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ABSTRACT: 
Provisioning Virtual machines on demand is significant in elastic compute cloud for reliable 
service delivery. The importance and major difficulty lies in satisfying the conflicting objectives 
of satisfying contracted service level agreement while lowering used resource costs. In this paper, 
we propose a mathematical multi-tier framework for adaptive virtual resource allocation 
problem. The framework captures the performance of the virtualized cloud platform gracefully. 
We first use simulations to derive virtual resource allocation policies, and later use real 
benchmarking applications, to verify the effectiveness of this framework. Experimental results 
show that the model can be simply and effectively used to satisfy the response time requirement as 
well as lowering the cost of using the virtual machine resources. 
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Introduction 
 
Research background 
 
Cloud computing allocates Virtual Cluster (VC) resources in Infrastructure as a Service (IaaS), 
Platform as a Service: PaaS, and  Software as a Service: SaaS (Turner, Budgen, Brereton, 2003) 
applications. A virtual cluster (Emeneker, et al, 2006) is an organized heterogeneous Virtual 
Machine (VM) hosting platform, which is used in cloud platforms to provide elastic and reliable 
services. Examples of virtual machine software include VMware, KVM and Xen. The VMs are 
allocated on demand, which satisfies user requirements for response time while lowering the cost 
of using the resources. 
 
Dynamic resource provisioning (Li, Tirupati, 1995) which has been widely used in internet 
hosting platforms, has proven to be useful in handling multiple time-scale workloads. However, 
this kind of dynamic provisioning in previous work has been more commonly based upon 
physical resource allocation in large scale server farms, which is not flexible enough for the 
effective delivering of services. 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
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Unlike other resources, VMs are flexibly deployed on physical machines, which can be 
automatically generated for different applications. For example, some scientific applications such 
as gene expression and transferring demand a lot of CPU resources, while some other real-time 
transaction applications and interactive online games are memory and network-intensive. Though 
traditional physical capacity provisioning has long been used, over-provisioning or under-
provisioning has been a common difficulty for most resource vendors. 
 
The advent of cloud computing, which takes full advantage of virtualization technology, 
potentially solves this difficulty. We propose a queuing and multi-tier network model, in which 
virtual clusters are deployed on each tier for service delivering. The flexibility of our proposed 
adaptive resource provisioning is threefold: 
 
(1) The flexibility of allocating virtual resources: we can dynamically create and/or destroy a VM 
from a resource pool using a simple command with very low overhead. This advantage can be 
used to handle the problems in resource over-provisioning and/or under-provisioning. 
 
(2) The flexibility of handling data or communication locality: we can easily deploy those VMs 
that have the most frequent communication or interaction in such a way that they are physically 
or logically close to each other. This advantage saves the communication cost noticeably. 
 
(3) The flexibility of migrating services: virtual resources used to provide reliable services can 
use service migration to re-organize service hosting platforms in order to maximize the utilization 
of resources, which can dramatically improve operational costs. 
 
Given the above advantages and benefits from the use of adaptive resource provisioning, we 
propose the design of a virtualized resource allocation framework using the cloud platform, which 
allocates VMs on demand in order to provide services, as well as minimizing the cost of using 
those virtual resources. 
 
Motivation 
 
One of the major difficulties of virtual resource allocation is how to provide proper policies at 
different times to satisfy different user demands. This difficulty lies in the unpredictable 
execution time, variable operational costs and frequently fluctuating workloads (Wu and Hwang, 
et al, 2009). These aspects require a proper model to capture the characteristics of complex 
systems. 
 
Model-View-Control (MVC), an architectural design pattern widely used in internet hosting 
platforms, is also supported in Windows Azure and other cloud platforms. This design pattern is 
unique to the new proposed paradigm in that full virtualization is employed in order to achieve 
higher reliability and flexibility. Based on a typical MVC architecture, we model our application 
as a multi-tier queuing network to leverage virtual resource provisioning as shown in Fig. 1.  
 
Each tier can be modeled as a set of VMs. The inputs of this model are the cost of using each VM 
at each tier, the transferring probability that a request should be forwarded to the next or previous 
tier, and most importantly, the inter-arrival time of the workloads. The output is the optimal 
number of VMs allocated for each tier needed to achieve a reasonable response time and 
minimized total resource costs. We analyze the relationship of these parameters and show its 
derivation based on queuing theory (Kleinrock, 1976). 
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Fig 1. A typical three tiers of http, application and database server internet hosting 
platform. Different requests are used and they traverse different number of tiers. The 
requests of John traverse http server only. Typical requests of this type are static web page 
retrieving. The requests from Bob traverse http and application server. Typical example is 
invoking a simple Java servlet, such as inquiring current session number. The requests 
from Kate traverse all the servers. One example is retrieving the unread mails. 
 
Contributions of this work 
 
In this paper, we focus on the mathematical formation and optimization of the model, and show 
how the above goals can be satisfied in a simple yet applicable way. The major contributions of 
this work are described as follows: 
 
(1) Derives response time through mathematic formulation: we establish a direct relationship 
between a workload and average response time could be caused by this workload through a 
queuing model. The relationship can be used to determine the number of VMs we need to satisfy 
user demands while minimizing the cost of using these VMs. 
 
(2) Extends traditional single size VM scheduling problems: our model includes two kinds of VM 
instances (fat and thin) that have a different number of CPUs and memory capacities to provide 
different computing capabilities. This extension is much more applicable in cloud platforms such 
as Amazon EC2 and Eucalyptus. 
 
(3) Carries out benchmarks using the Rice University Bidding System (RUBiS) on IBM X3950 
servers with different sizes of VMs, to verify the correctness and efficiency of our proposed 
model. This model is also tested with simulations to make comparisons. 
 
The rest of this paper is organized as follows: We introduce the related work in section 2. System 
architecture including our virtualized cloud platforms and queuing network model are introduced 
in section 3. The virtual resource allocation framework is introduced in section 4. We describe 
experimental studies using both simulation and real benchmarks to verify our proposed method in 
section 5. We conclude this work and propose the future research direction in section 6. 
 
Related work 
 
Modeling a single tier of servers is first proposed (Slothouber, 1996), where four queues are 
adopted in a model web server. Two are used for the web servers and the remaining two are used 
for modeling communication networks. Modeling CPU, memory and disk bandwidth is suggested 
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for performance prediction in web servers (Chase, and Doyle, 2001). Modeling replicated single 
tier application using a G/G/1 queuing network is also discussed (Urgaonkar, and Shenoy, 2004). 
Using an M/M/1 queuing model to calculate response time of web requests are proposed (Levy, 
Nagarajarao, et al, 2003). The throughput of web servers using a queuing network combined with 
Markov chain is suggested (Menasce, 2003). These works discuss a single tier server solution, 
and later a multi-tier platforms. We differentiate our work by using our model to model multi-tier 
internet hosting platforms. 
 
There is existing prior work using queuing networks to model multiple tier internet hosting 
platforms. An M/G/1/PS model is proposed (Villela, Pradhan, and Rubenstein, 2007) to provide 
servers on application tiers. A G/G/N queuing system with N servers for an e-commerce 
application model is discussed (Ranjan, Rolia,  and Fu, 2002). An M/GI/1/PS model for an e-
commerce application is also suggested (Kamra, Misra, and Nahum, 2004) to use a single queue 
to model multi-tier systems. The similarity of these works is that they only model the bottleneck 
aspects of the servers, which cannot capture the global characteristics of an entire system. In our 
model, the framework covers all the parts of a multi-tier system, including capturing bottleneck 
issues with the use of load balancing techniques. 
 
A queuing network based analytical model is proposed to model multi-tier internet hosting 
platforms (Urgaonkar, Pacifici, Shenoy, ans Spreitzer, 2007). An enhanced model of this work 
can be used to deal with load balancing, handling concurrency limit, and multiple session classes 
at each tier. The improvement of this work is suggested (Urgaonkar, Shenoy, et al, 2007), where a 
combination of predictive and reactive methods is used to determine when to provide virtual 
resources. They also use queuing network model to determine how much virtual resource to 
provide. Our work is different from these works in that it not only takes the cost of using virtual 
resources into consideration, but also includes a framework to schedule thin and fat VMs upon 
user demand. These different-sized VM provisioning techniques are commonly seen in 
Eucalyptus, Amazon EC2, and other cloud platforms. 
 
Recently, cloud computing (Armbrust, Fox, et al, 2009) has become a popular research topic in 
which computational resources are virtualized based on user demand. Buyya’s work (Buyya, Yeo, 
et al, 2008) has a similar motivation with ours such as costs minimizing, and they use CloudSim 
(Calheiros, Ranjan, et al 2010) for simulating data centers. We differentiate our work using 
adaptive virtual machines provisioning on virtualized cloud computing platforms. Similar of our 
previous works are carried out under distributed platform (Zhang, et al, 2010) using adaptive 
mapreduce framework. The model used in this work is more directly related to cloud services.  
 
Delivering reliable web service applications using petri-net or related techniques are fully 
investigated (Tan, et al, 2009, 2010). Quality of Services under web service configuration are 
discussed (Xiong, et al, 2008, 2009). All these techniques are ensuring methods in web service 
researches. Our ensuring level is conducted under resource allocation level, unlike the application 
verification level.  
 
We propose a quantitative framework to analyze the VM scheduling problem, in which virtual 
clusters are used in each tier of a queuing network to provide services on demand based on 
different workloads. Furthermore, we sole the above model using mathematical analysis from 
simulation and real experimental verification. 
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System architecture overview 
 
In this section, we introduce our virtualized cloud platform using a queuing network. We then 
formulate this virtual resource scheduling problem as a constrained integer optimization problem. 
 
Virtualized cloud platforms 
 
In a virtualized cloud platform, various physical clusters are utilized to provide computational 
resources, such as CPU and memory allocations. A physical cluster contains many 
interconnecting physical nodes. VMs are deployed on these physical nodes based on their CPU or 
memory configuration. In Fig. 2, we show 3 physical clusters. Each physical cluster contains 3 
physical nodes with 12 VMs deployed in each physical cluster. 
 

Physical Cluster 1 Physical Cluster 2 Physical Cluster 3

VC 1 VC 2 VC 3 VC 4 VM  
 

Fig 2. Four virtual clusters built over 3 physical clusters. Each physical cluster consists of a 
number of interconnected servers, represented by the three servers. Each physical cluster 
contains 12 virtual machines, represented by the rectangular boxes with 3 different 
shadings. The virtual machines are implemented on the servers (physical machines). Each 
virtual cluster can be formed with either physical machines or VMs hosted by multiple 
physical clusters. The boundaries of the virtual clusters are shown with 4 dot/dash-line 
boxes. The provisioning of VMs to a virtual cluster can be dynamically based upon user 
demands. 
 
Virtual clusters are used to partition or reorganize the VMs based on the computational capacity 
of each VM, the requirement of different application scenario, or more specifically, different 
workloads. The purpose is to provide an automatic scaling or shrinking mechanism to improve 
utilization. This mechanism gives customers reliable response times and service availability. It 
also allows for flexible resource provisioning on demand, which can reduce the cost for using the 
resources. It benefits vendors in that the resources are allocated as needed which takes utilization 
into account, providing more effective services. 
 
Based on the resource provisioning principles that many cloud service vendors use, different VMs 
are pre-deployed with different resources. For example, some VMs are deployed with 1 CPU core 
with 1 GB memory (thin VMs). Some are deployed with 2 CPU cores with 2 GB memory (fat 
VMs). This mechanism is shown in Fig. 3. 
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Fig. 3. VM resource pool with VMs of different computational resource. VMs in thin/fat 
VM pool are equipped with 1 or 2 CPU cores with 1 or 2 GB memories. Different number of 
VMs in thin/fat VM pool is scheduled into virtual cluster to provide services on demand. 
 
Multi-tier queuing network model 
 
We describe our application specific to multi-tier hosting platforms in Fig. 4. To simplify the 
illustration, we use a typical and widely used J-tier platform as an example. The model in our 
experiment is a queuing network with J queues. Each queue corresponds to one tier in order to 
handles the inter-arrival requests. There are n sessions concurrently generating requests. Each 
request that arrives at tier j (j∈[1,J–1]) should either proceed into the j+1 tier, with a probability 
Pj, or return to the j–1 tier, with a probability 1–Pj. The requests that arrive at the Jth tier will be 
returned to the (J–1)th tier with a probability of 1. Thus PJ = 0. 
 

 
Fig. 4. A multi-tier application hosting platform with n sessions generating requests. Each 
tier is modeled as a queuing system. Any request arriving at the jth tier either proceeds into 
the (j+1)th tier with a probability denoted by Pj, or returns back to the (j-1)th tier with 
probability 1–Pj. All the requests arriving at the Jth tier (the last tier) should return to the 
(J-1)th tier.  
 
Our scheduling target is to achieve an appropriate average response time for customers as well as 
reducing the costs of using those virtual resources. In our proposed model above, network latency 
is not included between two tiers since we have conducted numerous experiments within our 
virtual machine farm and we conclude that the network latency is too small compared with the 
time used for intensive transaction processing, especially in our followed experiments that all the 
VMs are constructed within one powerful server. On the other side, all the requests that awaiting 
for processing are buffered in the modeled queue. The detailed formulation of this problem is 
elaborated in the following section.  
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To benefit readers, we introduce the major symbols, concepts, definitions and explanations that 
will be used in our followed sections, in Table 1. 
 

Table 1. Symbols and definitions 
 

i or i-1 The current or previous stage 
j or J Number of current or total tiers 

( )L
jN i or ( )S

jN i   Number of thin or fat VMs used of the jth tier in the 
ith stage 

( )S
j iμ or ( )L

j iμ  Average service rate of thin or fat VM of the jth tier 
in the ith stage 

( )S
j iρ or ( )L

j iρ  Average arriving-service ratio of  
thin or fat VM 

S
jAST or L

jAST  Average staying time of each request in thin/fat 
VM of the jth tier 

AARj or λj(i) Average arrival rate of the jth tier 
λ’j(i) Avg. arrival rate of each VM in the jth tier 
AARj-1,j  or 
AARj+1,j 

Average arrival rate of the jth tier from the  
(j-1)th  or (j+1)th tier 

ADRj,j-1  or 
ADRj,j+1 

Average departure rate of the jth tier to the  
(j-1)th or (j+1)th tier 

ADRj Average departure rate of the jth tier 
ASTj Average staying time of request in the jth tier 
Cj Concurrency limit of VM in the jth tier 
R(i) Requests that are generated during stage i 
Pj The probability a request generated from tier j 

proceeds into tier j+1. 
ΘS or ΘL Available number of thin or fat VM 

 
The relationship of these symbols and their roles in this work are introduced in the followed 
section. 
 
Virtualized resource scheduling 
 
In this section, we firstly discuss our multi-tier queuing network model and mathematical 
derivation of the response time requirement. Then we introduce how to solve the model from 
several mathematical steps. At last, we introduce some parameters used in our model and discuss 
how to estimate their values. 
 
Modeling of tier structure 
 
Suppose in the ith stage, the number of thin or fat VM of the jth tier is denoted as follows in EQ. 2: 

( ) ( ) ( )1 1S S S
j j jN i N i N i= − + Δ −  (2.a) 

( ) ( ) ( )1 1L L L
j j jN i N i N i= − + Δ −  (2.b) 

As shown in Fig. 4, in the current stage, the expected inter-arrival rate of requests denoted by λj(i), 
and the inter-arrival rate for each queue is denoted by:  
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( ) ( ) ( ) ( )S L
j j j ji i N i N iλ λ′ ⎡ ⎤= +⎣ ⎦  (3) 

λj(i), which is also called AARj, is composed of two parts as shown in Fig. 4. The first part is the 
requests coming from the previous tier, namely the (j-1)th tier, which is denoted as AARj-1,j, the 
second part is the requests that coming from the following tier, namely the (j+1)th tier,  denoted as 
AARj+1,j. We write this as follows: 

λj(i)  or AARj =AARj-1,j + AARj+1,j (j∈[1, J-1])  (4) 
 

AAR0,1 is the inter-departure rate of Q0. In the Jth tier, we have  
λJ(i)  or AARJ =ADRJ-1,J  (5) 

 
Each VM can be viewed as an M/M/1/C/∞/FIFO queuing system (Kleinrock, 1976). Cj is the 
concurrency limit of each VM. Thus we can calculate the average staying time for each request in 
thin or fat VM of the jth tier by: 

( ) ( ) ( )
( ) ( )

( )

1
1 ,

(1 )

j

j

C
j S jS S

j jCS S
j j jj S

C i
AST i

i i ii
ρ λ

ρ
μ λ μλ ρ

+ ′
= − =

′− ′ −
 (6.a) 

( ) ( ) ( )
( ) ( )

( )

1
1 ,

(1 )

j

j

C
j L jL L

j jCL L
j j jj L

C i
AST i

i i ii
ρ λ

ρ
μ λ μλ ρ

+ ′
= − =

′− ′ −
 (6.b) 

 
Based on the above analysis, the average departure rate of the jth tier is 

( ) ( )S S L L
j j j j jADR N i AST N i AST= +  (7) 

 
Next, we can derive the average staying time of each request in the jth tier as: 

ASTj = 1/ADRj  (8) 
 

Based on our model in Fig. 5, the average arrival rate of the (j+1)th tier from the jth tier is denoted 
by 

, 1 *j j j jAAR ADR P+ =  (9) 

 
Similarly, the arrival rate of the (j–1)th tier from the jth tier is denoted by 

( ), 1 * 1j j j jAAR ADR P− = −  (10) 
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1 ( )1S
jN i −

.
.
.

1 ( )1L
jN i −

.
.
.

1 ( )1S
jN iΔ −

.
.
.

1 ( )1L
jN iΔ −

.
.
.

Load Balancer

ADRj

AARj = AARj-1,j + AARj+1,j

( )j iλ

( )j iλ′ ( )j iλ ′ ( )j iλ′ ( )j iλ′ ( )j iλ ′ ( )j iλ ′ ( )j iλ ′ ( )j iλ′

ASTS ASTS ASTS ASTS ASTL ASTL ASTL ASTL

Pj
1-Pj

AARj-1,j = Pj-1 * ADRj-1 AARj+1,j = (1-Pj+1 )* ADRj+1

 
 

Fig. 5. The inner structure of the jth tier at the ith stage. Each VM is modeled as an 
individual queuing system. A load balancer is used to fairly distribute the incoming 
workloads to the VMs. Our target is to find an optimal number of fat and thin VMs in each 
tier at each stage in order to satisfy the response time demands in SLA. 
 
Implementation procedure consideration 
 
Given the number of fat and thin VMs of the jth tier at the ith stage as demonstrated above, we can 
calculate the expected average response time at this stage as follows. 
 
(1) Analyze the Jst tier: 
 
Based on EQ. (7), ADRJ can be represented as a function of λJ(i), which is initially unknown. We 
also can derive the average staying time of each request at the Jst tier as ASTJ = 1/ADRJ based on 
EQ. (8). In ASTJ, we still have one unknown variable: λJ(i). We simplify EQ. (6) as: 
 ADRJ = f1(λJ(i)) 
 
(2) Analyze the (J-1)st tier: 
 
Since λJ-1(i) = AARJ-2,J-1 + AARJ,J-1 = AARJ-2,J-1 +ADRJ. We have two unknown variables: AARJ-2,J-

1 and λJ(i). Now we can calculate ADRJ-1 based on (7), which also has the above same two 
unknown variables. Suppose this formula is denoted as: 
ADRJ-1 = g2 (AARJ-2,J-1, ADRJ) = g2 (AARJ-2,J-1, f1(λJ(i))) 
 
Since λJ(i) = ADRJ-1 * PJ-1, we then replace λJ(i) with ADRJ-1 * PJ-1 in ADRJ-1. In this way, ADRJ-1 
becomes a function of AARJ-2,J-1, thus there is only one unknown variable at the end of this step.  
Suppose this formula is denoted as: 
ADRJ-1 = f2(AARJ-2,J-1) 
 
We can also derive ASTJ-1 = 1/ADRJ-1 as shown in (1), which also has one unknown variable. 
 
(3) Analyze the jst tier. j is valued sequentially from J-2 to 1: 
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We repeat the steps in (2) and calculate ASTj, which is a function of an unknown variable AARj-1,j. 
When we come to the 1st tier, we have AAR0,1 as the average arrival rate of the request generating 
in clients, which is a known variable in our experiment. In this way, we can calculate the value of 
ADR1 and AST1. If AAR0,1 is unknown beforehand, we can use a method such as Kalman filter or 
neural network to predict the workload of the first tier. 
 
(4) Analyze the jst tier:  j is valued sequentially from 2 to J. 
 
In the previous step, we obtain the value of ADR1. We can calculate AAR1,2 as P1 * ADR1. Since 
AST2 is a function of AAR1,2, we can calculate AST2. Similarly, we can go through each tier to get 
ASTj. j is sequentially valued from 2 to J. 
 
(5) Calculate the average response time: 
 
Suppose there are R(i) requests processed at the ith stage. Based on Fig. 4, we use Num(Rj(i)) to 
denote the number of requests that are processed sequentially from the 1st tier to the jth, and then 
return to the 1st tier until reaching Q0. Notice that these requests do not visit the (j+1) tier. We use 
TraverseTime(Rj(i)) as the average traverse time for each of the above requests. The total average 
response time can be calculated as shown in EQ. (11). 
 
Table 2 is used to show the relationship between j, Num(Rj(i)) and TraverseTime(Rj(i)), which 
will then be used to determine the average response time. 

 
Table 2. Relationship of the number of tier and traverse time 

 
j Num(Rj(i)) TraverseTime(Rj(i)) 
1 R(i)(1–P1) R(i)(1–P1)*AST1 
2 R(i)P1(1–P2) R(i)P1(1–P2)*(AST2+2*AST1) 
--- --- --- 
j R(i)P1P2--- Pj-1(1–Pj) R(i)P1P2--- Pj-1(1–Pj)*(ASTj+2*ASTj-1+…+2*AST1) 
--- --- --- 
J–1 R(i)P1P2---PJ-2(1–PJ-

1) 
R(i)P1P2--- PJ-2(1–PJ-1)*(ASTJ-1+2*ASTJ-2+…+2*AST1) 

J R(i)P1P2---PJ-2 PJ-1 R(i)P1P2--- PJ-1(1–PJ)*(ASTJ+2*ASTJ-1+…+2*AST1) 
 
The average response time is calculated as: 

( )( ) ( )1

J
jj

TraverseTime R i R i
=∑  

= ( ) ( ) ( )1

1 10
* 1 * 2*jJ j

k j l jj lk
P P AST AST−

= ==
− −∑ ∑∏  (11) 

We define P0 = 1, which means the requests generated from the sessions (Q0) are bound to arrive 
at the 1st tier. 
 
Suppose the cost of using a thin and fat VM is denoted by CostS and CostL respectively. Then the 
total cost of the ith stage is: 

( ) ( ) ( )1 1
* *J JS L

S j L jj j
Cost i Cost N i Cost N i

= =
= +∑ ∑  

Our virtual resource allocation problem is converted to a constrained optimization problem as 
below: 
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( ) ( )
( )( )

,S L
j jN i N i

Cost iMin  

( ) ( ) ( )( )1

1 0 1
* 1 * 2*j jJ

k j l jj k l
P P AST AST SLA−

= = =
− − <∑ ∏ ∏  

( )1

J S
j Sj

N i
=

≤ Θ∑  

( )1

J L
j Lj

N i
=

≤ Θ∑  

Θ is the resource pool as shown in Fig. 3. ΘS and ΘL denote the available number of thin and fat 
VMs respectively. 
 
Parameter estimation 
 
Based on our previous analysis, we must evaluate the parameters Pj (j∈[1, J-1]), μS, μL, CostS and 
CostL in order to evaluate the cost and average response time. 
 
The transferring probability Pj can be estimated in an experiment by calculating the average ratio 
of the number of requests proceed into the Pj+1 tier to the total number of requests that arrived at 
tier j in the previous stage. This value is easily monitored offline based on specific application 
scenario. There are other ways to get this value. For example, we could analyze the source code 
scripts in Java servlets to get the visiting frequency for each one and this value can also be 
determined. In our followed experimental studies, this value can be set in the client tools, which 
benefits our analysis. 
 

( )S
j iμ  and ( )L

j iμ  can be estimated beforehand. As previously introduced, 1 or 2 CPUs and 1 or 2 
GB memories are allocated to thin  or fat VMs, respectively. We also perform offline experiments 
to decide the average service rate based on a certain workload as a test. Networking latency is 
also included in this offline tests. Concurrency limits of thin and fat VMs are preset based on the 
servers we are using.  
 
We estimate the cost of using the devices based on the price list found on Amazon EC2 website. 
The granularity of analytical time span in our experiment is 1 minute, thus we set the cost of 
using a thin and fat VM as $0.0127 and $0.0287 per minute, respectively. This figure is used by 
combining the price of their hourly costs and current storage costs. 
 
Experimental studies 
 
There are two parts in our experiments. Firstly, we use SimEvents (from Simulink) to develop 
event-based models of queuing networks to evaluate service times for thin and fat VMs in both 
web and application tiers. We use Matlab to calculate the response times based on our introduced 
formula to predict performance. The parameters, such as transferring probabilities, are derived 
from direct observations of RUBiS [25], an auction site similar to eBay, where transactions of 
bidding, buying, and selling are used to conduct real transactions. We then run RUBiS benchmark 
with same parameters to compare the results. 
 
Apache 2.0.55 is used as web server to handle requests as a load balancer as shown in Fig. 5. We 
use tomcat 5.5 as an application server to deploy servlet applications and connect to a MySQL 
database server. Our applications are deployed on OpenSUSE 11. 
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The experiments are carried out on an IBM X3950, with a CPU of 16 cores and memory of 24 
GBytes. We virtualized one thin and one fat VM for the web servers. We also virtualized four 
thin and two fat VMs for application servers. Since the database tier is difficult to cluster, we 
used one fat VM as database tier in order to process requests effectively. 
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Fig. 6. The workloads generated for benchmarking. We use the inter-arrival time of 
requests over one hours.  
 
Our workloads are generated based on a web trace from the 1998 Soccer World Cup site [26]. We 
traced average arrival times during each minute over sixty-minute duration as shown in Fig. 6. 
The units of the y-axis measures arrival frequency. 
 
In Fig. 7, we demonstrate our experimental results using different numbers of VMs as the 
workloads increased. We can see that the increased number of VMs can capture the 
characteristics of such workloads. 
 
We further illustrate our analytical results in Fig. 8. The blue dashed line is the predicted response 
time from our queuing network model proposed in section 4, and the black solid line denotes the 
measured response time using the RUBiS benchmark.  
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Fig. 7. The number of VMs used for web and application tier over the experiments. 
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The response time to satisfy the service level agreement (SLA) is set to be 10 seconds. We can 
see from the one-hour experiment that we can satisfy the requirement with a probability close to 
98%. The only time this surpasses the SLA is in the 23rd minute, which is an acceptable variance. 
 
Results show that our proposed model can be used to capture the response time, which can also 
be used to judge the number of VMs that should be used to properly meet the response time 
requirements. 
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Fig. 8. Comparative results between predicted response times using the proposed queuing 
network model and measured response times using RUBiS in real transactions 
 
We further compare our model with a commonly used experience based, utilization oriented 
method. It conducts VM scheduling as follows.  
 
This method ensures that the average utilization rate of all the VMs of each tier is close to 75%. If 
the value surpasses 95%, a fat VM is initiated if such VM is available, else if the value is less 
than 95% and larger than 85%, a thin VM is added if one is available. Similarly, if the value is 
less than 45%, a fat VM is removed if one is running, otherwise if the value is less than 60% and 
larger than 45%, a thin VM is removed if possible. At least one thin VM should be running in 
each tier. 
 
This method conducts initiation and removal of VMs at the beginning of each new stage while 
considering the utilization of the previous stage. This method is noticeably cost-aware. The 
comparative results of response times and costs are shown in Fig. 9 and Fig. 10. 
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Fig. 9. Comparative results of response times between our method and utilization based 
method 
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Fig. 10. Comparative results of costs between our method and utilization based method 
 
The advantage of our proposed method is well illustrated in Fig 9 and 10. From the above 
comparative results, we can see that utilization-based method can also capture the workload 
variations. However, it cannot be agile enough to provide the proper number of VMs in order to 
meet the response time demands. From the perspective of cost, this method uses fewer resources 
than our proposed method, sometimes at the cost of violating the SLA. 
 
Conclusions and future work 
 
We first conclude our major contributions in this work and then suggest two possible directions to 
extend this work. 
 
Conclusions of this work 
 
In this paper, we have proposed a mathematical model for capturing the characteristics of a 
virtualized cloud platform using multiple virtual machine instances, and then converted this 
model into a constrained integer programming problem. The model can directly derive the 
relationship between the inter-arrival rate of requests and the average response time of requests. 
We first used a simulation to depict the described relationships, and then benchmarked our 
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methods using RUBiS, a real transaction web site using VMs on an IBM X3950. Experimental 
results show that the model can be used to appropriately satisfy the response time requirements as 
well as reducing the costs of using those virtual machines. 
 
Our future work 
 
For further research, we suggest extending the work in the following two directions: 
 
(1) Customized virtual resource provisioning. We propose thin and fat VMs allocation based 
on a fixed CPU and memory settings. This can be further extended by using flexible resource 
provisioning principles to satisfy CPU-intensive or memory-intensive applications. To this end, 
we should reconsider the costs, including service deployment, starting up and shutting down of 
services, et cetera.  
 
(2) Building useful tools to serve for larger virtualized cloud platform. The Matlab simulation 
used to analyze the optimal number of virtual resources in our experiment should be packaged 
into software toolkits in order to make it available for larger virtualized cloud platforms. Our 
experimental software can be tailored and prototyped to this end. 
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