
International Journal of Web Services Research , Vol.X, No.X, 200X

 1

Provisioning Virtual Resources Adaptively
in Elastic Compute Cloud Platforms*

Fan Zhang1, Junwei Cao2,3, Hong Cai4, James J. Mulcahy5, Cheng Wu1,3
1National CIMS Engineering and Research Center, Department of Automation

Tsinghua University, Beijing 100084, P. R. China
2Research Institute of Information Technology, Tsinghua University, Beijing 100084, P. R. China

3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R.
China

4IBM China Software Development Lab
5Florida Atlantic University, Boca Raton, Florida, USA

Corresponding email: jcao@tsinghua.edu.cn

ABSTRACT:
Provisioning Virtual machines on demand is significant in elastic compute cloud for reliable
service delivery. The importance and major difficulty lies in satisfying the conflicting objectives
of satisfying contracted service level agreement while lowering used resource costs. In this paper,
we propose a mathematical multi-tier framework for adaptive virtual resource allocation
problem. The framework captures the performance of the virtualized cloud platform gracefully.
We first use simulations to derive virtual resource allocation policies, and later use real
benchmarking applications, to verify the effectiveness of this framework. Experimental results
show that the model can be simply and effectively used to satisfy the response time requirement as
well as lowering the cost of using the virtual machine resources.

KEY WORDS:

Dynamic resource provision; multi-tier applications; virtual machines, and virtualized cloud
platform.

Introduction

Research background

Cloud computing allocates Virtual Cluster (VC) resources in Infrastructure as a Service (IaaS),
Platform as a Service: PaaS, and Software as a Service: SaaS (Turner, Budgen, Brereton, 2003)
applications. A virtual cluster (Emeneker, et al, 2006) is an organized heterogeneous Virtual
Machine (VM) hosting platform, which is used in cloud platforms to provide elastic and reliable
services. Examples of virtual machine software include VMware, KVM and Xen. The VMs are
allocated on demand, which satisfies user requirements for response time while lowering the cost
of using the resources.

Dynamic resource provisioning (Li, Tirupati, 1995) which has been widely used in internet
hosting platforms, has proven to be useful in handling multiple time-scale workloads. However,
this kind of dynamic provisioning in previous work has been more commonly based upon
physical resource allocation in large scale server farms, which is not flexible enough for the
effective delivering of services.
−−−
Manuscript submitted to International Journal of Web Service Research on October 23, 2010. All
rights reserved. This work is performed when Fan Zhang is an intern student in IBM China

International Journal of Web Services Research , Vol.X, No.X, 200X

 2

Development Lab supported by 2010-2011 IBM Ph.D. Fellowship.
Unlike other resources, VMs are flexibly deployed on physical machines, which can be
automatically generated for different applications. For example, some scientific applications such
as gene expression and transferring demand a lot of CPU resources, while some other real-time
transaction applications and interactive online games are memory and network-intensive. Though
traditional physical capacity provisioning has long been used, over-provisioning or under-
provisioning has been a common difficulty for most resource vendors.

The advent of cloud computing, which takes full advantage of virtualization technology,
potentially solves this difficulty. We propose a queuing and multi-tier network model, in which
virtual clusters are deployed on each tier for service delivering. The flexibility of our proposed
adaptive resource provisioning is threefold:

(1) The flexibility of allocating virtual resources: we can dynamically create and/or destroy a VM
from a resource pool using a simple command with very low overhead. This advantage can be
used to handle the problems in resource over-provisioning and/or under-provisioning.

(2) The flexibility of handling data or communication locality: we can easily deploy those VMs
that have the most frequent communication or interaction in such a way that they are physically
or logically close to each other. This advantage saves the communication cost noticeably.

(3) The flexibility of migrating services: virtual resources used to provide reliable services can
use service migration to re-organize service hosting platforms in order to maximize the utilization
of resources, which can dramatically improve operational costs.

Given the above advantages and benefits from the use of adaptive resource provisioning, we
propose the design of a virtualized resource allocation framework using the cloud platform, which
allocates VMs on demand in order to provide services, as well as minimizing the cost of using
those virtual resources.

Motivation

One of the major difficulties of virtual resource allocation is how to provide proper policies at
different times to satisfy different user demands. This difficulty lies in the unpredictable
execution time, variable operational costs and frequently fluctuating workloads (Wu and Hwang,
et al, 2009). These aspects require a proper model to capture the characteristics of complex
systems.

Model-View-Control (MVC), an architectural design pattern widely used in internet hosting
platforms, is also supported in Windows Azure and other cloud platforms. This design pattern is
unique to the new proposed paradigm in that full virtualization is employed in order to achieve
higher reliability and flexibility. Based on a typical MVC architecture, we model our application
as a multi-tier queuing network to leverage virtual resource provisioning as shown in Fig. 1.

Each tier can be modeled as a set of VMs. The inputs of this model are the cost of using each VM
at each tier, the transferring probability that a request should be forwarded to the next or previous
tier, and most importantly, the inter-arrival time of the workloads. The output is the optimal
number of VMs allocated for each tier needed to achieve a reasonable response time and
minimized total resource costs. We analyze the relationship of these parameters and show its
derivation based on queuing theory (Kleinrock, 1976).

International Journal of Web Services Research , Vol.X, No.X, 200X

 3

Http server
Apache, Nigix

Database server
MySQL, DB2

Application server
Jboss, Tomcat

John

Bob

Kate

Fig 1. A typical three tiers of http, application and database server internet hosting
platform. Different requests are used and they traverse different number of tiers. The
requests of John traverse http server only. Typical requests of this type are static web page
retrieving. The requests from Bob traverse http and application server. Typical example is
invoking a simple Java servlet, such as inquiring current session number. The requests
from Kate traverse all the servers. One example is retrieving the unread mails.

Contributions of this work

In this paper, we focus on the mathematical formation and optimization of the model, and show
how the above goals can be satisfied in a simple yet applicable way. The major contributions of
this work are described as follows:

(1) Derives response time through mathematic formulation: we establish a direct relationship
between a workload and average response time could be caused by this workload through a
queuing model. The relationship can be used to determine the number of VMs we need to satisfy
user demands while minimizing the cost of using these VMs.

(2) Extends traditional single size VM scheduling problems: our model includes two kinds of VM
instances (fat and thin) that have a different number of CPUs and memory capacities to provide
different computing capabilities. This extension is much more applicable in cloud platforms such
as Amazon EC2 and Eucalyptus.

(3) Carries out benchmarks using the Rice University Bidding System (RUBiS) on IBM X3950
servers with different sizes of VMs, to verify the correctness and efficiency of our proposed
model. This model is also tested with simulations to make comparisons.

The rest of this paper is organized as follows: We introduce the related work in section 2. System
architecture including our virtualized cloud platforms and queuing network model are introduced
in section 3. The virtual resource allocation framework is introduced in section 4. We describe
experimental studies using both simulation and real benchmarks to verify our proposed method in
section 5. We conclude this work and propose the future research direction in section 6.

Related work

Modeling a single tier of servers is first proposed (Slothouber, 1996), where four queues are
adopted in a model web server. Two are used for the web servers and the remaining two are used
for modeling communication networks. Modeling CPU, memory and disk bandwidth is suggested

International Journal of Web Services Research , Vol.X, No.X, 200X

 4

for performance prediction in web servers (Chase, and Doyle, 2001). Modeling replicated single
tier application using a G/G/1 queuing network is also discussed (Urgaonkar, and Shenoy, 2004).
Using an M/M/1 queuing model to calculate response time of web requests are proposed (Levy,
Nagarajarao, et al, 2003). The throughput of web servers using a queuing network combined with
Markov chain is suggested (Menasce, 2003). These works discuss a single tier server solution,
and later a multi-tier platforms. We differentiate our work by using our model to model multi-tier
internet hosting platforms.

There is existing prior work using queuing networks to model multiple tier internet hosting
platforms. An M/G/1/PS model is proposed (Villela, Pradhan, and Rubenstein, 2007) to provide
servers on application tiers. A G/G/N queuing system with N servers for an e-commerce
application model is discussed (Ranjan, Rolia, and Fu, 2002). An M/GI/1/PS model for an e-
commerce application is also suggested (Kamra, Misra, and Nahum, 2004) to use a single queue
to model multi-tier systems. The similarity of these works is that they only model the bottleneck
aspects of the servers, which cannot capture the global characteristics of an entire system. In our
model, the framework covers all the parts of a multi-tier system, including capturing bottleneck
issues with the use of load balancing techniques.

A queuing network based analytical model is proposed to model multi-tier internet hosting
platforms (Urgaonkar, Pacifici, Shenoy, ans Spreitzer, 2007). An enhanced model of this work
can be used to deal with load balancing, handling concurrency limit, and multiple session classes
at each tier. The improvement of this work is suggested (Urgaonkar, Shenoy, et al, 2007), where a
combination of predictive and reactive methods is used to determine when to provide virtual
resources. They also use queuing network model to determine how much virtual resource to
provide. Our work is different from these works in that it not only takes the cost of using virtual
resources into consideration, but also includes a framework to schedule thin and fat VMs upon
user demand. These different-sized VM provisioning techniques are commonly seen in
Eucalyptus, Amazon EC2, and other cloud platforms.

Recently, cloud computing (Armbrust, Fox, et al, 2009) has become a popular research topic in
which computational resources are virtualized based on user demand. Buyya’s work (Buyya, Yeo,
et al, 2008) has a similar motivation with ours such as costs minimizing, and they use CloudSim
(Calheiros, Ranjan, et al 2010) for simulating data centers. We differentiate our work using
adaptive virtual machines provisioning on virtualized cloud computing platforms. Similar of our
previous works are carried out under distributed platform (Zhang, et al, 2010) using adaptive
mapreduce framework. The model used in this work is more directly related to cloud services.

Delivering reliable web service applications using petri-net or related techniques are fully
investigated (Tan, et al, 2009, 2010). Quality of Services under web service configuration are
discussed (Xiong, et al, 2008, 2009). All these techniques are ensuring methods in web service
researches. Our ensuring level is conducted under resource allocation level, unlike the application
verification level.

We propose a quantitative framework to analyze the VM scheduling problem, in which virtual
clusters are used in each tier of a queuing network to provide services on demand based on
different workloads. Furthermore, we sole the above model using mathematical analysis from
simulation and real experimental verification.

International Journal of Web Services Research , Vol.X, No.X, 200X

 5

System architecture overview

In this section, we introduce our virtualized cloud platform using a queuing network. We then
formulate this virtual resource scheduling problem as a constrained integer optimization problem.

Virtualized cloud platforms

In a virtualized cloud platform, various physical clusters are utilized to provide computational
resources, such as CPU and memory allocations. A physical cluster contains many
interconnecting physical nodes. VMs are deployed on these physical nodes based on their CPU or
memory configuration. In Fig. 2, we show 3 physical clusters. Each physical cluster contains 3
physical nodes with 12 VMs deployed in each physical cluster.

Physical Cluster 1 Physical Cluster 2 Physical Cluster 3

VC 1 VC 2 VC 3 VC 4 VM

Fig 2. Four virtual clusters built over 3 physical clusters. Each physical cluster consists of a
number of interconnected servers, represented by the three servers. Each physical cluster
contains 12 virtual machines, represented by the rectangular boxes with 3 different
shadings. The virtual machines are implemented on the servers (physical machines). Each
virtual cluster can be formed with either physical machines or VMs hosted by multiple
physical clusters. The boundaries of the virtual clusters are shown with 4 dot/dash-line
boxes. The provisioning of VMs to a virtual cluster can be dynamically based upon user
demands.

Virtual clusters are used to partition or reorganize the VMs based on the computational capacity
of each VM, the requirement of different application scenario, or more specifically, different
workloads. The purpose is to provide an automatic scaling or shrinking mechanism to improve
utilization. This mechanism gives customers reliable response times and service availability. It
also allows for flexible resource provisioning on demand, which can reduce the cost for using the
resources. It benefits vendors in that the resources are allocated as needed which takes utilization
into account, providing more effective services.

Based on the resource provisioning principles that many cloud service vendors use, different VMs
are pre-deployed with different resources. For example, some VMs are deployed with 1 CPU core
with 1 GB memory (thin VMs). Some are deployed with 2 CPU cores with 2 GB memory (fat
VMs). This mechanism is shown in Fig. 3.

International Journal of Web Services Research , Vol.X, No.X, 200X

 6

Small VM Pool Large VM Pool

VM Resource Pool

Fig. 3. VM resource pool with VMs of different computational resource. VMs in thin/fat
VM pool are equipped with 1 or 2 CPU cores with 1 or 2 GB memories. Different number of
VMs in thin/fat VM pool is scheduled into virtual cluster to provide services on demand.

Multi-tier queuing network model

We describe our application specific to multi-tier hosting platforms in Fig. 4. To simplify the
illustration, we use a typical and widely used J-tier platform as an example. The model in our
experiment is a queuing network with J queues. Each queue corresponds to one tier in order to
handles the inter-arrival requests. There are n sessions concurrently generating requests. Each
request that arrives at tier j (j∈[1,J–1]) should either proceed into the j+1 tier, with a probability
Pj, or return to the j–1 tier, with a probability 1–Pj. The requests that arrive at the Jth tier will be
returned to the (J–1)th tier with a probability of 1. Thus PJ = 0.

Fig. 4. A multi-tier application hosting platform with n sessions generating requests. Each
tier is modeled as a queuing system. Any request arriving at the jth tier either proceeds into
the (j+1)th tier with a probability denoted by Pj, or returns back to the (j-1)th tier with
probability 1–Pj. All the requests arriving at the Jth tier (the last tier) should return to the
(J-1)th tier.

Our scheduling target is to achieve an appropriate average response time for customers as well as
reducing the costs of using those virtual resources. In our proposed model above, network latency
is not included between two tiers since we have conducted numerous experiments within our
virtual machine farm and we conclude that the network latency is too small compared with the
time used for intensive transaction processing, especially in our followed experiments that all the
VMs are constructed within one powerful server. On the other side, all the requests that awaiting
for processing are buffered in the modeled queue. The detailed formulation of this problem is
elaborated in the following section.

International Journal of Web Services Research , Vol.X, No.X, 200X

 7

To benefit readers, we introduce the major symbols, concepts, definitions and explanations that
will be used in our followed sections, in Table 1.

Table 1. Symbols and definitions

i or i-1 The current or previous stage
j or J Number of current or total tiers

()L
jN i or ()S

jN i Number of thin or fat VMs used of the jth tier in the
ith stage

()S
j iμ or ()L

j iμ Average service rate of thin or fat VM of the jth tier
in the ith stage

()S
j iρ or ()L

j iρ Average arriving-service ratio of
thin or fat VM

S
jAST or L

jAST Average staying time of each request in thin/fat
VM of the jth tier

AARj or λj(i) Average arrival rate of the jth tier
λ’j(i) Avg. arrival rate of each VM in the jth tier
AARj-1,j or
AARj+1,j

Average arrival rate of the jth tier from the
(j-1)th or (j+1)th tier

ADRj,j-1 or
ADRj,j+1

Average departure rate of the jth tier to the
(j-1)th or (j+1)th tier

ADRj Average departure rate of the jth tier
ASTj Average staying time of request in the jth tier
Cj Concurrency limit of VM in the jth tier
R(i) Requests that are generated during stage i
Pj The probability a request generated from tier j

proceeds into tier j+1.
ΘS or ΘL Available number of thin or fat VM

The relationship of these symbols and their roles in this work are introduced in the followed
section.

Virtualized resource scheduling

In this section, we firstly discuss our multi-tier queuing network model and mathematical
derivation of the response time requirement. Then we introduce how to solve the model from
several mathematical steps. At last, we introduce some parameters used in our model and discuss
how to estimate their values.

Modeling of tier structure

Suppose in the ith stage, the number of thin or fat VM of the jth tier is denoted as follows in EQ. 2:

() () ()1 1S S S
j j jN i N i N i= − + Δ − (2.a)

() () ()1 1L L L
j j jN i N i N i= − + Δ − (2.b)

As shown in Fig. 4, in the current stage, the expected inter-arrival rate of requests denoted by λj(i),
and the inter-arrival rate for each queue is denoted by:

International Journal of Web Services Research , Vol.X, No.X, 200X

 8

() () () ()S L
j j j ji i N i N iλ λ′ ⎡ ⎤= +⎣ ⎦ (3)

λj(i), which is also called AARj, is composed of two parts as shown in Fig. 4. The first part is the
requests coming from the previous tier, namely the (j-1)th tier, which is denoted as AARj-1,j, the
second part is the requests that coming from the following tier, namely the (j+1)th tier, denoted as
AARj+1,j. We write this as follows:

λj(i) or AARj =AARj-1,j + AARj+1,j (j∈[1, J-1]) (4)

AAR0,1 is the inter-departure rate of Q0. In the Jth tier, we have
λJ(i) or AARJ =ADRJ-1,J (5)

Each VM can be viewed as an M/M/1/C/∞/FIFO queuing system (Kleinrock, 1976). Cj is the
concurrency limit of each VM. Thus we can calculate the average staying time for each request in
thin or fat VM of the jth tier by:

() () ()
() ()

()

1
1 ,

(1)

j

j

C
j S jS S

j jCS S
j j jj S

C i
AST i

i i ii
ρ λ

ρ
μ λ μλ ρ

+ ′
= − =

′− ′ −
 (6.a)

() () ()
() ()

()

1
1 ,

(1)

j

j

C
j L jL L

j jCL L
j j jj L

C i
AST i

i i ii
ρ λ

ρ
μ λ μλ ρ

+ ′
= − =

′− ′ −
 (6.b)

Based on the above analysis, the average departure rate of the jth tier is

() ()S S L L
j j j j jADR N i AST N i AST= + (7)

Next, we can derive the average staying time of each request in the jth tier as:

ASTj = 1/ADRj (8)

Based on our model in Fig. 5, the average arrival rate of the (j+1)th tier from the jth tier is denoted
by

, 1 *j j j jAAR ADR P+ = (9)

Similarly, the arrival rate of the (j–1)th tier from the jth tier is denoted by

(), 1 * 1j j j jAAR ADR P− = − (10)

International Journal of Web Services Research , Vol.X, No.X, 200X

 9

1 ()1S
jN i −

.
.
.

1 ()1L
jN i −

.
.
.

1 ()1S
jN iΔ −

.
.
.

1 ()1L
jN iΔ −

.
.
.

Load Balancer

ADRj

AARj = AARj-1,j + AARj+1,j

()j iλ

()j iλ′ ()j iλ ′ ()j iλ′ ()j iλ′ ()j iλ ′ ()j iλ ′ ()j iλ ′ ()j iλ′

ASTS ASTS ASTS ASTS ASTL ASTL ASTL ASTL

Pj
1-Pj

AARj-1,j = Pj-1 * ADRj-1 AARj+1,j = (1-Pj+1)* ADRj+1

Fig. 5. The inner structure of the jth tier at the ith stage. Each VM is modeled as an
individual queuing system. A load balancer is used to fairly distribute the incoming
workloads to the VMs. Our target is to find an optimal number of fat and thin VMs in each
tier at each stage in order to satisfy the response time demands in SLA.

Implementation procedure consideration

Given the number of fat and thin VMs of the jth tier at the ith stage as demonstrated above, we can
calculate the expected average response time at this stage as follows.

(1) Analyze the Jst tier:

Based on EQ. (7), ADRJ can be represented as a function of λJ(i), which is initially unknown. We
also can derive the average staying time of each request at the Jst tier as ASTJ = 1/ADRJ based on
EQ. (8). In ASTJ, we still have one unknown variable: λJ(i). We simplify EQ. (6) as:
 ADRJ = f1(λJ(i))

(2) Analyze the (J-1)st tier:

Since λJ-1(i) = AARJ-2,J-1 + AARJ,J-1 = AARJ-2,J-1 +ADRJ. We have two unknown variables: AARJ-2,J-

1 and λJ(i). Now we can calculate ADRJ-1 based on (7), which also has the above same two
unknown variables. Suppose this formula is denoted as:
ADRJ-1 = g2 (AARJ-2,J-1, ADRJ) = g2 (AARJ-2,J-1, f1(λJ(i)))

Since λJ(i) = ADRJ-1 * PJ-1, we then replace λJ(i) with ADRJ-1 * PJ-1 in ADRJ-1. In this way, ADRJ-1
becomes a function of AARJ-2,J-1, thus there is only one unknown variable at the end of this step.
Suppose this formula is denoted as:
ADRJ-1 = f2(AARJ-2,J-1)

We can also derive ASTJ-1 = 1/ADRJ-1 as shown in (1), which also has one unknown variable.

(3) Analyze the jst tier. j is valued sequentially from J-2 to 1:

International Journal of Web Services Research , Vol.X, No.X, 200X

 10

We repeat the steps in (2) and calculate ASTj, which is a function of an unknown variable AARj-1,j.
When we come to the 1st tier, we have AAR0,1 as the average arrival rate of the request generating
in clients, which is a known variable in our experiment. In this way, we can calculate the value of
ADR1 and AST1. If AAR0,1 is unknown beforehand, we can use a method such as Kalman filter or
neural network to predict the workload of the first tier.

(4) Analyze the jst tier: j is valued sequentially from 2 to J.

In the previous step, we obtain the value of ADR1. We can calculate AAR1,2 as P1 * ADR1. Since
AST2 is a function of AAR1,2, we can calculate AST2. Similarly, we can go through each tier to get
ASTj. j is sequentially valued from 2 to J.

(5) Calculate the average response time:

Suppose there are R(i) requests processed at the ith stage. Based on Fig. 4, we use Num(Rj(i)) to
denote the number of requests that are processed sequentially from the 1st tier to the jth, and then
return to the 1st tier until reaching Q0. Notice that these requests do not visit the (j+1) tier. We use
TraverseTime(Rj(i)) as the average traverse time for each of the above requests. The total average
response time can be calculated as shown in EQ. (11).

Table 2 is used to show the relationship between j, Num(Rj(i)) and TraverseTime(Rj(i)), which
will then be used to determine the average response time.

Table 2. Relationship of the number of tier and traverse time

j Num(Rj(i)) TraverseTime(Rj(i))
1 R(i)(1–P1) R(i)(1–P1)*AST1
2 R(i)P1(1–P2) R(i)P1(1–P2)*(AST2+2*AST1)
--- --- ---
j R(i)P1P2--- Pj-1(1–Pj) R(i)P1P2--- Pj-1(1–Pj)*(ASTj+2*ASTj-1+…+2*AST1)
--- --- ---
J–1 R(i)P1P2---PJ-2(1–PJ-

1)
R(i)P1P2--- PJ-2(1–PJ-1)*(ASTJ-1+2*ASTJ-2+…+2*AST1)

J R(i)P1P2---PJ-2 PJ-1 R(i)P1P2--- PJ-1(1–PJ)*(ASTJ+2*ASTJ-1+…+2*AST1)

The average response time is calculated as:

()() ()1

J
jj

TraverseTime R i R i
=∑

= () () ()1

1 10
* 1 * 2*jJ j

k j l jj lk
P P AST AST−

= ==
− −∑ ∑∏ (11)

We define P0 = 1, which means the requests generated from the sessions (Q0) are bound to arrive
at the 1st tier.

Suppose the cost of using a thin and fat VM is denoted by CostS and CostL respectively. Then the
total cost of the ith stage is:

() () ()1 1
* *J JS L

S j L jj j
Cost i Cost N i Cost N i

= =
= +∑ ∑

Our virtual resource allocation problem is converted to a constrained optimization problem as
below:

International Journal of Web Services Research , Vol.X, No.X, 200X

 11

() ()
()()

,S L
j jN i N i

Cost iMin

() () ()()1

1 0 1
* 1 * 2*j jJ

k j l jj k l
P P AST AST SLA−

= = =
− − <∑ ∏ ∏

()1

J S
j Sj

N i
=

≤ Θ∑

()1

J L
j Lj

N i
=

≤ Θ∑

Θ is the resource pool as shown in Fig. 3. ΘS and ΘL denote the available number of thin and fat
VMs respectively.

Parameter estimation

Based on our previous analysis, we must evaluate the parameters Pj (j∈[1, J-1]), μS, μL, CostS and
CostL in order to evaluate the cost and average response time.

The transferring probability Pj can be estimated in an experiment by calculating the average ratio
of the number of requests proceed into the Pj+1 tier to the total number of requests that arrived at
tier j in the previous stage. This value is easily monitored offline based on specific application
scenario. There are other ways to get this value. For example, we could analyze the source code
scripts in Java servlets to get the visiting frequency for each one and this value can also be
determined. In our followed experimental studies, this value can be set in the client tools, which
benefits our analysis.

()S
j iμ and ()L

j iμ can be estimated beforehand. As previously introduced, 1 or 2 CPUs and 1 or 2
GB memories are allocated to thin or fat VMs, respectively. We also perform offline experiments
to decide the average service rate based on a certain workload as a test. Networking latency is
also included in this offline tests. Concurrency limits of thin and fat VMs are preset based on the
servers we are using.

We estimate the cost of using the devices based on the price list found on Amazon EC2 website.
The granularity of analytical time span in our experiment is 1 minute, thus we set the cost of
using a thin and fat VM as $0.0127 and $0.0287 per minute, respectively. This figure is used by
combining the price of their hourly costs and current storage costs.

Experimental studies

There are two parts in our experiments. Firstly, we use SimEvents (from Simulink) to develop
event-based models of queuing networks to evaluate service times for thin and fat VMs in both
web and application tiers. We use Matlab to calculate the response times based on our introduced
formula to predict performance. The parameters, such as transferring probabilities, are derived
from direct observations of RUBiS [25], an auction site similar to eBay, where transactions of
bidding, buying, and selling are used to conduct real transactions. We then run RUBiS benchmark
with same parameters to compare the results.

Apache 2.0.55 is used as web server to handle requests as a load balancer as shown in Fig. 5. We
use tomcat 5.5 as an application server to deploy servlet applications and connect to a MySQL
database server. Our applications are deployed on OpenSUSE 11.

International Journal of Web Services Research , Vol.X, No.X, 200X

 12

The experiments are carried out on an IBM X3950, with a CPU of 16 cores and memory of 24
GBytes. We virtualized one thin and one fat VM for the web servers. We also virtualized four
thin and two fat VMs for application servers. Since the database tier is difficult to cluster, we
used one fat VM as database tier in order to process requests effectively.

0 10 20 30 40 50 60
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time (Min)

R
eq

ue
st

s
A

rri
va

l F
re

qu
en

cy

Fig. 6. The workloads generated for benchmarking. We use the inter-arrival time of
requests over one hours.

Our workloads are generated based on a web trace from the 1998 Soccer World Cup site [26]. We
traced average arrival times during each minute over sixty-minute duration as shown in Fig. 6.
The units of the y-axis measures arrival frequency.

In Fig. 7, we demonstrate our experimental results using different numbers of VMs as the
workloads increased. We can see that the increased number of VMs can capture the
characteristics of such workloads.

We further illustrate our analytical results in Fig. 8. The blue dashed line is the predicted response
time from our queuing network model proposed in section 4, and the black solid line denotes the
measured response time using the RUBiS benchmark.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Time(Min)

N
um

be
r o

f V
M

s

of Small Apache VM
of Large Apache VM
of Small Tomcat VM
of Large Tomcat VM

Fig. 7. The number of VMs used for web and application tier over the experiments.

International Journal of Web Services Research , Vol.X, No.X, 200X

 13

The response time to satisfy the service level agreement (SLA) is set to be 10 seconds. We can
see from the one-hour experiment that we can satisfy the requirement with a probability close to
98%. The only time this surpasses the SLA is in the 23rd minute, which is an acceptable variance.

Results show that our proposed model can be used to capture the response time, which can also
be used to judge the number of VMs that should be used to properly meet the response time
requirements.

0 10 20 30 40 50 60
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Time (Min)

R
es

po
ns

e
Ti

m
e

(S
ec

)

Measured Response Time
Predicted Response Time

Fig. 8. Comparative results between predicted response times using the proposed queuing
network model and measured response times using RUBiS in real transactions

We further compare our model with a commonly used experience based, utilization oriented
method. It conducts VM scheduling as follows.

This method ensures that the average utilization rate of all the VMs of each tier is close to 75%. If
the value surpasses 95%, a fat VM is initiated if such VM is available, else if the value is less
than 95% and larger than 85%, a thin VM is added if one is available. Similarly, if the value is
less than 45%, a fat VM is removed if one is running, otherwise if the value is less than 60% and
larger than 45%, a thin VM is removed if possible. At least one thin VM should be running in
each tier.

This method conducts initiation and removal of VMs at the beginning of each new stage while
considering the utilization of the previous stage. This method is noticeably cost-aware. The
comparative results of response times and costs are shown in Fig. 9 and Fig. 10.

International Journal of Web Services Research , Vol.X, No.X, 200X

 14

0 10 20 30 40 50 60
6

7

8

9

10

11

12

13

14

Time (Min)

R
es

po
ns

e
Ti

m
e

(S
ec

)

Our method
Utilization based method

Fig. 9. Comparative results of response times between our method and utilization based
method

0 10 20 30 40 50 60
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (Min)

C
os

t (
$)

Our method
Utilization based method

Fig. 10. Comparative results of costs between our method and utilization based method

The advantage of our proposed method is well illustrated in Fig 9 and 10. From the above
comparative results, we can see that utilization-based method can also capture the workload
variations. However, it cannot be agile enough to provide the proper number of VMs in order to
meet the response time demands. From the perspective of cost, this method uses fewer resources
than our proposed method, sometimes at the cost of violating the SLA.

Conclusions and future work

We first conclude our major contributions in this work and then suggest two possible directions to
extend this work.

Conclusions of this work

In this paper, we have proposed a mathematical model for capturing the characteristics of a
virtualized cloud platform using multiple virtual machine instances, and then converted this
model into a constrained integer programming problem. The model can directly derive the
relationship between the inter-arrival rate of requests and the average response time of requests.
We first used a simulation to depict the described relationships, and then benchmarked our

International Journal of Web Services Research , Vol.X, No.X, 200X

 15

methods using RUBiS, a real transaction web site using VMs on an IBM X3950. Experimental
results show that the model can be used to appropriately satisfy the response time requirements as
well as reducing the costs of using those virtual machines.

Our future work

For further research, we suggest extending the work in the following two directions:

(1) Customized virtual resource provisioning. We propose thin and fat VMs allocation based
on a fixed CPU and memory settings. This can be further extended by using flexible resource
provisioning principles to satisfy CPU-intensive or memory-intensive applications. To this end,
we should reconsider the costs, including service deployment, starting up and shutting down of
services, et cetera.

(2) Building useful tools to serve for larger virtualized cloud platform. The Matlab simulation
used to analyze the optimal number of virtual resources in our experiment should be packaged
into software toolkits in order to make it available for larger virtualized cloud platforms. Our
experimental software can be tailored and prototyped to this end.

Acknowledgements

This work is supported by National Science Foundation of China (grant No. 60803017) and
Ministry of Science and Technology of China under National 973 Basic Research Program
(grants No. 2011CB302505 and No. 2011CB302805). This work is also supported by National
Science Foundation of United States under Grant No. OISE-0730065 of Partnerships for
International Research and Education (PIRE). Fan Zhang thanks IBM for 2010-2011 and
2011-2012 IBM Ph.D. Fellowship support.

REFERENCES

Armbrust M., Fox A., Griffith R., Joseph A. D., Katz R. H., Konwinski A., Lee G., Patterson D. A., Rabkin
A., Stoica I., and Zaharia M. (2009). Above the clouds: A berkeley view of cloud computing. Technical
Report No. UCB/EECS-2009-28

Arlitt M., and Jin T. (1999). Workload Characterization of the 1998 World Cup Web Site. Tech. Rep. HPL-
1999-35R1, HP Labs.

Buyya R., Yeo C. S., and Venugopal S. (2008), Market-Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing Utilities, Proceedings of the 10th IEEE International
Conference on High Performance Computing and Communications (HPCC 2008, IEEE CS Press, Los
Alamitos, CA, USA), Sept. 25-27, Dalian, China.

Chase J., and Doyle R. (2001). Balance of power: Energy management for server clusters. In Proceedings
of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII). Elmau, Germany.

Calheiros R. N., Ranjan R., Beloglazov A., Rose C., and Buyya R. (2010), CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms, Software: Practice and Experience, ISSN: 0038-0644, Wiley Press, New York, USA.

Emeneker W., et al (2006), Dynamic Virtual Clustering with Xen and Moab, International Symposium on
Parallel and Distributed Processing with Applications (ISPA), Springer-Verlag LNCS 4331, 440-451

Li S., and Tirupati D. (1995). Technology choice with stochastic demands and dynamic capacity allocation:
A two-product analysis. Journal of Operations Management, 12(3-4) 239-258.

International Journal of Web Services Research , Vol.X, No.X, 200X

 16

Kamra, Misra V., Nahum E.M. (2004), Yaksha: a self-tuning controller for managing the performance of 3-
tiered Web sites, In Proceedings of the 12th International Workshop on Quality of Service(IWQoS), Passau,
Germany.

Kleinrock L. (1976), Queueing Systems, Volume 2: Computer Applications. John Wiley and Sons, Inc..

Slothouber L. (1996). A model of web server performance. In Proceedings of the 5th International World
Wide Web Conference (WWW). Paris, France.

Levy R., Nagarajarao J., Pacifici G., Spreitzer M., Tantawi A., and Youssef A. (2003). Performance
management for cluster based web services. In IFIP/IEEE 8th International Symposium on Integrated
Network Management. 247–261.

Menasce D. (2003), Web server software architectures. IEEE Internet Computing. 7(6), 78-81.

Ranjan S., Rolia J., FU H., and Knightly E. (2002). QoS-driven server migration for internet data centers.
In Proceedings of the 10th International Workshop on Quality of Service(IWQoS), Miami, FL.

Tan W., Fan Y., Zhou M., A Petri Net-based Method for Compatibility Analysis and Composition of Web
Services in Business Process Execution Language. IEEE Transactions on Automation Science and
Engineering. 2009, vol. 6, issue 1: 94-106

Tan W., Fan Y., Zhou M., Tian Z., Data-driven Service Composition in Building SOA Solutions: A Petri
Net Approach. IEEE Transactions on Automation Science and Engineering. 2010, 7(3): 686 - 694

Turner M., Budgen D., and P. Brereton (2003). Turning Software into a service. Computer. 36(10), 38-44

Urgaonkar B., Pacifici G., Shenoy P., Spreitzer M., and Tantawi A. (2007). Analytic Modeling of Multi-tier
Internet Services and its Applications. ACM Transactions on the Web (TWEB 2007), 1(1), 1-35.

Urgaonkar B., and Shenoy P. (2004), Cataclysm: Handling extreme overloads in internet services. In
Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). St. John’s, Newfoundland, Canada.

Urgaonkar, Shenoy P., Chandra A., Goyal P., and Wood T. (2008). Agile Dynamic Provisioning of Multi-
tier Internet Applications. ACM Transactions on Adaptive and Autonomous Systems (TAAS), 3(1).

Villela D., Pradhan P., and Rubenstein D. (2007). Provisioning servers in the application tier for e-
commerce systems. ACM Transactions on Internet Technology (TOIT). 7(1), 57-66.

Wu Y., Hwang K., Yuan Y., and Zheng W. (2009), “Adaptive Workload Prediction of Grid Performance in
Confidence Windows”, IEEE Trans. on Parallel and Distributed Systems, to appear, (on-line published
Aug. 14, 2009)

Xiong P., Fan Y. and Zhou M., "Web Service Configuration under Multiple Quality-of-Service Attribute,"
IEEE Transactions on Automation Science and Engineering, Vol. 6, Iss. 2, April 2009, pp.311-321

Xiong Pe., Fan Y. and Zhou M., "QoS-aware Web Service Configuration," IEEE Transactions on System,
Man and Cybernetics, Part A, Vol. 38, Iss. 4, July 2008, pp.888-895

Zhang F., Cao J., Liu L., and Wu C., “Fast Autotuning Configurations of Parameters in Distributed
Computing Systems Using Ordinal Optimization”, Proc. 38th Int. Conf. on Parallel Processing Workshops,
Vienna, Austria, 190-197, 2009.

Zhang F., Cao J., Song X., Cai H., and Wu C., “AMREF: An Adaptive MapReduce Framework for Real
Time Applications”, Proc. of 9th Int. Conf. on Grid and Cloud Computing (GCC’10), Nanjing, China, 2010.

ABOUT THE AUTHOR(S)

International Journal of Web Services Research , Vol.X, No.X, 200X

 17

Fan Zhang received the B.S. in computer science from Hubei Univ. of Technology and M. S. in
control science and engineering from Huazhong University of Science and technology. He is
currently a Ph.D. student in Department of Automation, Tsinghua University, Beijing, China. His
research interests include data center networks and grid/cloud computing. Contact him at: zhang-
fan07@mails.tsinghua.edu.cn

Junwei Cao is currently Professor and Assistant Dean, Research Institute of Information
Technology, Tsinghua University, China. He was a Research Scientist at MIT LIGO Laboratory
and NEC Laboratories Europe. He received the PhD in Computer Science from University of
Warwick, UK, in 2001. He is a Senior Member of the IEEE Computer Society and a Member of
the ACM and CCF. Contact him via Email: jcao@tsinghua.edu.cn

Hong Cai is currently a senior software engineer of IBM China development lab and chair of
TEC-GC (Technical Expert Council - Greater China). He received the B.S and Ph.D. from
Tsinghua Univ., China. His research interests include service oriented architecture, dynamic
resource provisioning, distributed and cloud computing, etc. Contact him via Email:
caihong@cn.ibm.com

International Journal of Web Services Research , Vol.X, No.X, 200X

 18

James J. Mulcahy is currently a Ph.D student in Computer Science at Florida Atlantic University
in Boca Raton, Florida, USA. His research interests include grid/cloud applications, software
engineering and re-engineering of legacy systems. He has more than 20 years of business
experience in developing and evolving large supply chain and e-commerce software applications.
James is a member of IEEE and the Association of Computing Machinery (ACM). James can be
reached via email at jmulcah1@fau.edu

Cheng Wu is a Professor of Department of Automation, Tsinghua Univ. China, Director of
National CIMS Engineering Research Center, and Member of Chinese Academy of Engineering.
He received his B.S. and M.S. from Department of automation, Tsinghua Univ. in 1962 and 1966
respectively. His research interests include complex manufacturing system scheduling, grid/cloud
applications, etc. Contact him via Email: wuc@tsinghua.edu.cn

