ones, in a relatively
short time.

It is the most important to set the evaluation index
(i.e., fitness), which will be used to determine which
individuals, called chromosomes, are to be reserved or
distorted, and the individual with the best evaluation
index will be kept as the optimal solution to our
problem. Here the fitness of each chromosome is its
throughput, and at that time we suppose that adequate
data can be supplied, so as to separate task mapping
and data supply. When calculating the throughput of
each chromosome, the predicted task execution time
on corresponding resources should be adopted, and
much attention should be paid to task dependencies.

The coding of chromosome is another item of great
importance, which reveals the possible form of the
optimal solution to our problem. Our chromosomes in
this allocation can be expressed as a vector:

{ } nichrochro ×= 1
,

where each element of the vector stands for the
allocated resources for task i from 1 to n. With online

measurement and prediction mentioned in subsection
3.2, taking into account execution time for each task,
every chromosome in the candidate group is checked
to find the optimal one. With the mechanism of
inheritance, aberrance, competition and selection, after
some generation of evolution, we can find at least a
satisfactory chromosome, i.e., the solution for our
problem.

Note that backlogs are not taken into fitness index,
for excessive backlogs can be avoided with on-demand
data streaming, including on-the-fly adjustment of
transfer parallelism and repertory policy, without
decreasing the total throughput.

3.4 On-demand Data Streaming

Data for each task have its own magnitude and the
total available storage is limit. The data streaming will
be stopped if the sum of magnitudes exceeds the total
available storage and resumes when the backlog of
data is processed. If there are too much data for a
certain task, the data streaming will be intermittent
rather than continuous. The data for a task is cleaned
up after output data have been transferred to its
subsequent tasks to save space for subsequent data.
Tasks run constantly to perform data processing if
there are waiting data, otherwise they are just idle.

Too much data occupy redundant resources, such as
storage, network bandwidth, which is out of initial
intention of data streaming applications; on the other
hand, insufficient data supply will make tasks in a
workflow lack of data to process, become idle and
waste CPU cycles. On-demand data streaming is
proposed in our work, which tries to supply data as
much as required. Ideally, if data are streamed in a
same speed as that are processed, data storage could be
kept minimum. In our case, this is achieved by
adjusting GridFTP parallelisms and controlling start
and end times of data transfers using repertory
strategies.

3.4.1 GridFTP parallelism tuning.

After resources are allocated to tasks, required data
are streamed to corresponding tasks, which is another
factor influencing the ultimate data throughput.
GridFTP is applied as the data transfer protocol for
cross-domain data replication. The GridFTP
parallelism can be tuned to get optimal transferring
performance. Here our goal is to guarantee data supply
and get maximum throughput, meanwhile keep a
minimum amount of medium data.

It is a non-trivial task to determine the proper
amount of bandwidth to be allocated for data streaming
applications. As far as our assignment algorithm
concerns, it is transformed to set appropriate GridFTP

parallelisms for applications. For convenience, the
parallelism is set to 1, 2, 4, 6 or 8 according to data
processing speed and status of network.

Monitoring the data processing tasks and the
storage, we can get information on data requirements,
denoted as Sopt. By transferring trace packages of data,
data transfer speeds can be estimated with parallelisms
of 1, 2, 4, 6 and 8, denoted as S1, S2, S4, S6 and S8,
respectively, where we have S1＜S2＜S4＜S6＜S8 in
general. Then it is transformed to a matchmaking
problem to find the appropriate parallelism p, as the
GridFTP parallelism parameter.

If Sopt＞S8, let p=8, and in our scenario this is just
best-effort; if Sopt＜S1, let p=1; otherwise, we try to
find the p which satisfies Sp-1＜Sopt≤Sp, p∈{2,4,6,8}.
In the latter two cases, some repertory strategies should
be applied to prevent data overflow in a long period of
data processing.

A well-set parallelism may not always match data
requirements over a long period, which makes it
necessary to evaluate these parameters periodically.
During a time interval, if GridFTP can not be used to
get enough data, its parallelism should be set to its
upper neighbor value, e.g., from 6 to 8. But it must be
cautious to set the parallelism to a lower level unless
redundant transferring speeds are observed in several
successive intervals. If even the highest parallelism can
not meet data processing requirements, the
corresponding processor has to be inevitably idle and
wait for more available data; if the data transferring
speed is high enough, some repertory policy should be
applied to avoid data overflow.

Among the parameters of GridFTP which can be
adjusted to get optimal transferring performance,
including parallelism, TCP buffer size and buffer size.
The parallelism has the most direct impact on data
transfer speeds. Our experiments show that the optimal
number of data channels is between 8 and 10, as
shown in Figure 3. The curve stands for average time
of 20 experiments for transferring a data file of 2 GB
in seconds, using different parallelisms. It is obvious
the data transfer speed increases dramatically with the
GridFTP parallelism changing from 1 to 8. When the
parallelism reaches over 10, the increment does not
result in better performance further.

It is a non-trivial task to determine the proper
amount of bandwidth to be allocated for each
application running in the Condor pool in terms of
utilization and quality of service (QoS) satisfaction. As
far as our assignment algorithm concerns, it is
transformed to set appropriate GridFTP parallelisms
for applications. For convenience, the parallelism is set
to 1, 2, 4, 6 or 8 according to data processing speed

and status of network. For example, if a certain
processing program can consume data of 2 GB in 230
seconds, according to Figure 3, the parallelism can be
set to 4 or 6 to guarantee data supply with minimum
bandwidth.

Figure 3. Comparison of data transfer times using

different GridFTP parallelisms

3.4.2 Repertory strategies. A repertory strategy with
lower and upper limits for each type of data is applied
for the scheduler to decide the start and end of data
transfers and ensure only reasonable local storage is
required. The lower limit is used to guarantee that data
processing can survive network collapse when no data
can be streamed from sources to local storage for a
certain period of time, which improves system
robustness and increases CPU resource utilization. The
upper limit for each application is used to guarantee
that the overall amount of data in local storage does
not exceed available storage space.

Lower and upper limits are mainly used as
thresholds to control start and end times of data
transfers: when data amount scratches the lower limit,
more data should be transferred until the amount
reaches the upper limit. Since there are also data
cleanups involved, data amount keeps varying between
lower and upper limits.

For the sake of simplicity, the total amount of data
items, including all the input items from remote
sources and medium items of tasks are counted
together to carry out repertory strategy. Status of
streaming can be described as active and inactive,
where the former means data are being transferred
while the latter stands that no more data are supplied.
A series of variables, named as TS (short for transfer
status), can be defined to depict such status as
following

() 10 =TS

()

() ()

()

() ()

()⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤
>=

≥
<=

=
−

−

LSif
LSandTSif

USif
USandTSif

TS

k

kk

k

kk

k

,1
0,0

,0
1,1

1

1

,k=1,2,…

where values 1 and 0 of TS(k) (k=0,1,2,…) stand for
active and inactive status of data transfer respectively;
U and L are the settled upper and lower limits of
storage usage; S(k) is the total occupied storage of input
items and medium items at interval; the upper label k
means the k-th interval. Thus, given the upper and
lower limits, measuring the occupied storage every
interval will decide the transfer status, which is rather
simple for implementation.

4 Performance Evaluation

A campus computational grid is being established
in Tsinghua University (Beijing, China) which holds a
large amount of supercomputers, personal computers
and other special instruments. Globus toolkit 4.0.1 is
being deployed to provide common grid services and a
simple Certificate Authority has been established to
sign certificates for hosts and users which will be used
to establish a secure and transparent environment for
data streaming applications. Among the campus
computing grid, network file system has been
established to be a public data holder, which can be
accessed as if data are stored on local disks.

To verify our approach described in Section 3, we
conduct an experiment for a data streaming application
which contains a flow of 10 tasks, as shown in Figure
4, where there are dependencies between tasks,
denoted by directed arrows. The nodes with character I
and O stand for the input and output of the workflow,
where the former means data streaming from remote
source and the latter is the stage to collect the
processing results.

Perhaps some explanation of this case is need.

Figure 4. A Case Study

1 2

3

4

5

6

7

8

9 10 I O

4.1 Workflow Deployment

With online measurement of a reasonable period of

time, we get average execution times for each task on
different resources in a matrix T:

,
where tij represents the execution time in average of
task i (i=1,2…10) on resource j (j=1,2…10) in a
normalized unit.

Notice that the execution time for a task on a certain
resource is not constant due to dynamic nature of grids
due to changing workloads and competition with other
applications, so the execution time matrix is different
over time. The matrix T given above is just an average
of such execution matrices for some sample routines,
and in a long run what really accounts is just the
average, not some peak values of execution time.

Now we concentrate on task scheduling and
resource allocation to get the maximum throughput in
certain time span. Initially the data streaming is not
considered and will be discussed in the following
subsection.

We set the size of population to be 40, mutation
probability to be 0.1, total generations to be 100 and
the crossover probability to be 0.2, as the parameters
of our genetic algorithm. To evaluate the gross
throughput, we set the period of time to be 1000 units.
The chromosomes are coded as a vector:

[]
40,,2,1

,**********
L=

=
i

chroi

where * represents corresponding resources for tasks 1
to 10, respectively. Corresponding time for each task
can be retrieved from the matrix T, and data
throughput for one chromosome can be calculated as
its fitness, which decides its fate, reserved or discarded.

After evolving for some generations, we get the
optimal chromosome:

[]38541096172=optimalchro ,

which represents tasks 1 to 10 are allocated to
resources 2, 7, 1, 6, 9, 10, 4, 8, 5, and 3, respectively,
and the processing time vector is:

[]3142356111=t ,
where () ()() 10,,2,1,, L== iichroiTit optimal .

4.2 On-demand Data Streaming

For grid data streaming applications, data streaming
and processing interact with each other, and the former
increases data files in the NFS, while the latter
decreases the number since data files will be cleaned
up after being processed. At any time the current
number of data files reflects combined effectiveness of
data streaming and processing. If we have relatively
large data storage or the processing speed is high
enough, repertory strategies are not required; but, if
storage is small or the computational resources are not
powerful enough, some repertory strategies will be
indispensable to avoid data overflow. We will discuss
these two situations below.

4.2.1 Large storage with performance bottleneck
without repertory strategies. In this experiment, the
GridFTP parallelism is set to be the highest 8 at first
and then decreased to 2. The backlog of data for each
task and overall data throughput of the workflow in the
number of data files are measured as shown in Table 2.

Table 2. Experimental Result I
Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9

Data
Throughput

8 0 334 335 0 332 0 0 0 0 165
2 0 84 85 0 85 0 0 0 0 164

The final data throughput is 165 when the GridFTP
parallelism is set to 8 with the highest data streaming
speed. It can be observed that backlogs of data at tasks
s2, s3 and s5 are also very high. This can be explained
by the difference of data processing speeds between
dependent tasks. For example, task s2 has two
subsequent tasks, s3 and s4. s2 has a much higher data
processing speed than s4 according to the processing
time vector t scheduled in Section 4.1. Although s3 can
process data as fast as s2, output data of s2 can not be
cleaned up until also received by s4, which causes a
large backlog of data at s2. There are similar situations
at tasks s3 and s5. So for an application with a data
streaming workflow, task scheduling and resource
allocation has to consider balance between dependent
tasks, otherwise data processing bottlenecks would
result in low application performance and resource
utilization.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

58358883910
511361101045
17428461034
6175222117
37710102710109
15776961101
751066675104
117110181011
57913851102
9693967915

T

The GridFTP parallelism is decreased from 8 to 2,
which dramatically reduces originate data streaming
speed. Experimental results included in Table 2 shows
that the same final data throughput is achieved with
much less backlogs of data at intermediate tasks. So it
is not the case that the faster data are streamed the
better, since too fast data transfer would result in
backlogs of data, which could not be processed in time
and has to consume unnecessary storage and
bandwidth, instead of increasing the final data
throughput.

4.2.2 Large storage without performance bottleneck
without repertory strategies. The experimental
results for this scenario are included in Table 3.

Table 3. Experimental Result II
Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9

Data
Throughput

8 0 167 168 0 166 83 84 0 0 248
2 0 0 0 0 0 123 123 0 0 124

It is obvious that tasks s4 and s5 are bottlenecks of
the whole data processing workflow in Figure 4. In
this experiment, we increase processing speeds of
these tasks by allocating more powerful processors to
them.

Table 3 shows that eliminating bottlenecks increase
the ultimate data throughput dramatically (from 165 to
248), compared with results included in Table 2. And
the lower data streaming speed starve the whole flow
of tasks, leading to a much lower final data throughput
(124). With a relatively fast data processing workflow,
a too slow data streaming support would also become a
bottleneck in terms of the ultimate data throughput and
lead to idle task processes and lower resource
utilization.

While s4 and s5 are not bottlenecks any more, a new
bottleneck s8 appears as indicated in Table 3. The
result is conformed to the processing time vector t
scheduled in Section 4.1. The low performance of s8
leads to backlogs of data at s6 and s7. This is because s6,
s7 and s8 are parallel branches and parents of s9. s9 has
to consume output data of s6, s7 and s8 simultaneously.
If s8 is performed slower than s6 and s7, output data of
s6 and s7 are accumulated and become backlogs. So
task scheduling and resource allocation has to consider
balance among parallel tasks.

Backlogs of data at s2 over time is also illustrated in
Figure 5. It is obvious that storage aware resource
allocation can eliminate bottlenecks, dramatically
reduce the backlog of data, and improve the final data
throughput.

Figure 5. Comparison of Backlogs of Data at

Task s2 (p=8)

It is also shown in Figure 5 that the backlog of data
at task s2 increases approximately linearly over time,
which does not scale well for long running data
streaming applications. This can be improved if
repertory strategies are applied in the next experiment.

4.2.3 Limit storage with repertory strategies
applied. Based on the experiment carried out in
Section 4.2.1, repertory strategies described in Section
3.4.2 is applied to avoid data overflow in this
experiment. If the number of data files in storage
reaches the upper limit, data transfers are stopped until
the data storage is decreased to the lower limit.
Corresponding results are included in Table 4.

Table 4. Experimental Result III
Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9

Data
Throughput

8 0 12 13 0 11 0 0 0 0 165
2 0 11 12 0 10 0 0 0 0 164

Compared with results in Table 2, the same data
throughput is achieved with much less backlogs of data.
The data processing workflow is executed without
unnecessary backlogs of data. In this case, data
streaming is configured to provide data in an on-
demand manner. As a result, backlogs of data at each
task do not increase linearly over time as illustrated in
Figure 6. Note that only 100 time units of data are
included in Figure 6, instead of 1000 in Figure 5.

In Figure 6, data are no longer accumulated over
time since originate data streaming stops at the upper
limit once a data overflow is detected. This mechanism
only works when data transfer speed is higher than
average data processing speed of the workflow. In the
p=2 situation of the experiment in Section 4.2.2, when
the workflow already starves for data, the repertory
strategy cannot be applied

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

time

ba
ck

lo
g

of
 d

at
a

backlog in stage 2 with bottleneck
backlog in stage 2 without bottleneck

Figure 6. Backlogs of Data with Repertory

Strategies Applied at Task s2 (p=8)

4.2.4 Dynamic adjustment of parallelism. Usually,

in grid, there are multiple applications (i.e., workflows)
compete for limited resources, mainly the bandwidth.
The overall principle is to guarantee just enough rather
than redundant data supply for each workflow so as to
alleviate congestion of network. Parallelism of data
transfers is adjusted on the fly based on prediction, so
as to match data supply and processing as much as
possible. Results provided in subsection 4.2.1, 4.2.2
and 4.2.3 just show the influence of fixed parallelism
in the evaluation period of time, while in this
subsection, we will show how the on-the-fly
parallelism of each data transfer should be adjusted.

Four workflows are considered simultaneously.
Their processing speeds gotten by prediction based on
measurement are shown in Figure 7, and the
corresponding parallelism (denoted as p) of each data
transfer is shown in Figure 8. For workflow 1, its
processing speed is rather high, so data are being
supplied with the max parallelism constantly, just in
the best-effort way; for the rest workflows, data
transfers are intermittent rather than continuous due to
repertory strategy with appropriate parallelism. The
blank areas in Figure 8 mean that data supply is not
active, i.e., no more data are supplied at the
corresponding time.
5. Technical Discussions

Several technical aspects of research are coupled
with each other in this work:

Grid computing. The environment is developed in
context of grid computing, focusing on cross-domain
resource sharing within virtual organizations. In this
work, data transfers are performed using GridFTP with
on-the-fly tuning capability of parallelism.

Data streaming. A specific type of applications is
considered in this work. These applications require
large volumes of data fed continuously to flows of

sequential / parallel tasks. Intermediate data are also
required to be streamed among dependent tasks. Data
streaming and processing are carried out concurrently
to improve overall system performance in this work.

0 2 4 6 8 10 12 14 16 18
7

7.5

8

8.5

9

9.5

10

10.5

Time (minutes)

P
ro

ce
ss

in
g

S
pe

ed
 (M

B
/s

)

data 1
data 2
data 3
data 4

Figure 7. Predicted processing speeds

0 2 4 6 8 10 12 14 16 18

p=1 p=1 p=1 p=1

p=4 p=8 p=2 p=6

p=8 p=6 p=6 p=2

p=8

Time (minutes)

data4

data3

data2

data1

Figure 8. Dynamically adjusted parallelism

Measurement and prediction. Performance

predication provides a basis for task scheduling and
resource allocation. In this work, a GM(1,1) method is
adopted to get performance information on task
execution time on grid resources.

Task scheduling and resource allocation. Data
streaming applications bring new challenges to task
scheduling and resource allocation. In this work, the
genetic algorithm is used to solve the NP-Complete
problem of mapping tasks to available resources using
heuristic search for optimal solutions.

Storage management. Storage awareness in grid
enabling data streaming applications is the major focus
of this work since such applications always involve
large volumes of data in time series. On-demand data
provision and just-in-time cleanup is proposed in this
work to address the challenge.

Several experiments are carried out in this work and
our discoveries are summarized below.

 The the-faster-the-better principle does not
apply to data streaming applications in some
situations. For example, if data streaming

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

time

ba
ck

lo
g

of
 d

at
a

speed is higher than processing speed at an
average, a backlog of intermediate data occurs
at bottlenecks of data processing workflows,
which leads to unnecessary storage usage.
Applying GridFTP with on-the-fly adjustable
parallelism, we can approach the optimal
speed as much as possible.

 Balances among dependent tasks of a
workflow become essential to achieve high
performance. Sequential / parallel tasks should
have similar data processing speed, otherwise
system bottlenecks and backlogs of data occur
which consumes unnecessary storage. In a
flow of tasks, while execution makespan is
focused in traditional task scheduling and
resource allocation research, our work focuses
more on ultimate data throughput since data
streaming applications always run
continuously.

 Implementation of data streaming applications
not necessarily requires large data storage
capability. Storage aware resource allocation
using repertory strategies is proposed in this
work so that applications can gain high data
throughput with relatively small storage.

6. Related Work

There are existing grid resource allocation
infrastructures, e.g. Legion [10], Globus and Condor,
with limit task and workflow scheduling supports.
Issues in task scheduling for grid workflows are
investigated in [11] and [12] though no data storage
constraint is considered. While there are existing
storage management grid middleware, e.g. SRB [13]
and SRM [14], no specific data streaming supports are
provided in these tools.

This work is focused on a resource management
and scheduling infrastructure for grid data streaming
applications. Some existing work on data streaming
management are derived from database management
systems, e.g. STREAM [15], Aurora [16], NiagaraCQ
[17], StatStream [18], and Gigascope [19]. Most of
data streaming research in context of grid computing
[20][21][22][23] are application specific and
scheduling issues are not addressed. The following two
systems are most related to the work described in this
paper:

 Streamline [24], a scheduling heuristic based
on Globus, is designed to adapt to the dynamic
nature of a grid environment and varying
demands of a streaming application.
Streamline is not storage aware since no
storage scheduling issues are considered. Our

implementation is storage aware since CPU-
rich grid resources maybe storage-limit.

 Pegasus [25] has the most similar motivation
with the work described in this paper. While
Pegasus handles data transfers, job processing
and data cleanups in a pipeline manner, in our
environment, data streaming, processing and
cleanup are concurrent. By carefully
optimizing data streaming, our environment
makes required data available on-demand and
just-in-time, which dramatically reduces
storage requirements for executing grid data
streaming workflows.

7. Conclusions and Future Work

Data streaming applications are becoming very
popular especially with the development of open grid
environments and resources. In order to utilize remote
grid resources that are CPU-rich and storage-limit, data
streaming has to be performed concurrently with data
processing with carefully scheduled storage usage.

Experimental results described in this work show
that in order to achieve high data throughput with limit
storage usage for data streaming applications, several
principles have to be considered that are different from
traditional job scheduling and resource allocation. For
example, system performance is improved if data
streaming and processing are concurrent. Also data
streaming does not necessarily lead to large amount of
storage usage, since if data are streamed on-demand
instead of as-fast-as-possible, and there is a good
balance of data processing speeds among dependent
tasks of a workflow, that is to say, if data streaming
and processing are storage aware, high data throughput
can be still achieved with relatively small storage.

Ongoing work include grid enabling several real
applications using our data streaming environment,
further performance evaluation of algorithms proposed
in this work in real time execution of workflows, and
extension of current approach to work in an evolving
manner so that grid dynamism can be addressed and
adaptability of our environment can be improved.

Experiments discussed in this work only focus on
individual data streaming applications. This is not the
case in real situation where there could be multiple
applications sharing grid resources in the same virtual
organization. More constraints have to be considered if
multiple flows of tasks are considered, e.g. network
bandwidth. Task scheduling and resource allocation
will also become much more complicated if multiple
data processing workflows are sharing data streams

and competing resources. These issues will be
addressed in our future work.

Acknowledgement

This work is supported by National Science
Foundation of China (grant No. 60803017), Ministry
of Science and Technology of China under the national
863 high-tech R&D program (grants No.
2006AA10Z237, No. 2007AA01Z179 and No.
2008AA01Z118), Ministry of Education of China
under the program for New Century Excellent Talents
in University and the Scientific Research Foundation
for the Returned Overseas Chinese Scholars, and the
FIT foundation of Tsinghua University.

References

[1]. I. Foster and C. Kesselman, The Grid: Blueprint

for a New Computing Infrastructure, Morgan
Kaufmann, San Francisco, 1998.

[2]. E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L.
Pearlman, K. Blackburn, P. Ehrens, A. Lazzarini, R.
Williams, and S. Koranda, “GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave
Scientists”, Proc. 11th IEEE Int. Symp. on High
Performance Distributed Computing, pp. 225-234,
2002.

[3]. R. Pordes for the Open Science Grid Consortium,
“The Open Science Grid”, Proc. Computing in
High Energy and Nuclear Physics Conf.,
Interlaken, Switzerland, 2004.

[4]. J. H. Holland, Adaptation in Natural and
Artificial Systems, University of Michigan Press,
1975.

[5]. B. Allcock, J. Bester, J. Bresnahan, A. L.
Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, and S. Tuecke, “Data
Management and Transfer in High Performance
Computational Grid Environments”, Parallel
Computing, Vol. 28, No. 5, pp. 749-771, 2002.

[6]. I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit”, Int. J.
Supercomputer Applications, vol. 11, No. 2, 1997,
pp.115-128.

[7]. K. Czajkowski, I. Foster, N. Karonis, C.
Kesselman, S. Martin, W. Smith and S. Tuecke,
“A Resource Management Architecture For
Metacomputing Systems”, IPPS/SPDP
Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 62-82, 1998.

[8]. W. Zhang, J. Cao, Y. Zhong, L. Liu and C. Wu, “An
Integrated Resource Management and Scheduling
System for Grid Data Streaming Applications”, Proc.

9th IEEE/ACM Int. Conf. on Grid (Grid 2008), pp.258-
265, Tsukuba, Japan.

[9]. M. Litzkow, M. Livny, and M. Mutka, “Condor –
A Hunter of Idle Workstations”, Proc. 8th Int.
Conf. on Distributed Computing Systems, pp.
104-111, 1988.

[10]. S. J. Chapin, D. Katramatos, J. Karpovich and A.
S. Grimshaw, “The Legion Resource
Management System”, Job Scheduling Strategies
for Parallel Processing, Springer Verlag, pp.162-
178, 1999.

[11]. R. Sakellariou and H. Zhao, “A Hybrid Heuristic
for DAG Scheduling on Heterogeneous Systems”,
Proc. 13th IEEE Heterogeneous Computing
Workshop, 2004.

[12]. D. P. Spooner, J. Cao, S. A. Jarvis, L. He, and G.
R. Nudd, “Performance-aware Workflow
Management for Grid Computing”, The
Computer J., Special Focus - Grid Performability,
Vol. 48, No. 3, pp. 347-357, 2005.

[13]. A. Rajasekar, M. Wan, R. Moore, W. Schroeder,
G. Kremenek, A. Jagatheesan, C. Cowart, B. Zhu,
S. Chen, and R. Olschanowsky, “Storage
Resource Broker - Managing Distributed Data in
a Grid”, Computer Society of India Journal,
Special Issue on SAN, Vol. 33, No. 4, pp. 42-54,
2003.

[14]. A. Shoshani, A. Sim, and J. Gu, “Storage
Resource Managers: Middleware Components for
Grid Storage”, Proc. 19th IEEE Symp. on Mass
Storage Systems, 2002.

[15]. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom,
“STREAM: The Stanford Stream Data Manager”,
IEEE Data Eng. Bull., Vol. 26, No. 1, pp.19-26,
2003.

[16]. D. Carney, U. Cetinterne, M. Cherniack, et. al.,
“Monitoring Streams: A New Class of Data
Management Applications”, Proc. Int. Conf. on
Very Large Data Bases, pp. 215-225, 2002.

[17]. J. Chen, D. DeWitt, F. Tian, and Y. Wang,
“NiagaraCQ: A Scalable Continuous Query
System for Internet Databases”, Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp.
379-390, 2000.

[18]. Y. Zhu and D. Shasha, “Statstream: Statistical
Monitoring of Thousands of Data Streams in Real
Time”, Technical Report TR2002-827, CS Dept,
New York University, 2002.

[19]. C. Cranoe, T. Johnson, V. Shkapenyuk, and O.
Spatscheck, “Gigascope: a Stream Database for
Network Applications”, Proc. ACM SIGMOD Int.
Conf. on Management of Data, pp. 379-390, 2003.

[20]. R. Kuntschke, T. Scholl, S. Huber, A. Kemper, A.

Reiser, et. al, “Grid-Based Data Stream
Processing in e-Science”, Proc. 2nd IEEE Int.
Conf. on e-Science and Grid Computing, 2006.

[21]. V. Bhat, S. Klasky, S. Atchley, M. Beck, D.
McCune, and M. Parashar, “High Performance
Threaded Data Streaming for Large Scale
Simulations”, Proc. 5th IEEE/ACM Int. Workshop
on Grid Computing, pp. 243-250, 2004.

[22]. G. Fox, H. Gadgil, S. Pallickara, M. Pierce, R. L.
Grossman, et. al., “High Performance Data
Streaming in Service Architecture”, Technical
Report, Indiana University and University of
Illinois at Chicago, July 2004.

[23]. S. Klasky, S. Ethier, Z. Lin, K. Martins, D.
McCune and R. Samtaney, “Grid-Based Parallel
Data Streaming Implemented for the Gyrokinetic
Toroidal Code”, Proc. ACM/IEEE
Supercomputing Conf., 2003.

[24]. B. Agarwalla, N. Ahmed, D. Hilley, and U.
Ramachandran, “Streamline: Scheduling
Streaming Applications in a Wide Area
Environment”, Multimedia Systems, Vol. 13, No.
1, pp. 69-85, 2007.

[25]. A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers,
and M. Samidi, “Scheduling Data-intensive
Workflow onto Storage-Constrained Distributed
Resources”, Proc. 7th IEEE Int. Symp. on Cluster
Computing and the Grid, Rio de Janeiro, Brazil,
pp. 401-409, 2007.

