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Abstract: With the explosive increase in Mobile apps, more and more threats migrate from traditional PC client

to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile

Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve

the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on Cloud

Computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile

app’s virulence or benignancy. Compared with traditional method, such as permission pattern based method etc.,

MobSafe combines the dynamic and static analysis method to comprehensively evaluate a android app. In the

implementation, we adopt ASEF and SAAF framework, the two representative dynamic and static analysis method,

to evaluate the android apps and estimate the total time needed to evaluate all the apps stored in one mobile

app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the

statistics that the number of active android apps, the average number apps installed in one android device and the

expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares,

our evaluation results shown that it is practical to use cloud computing platform and data mining to verify all stored

apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively

use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted

data in this stage.
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1 Introduction

1.1 Mobile Threats

These years witness an explosive increase in mobile
apps. According to Mary Meeker’s report[1] on Mobile
Internet trends. More and more PC client software
are migrating to the mobile device[2−3]. According to
Gartner’s statistical prediction[4], the amount of total
downloads of mobile apps in 2013 will be about 81
billion. Among these, there are about 800,000 Android
apps in Google Play market, and the total download
is about 48 billion as of May 2013[5]. In contract
with Apple AppStore, there are different sources for
android apps download, such as wandoujia, AppChina,

Baidu mobile assistant etc. While these markets
give a good supply and bring more convenience for
android users, they will also bring mobile threats as
different market place has different malware detection
utility and methods. Some sophisticated malwares can
escape from detection and spread even via such android
markets.

1.2 Some root causes for malware origins

It needs some discussions about the malware’s
origins, provenances and spreading.

(1) Android platform allows users to install apps from
the third-party marketplace that may make no efforts to
verify the safety of the software that they distribute.

(2) Different market place has different defense
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utility and revocation policy for malware detection.
(3) It is easy to port an existing Windows-based

botnet client to android platform.
(4) Android application developers can upload their

applications without any check of trustworthiness. The
applications are self-signed by developers themselves
without the intervention of any certification authority.

(5) A number of applications have been modified, and
the malware have been packed in and spread through
unofficial repositories.

Some sophisticated malware detect the presence of an
emulated environment and change their behavior, create
hidden background processes, scrub logs, and restart on
reboot.

1.3 Some known malware in Android platform

There are a lot of already discovered malwares
which include: Drad.A, Fake Player, Geinimi, PJApps,
HongToutou, DroidDream trojan, DroidKungFu,
SteamyScr, Bgyoulu.A, Cabir, HippoSMS, Fake
Netflix, Walk & Text, Dog Wars, DroidDreamLight,
BaseBridge, Zsone, jSMSHider, Rageagainstthecage,
Zimperlich, Exploid, Plankton, DougaLeaker.A,
Rufraud, Gone in 60s etc.

1.4 Some malicious behaviors of Android malware

Malware is usually motived by controlling mobile
device without user intervention, such as:

1) Privilege escalation to root,
2) Leak private data or exfiltrate sensitive data,
3) Dial premium numbers,
4) Botnet activity,
5) Backdoor triggered via SMS.

1.5 Our Work

In this paper, based on home-brewed Cloud
Computing platform and data mining, we propose a
methodology to evaluate mobile apps for improving
current security status of mobile apps, MobSafe, a
demo and prototype system, is also proposed to identify
the mobile app’s virulence or benignancy. MobSafe
combines the dynamic and static analysis method to
comprehensively evaluate a android app, and reduce
the total analyse time to a acceptable level. In
the implementation, we adopt the two representative
dynamic and static analysis method, i.e. ASEF and
SAAF framework, to evaluate the android apps and
estimate the total time needed to evaluate all the apps
stored in one mobile app market, which provide useful
reference for a mobile app market owner to filter out the
mobile malwares.

This paper is organized as follows: Section 2
provides an overview of related works of static
analysis and dynamic analysis methods, Section 3
introduces infrastructure Cloud Computing platform,
MobSafe frontend and backend’s design, ASEF and
SAAF framework respectively. Section 4 presents
the performance evaluation based on real trace data,
including the experiments’ result and analysis, and
Section 5 makes a brief conclusion of this paper, and
Section 6 discusses the future work using Machine
Learning to further evaluate the android apps.

2 Related work

Security analysis of Android apps is a hot topic. More
and more researchers use static analysis and dynamic
behavior analysis, and even integrate it with machine
learning techniques to identify malware.

2.1 Static analysis methods

David Barrera et al.[6] make an analysis on
permission-based security models and its applications
to android through a novel methodology which applies
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Self-Organizing Map (SOM) algorithm preserving
proximity relationships to present a simplified,
relational view of a greatly complex dataset. The SOM
algorithm provides a 2-dimensional visualization of
the high dimensional data, and the analysis behind
SOM can identify correlation between permissions.
They discover insights on how the developers use
the allowed permission model in developing and
underlines the permission model’s strengths as well as
its shortcomings through their methodology. Based on
their results, they propose some enhancements to the
android permission model.

Enck et al.[7] (TaintDroid) build a tool that warns
users about applications that request blacklisted sets of
permissions. They take both dangerous functionality
and vulnerabilities into consideration and apply a
wide range of analysis techniques. They design and
implement a Dalvik decompiler, ded, which can recover
application’s Java source code only using its installation
image. Besides, they analyze 21 million LOC retrieved
from the top 1,100 free applications in the Android
Market using automated tests and manual inspection.
Consequently they identify the essential causes of
android application security problems and show the
severity of discovered vulnerabilities. Their results
show the wide misuse of privacy sensitive information,
the evidence of telephone misuse, wide including of
ad libraries in android application, and the failing to
securely use android APIs of many developers.

Adrienne Felt et al.[8] develop Stowaway, a tool
to detect overprivilege in Android applications, and
use this tool to evaluate 940 applications from
Android Market, finding that about one-third are
overprivileged. Additionally, they identify and
quantify developer’s patterns leading to overprivilege.
Moreover, they determine android’s access control
policy through automatic testing techniques. Their
results present a fifteen-fold improvement over the
android documentation and reveal that most developers
are trying to follow the principle of least privilege but
fail due to the lack of reliable permission information.

Karim O. Elish et al.[9] implement an analysis tool to
construct data dependence graphs statically with inter-
procedural call connectivity information that capture
the data consumption relations in programs through
identifying the directed paths between user inputs (e.g.,
data and actions) and entry points to methods providing
critical system services. Furthermore, they conduct
an initial set of experiments to characterize the data

consumption behaviors of legitimate and malicious
Android apps with this tool, specifically on how they
respond to user inputs and events. Nevertheless,
some malware may attempt to circumvent their data
dependence checking by misusing the user’s inputs
while performing malicious activities, so their work
need to be improved in these conditions.

Iker Burguera et al.[10] propose Crowdroid, which
finds that open(), read(), access(), chmod() and chown()
are the most frequently used system calls by malware.

Johannes Hoffmann et al.[11] present SAAF (a
Static Android Analysis Framework), which provides
program analysis such as data-flow analysis and
visualization of control flow graph. They analyze
about 136,000 benign apps and 6,100 malicious apps,
and their results confirm the previous observations for
smaller app sets; what’s more, their results provide
some new insights into typical Android apps.

Yacin Nadji et al.[12] propose airmid, which uses
collaboration between in-network sensors and smart
devices to identify the provenance of malicious traffic.
They create three mobile malware samples, i.e.
Loudmouth, 2Faced and Thor, to testify the correctness
of airmid. Airmids remote repair design consists of
an on-device attribution and remediation systema an
server-based infection detection system. Once detected,
the software executes repair actions to disable malicious
activity or to remove malware entirely.

2.2 Dynamic behavior analysis

Portokalidis et al.[13] propose Paranoid Android, a
system where researchers can perform a complete
malware analysis in the cloud using mobile phone
replicas.

Zhou et al.[14] propose DroidMOSS which take
advantage of fuzzy hashing technique to effectively
localize and detect the changes from app-repackaging
behavior.

2.3 Machine learning

A. D. Schmidt et al.[15] propose a solution based
on monitoring events occurring on Linux-kernel level.
They apply the tool, readelf, to read static information
held by executables and use the output of readelf to
classify android software. After applying readelf to
both normal apps and malware apps, they use the names
of the functions and calls appearing at the output of
readelf to form their benign training set and malicious
training set. Furthermore, they apply three classifiers,
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PART (extracting decision rules from the decision tree
learner C4.5), Prism (a simple rule inducer which
covers the whole set by pure rules), and nNb (a light-
weight version of the well-known Nearest Neighbour
algorithm), to predict whether an android software is
normal or malicious. The testing result shows that their
approach is effective. Additionally, they build a system
which provides three main functionalities: on-device
analysis, collaboration, and remote analysis, to detect
malware apps on android.

Mario Frank et al.[16] investigate the difference
between high-reputation and low-reputation
applications, and further to identify malware. Their
method only uses the permission requests, and don’t
statically analyze applications to extract features when
there is no available code.

Shabtai et al.[17] similarly build a classifier for
Android games and tools, as a proxy for malware
detection.

Sanz et al.[18] apply several types of classifiers to
the permissions, ratings, and static strings of 820
applications to see if they could predict application
categories, using the category scenario as a stand-in for
malware detection.

Zhou et al.[19] find real malware in the wild with
DroidRanger, a malware detection system that uses
permissions as one input.

3 MobSafe

3.1 Infrastructure Cloud Platform

3.1.1 CloudStack
Saturn-cloud[20−21], a home-brewed cloud computing

platform, is used to conduct security analysis task.
Saturn-storage, NFS storage with ZFS file system
(openindiana+napp-it)[22], is used to accommodate the
virtual machines. It can scale to 16 hard disks, each
with 2TB SATA storage, totally achieve 32TB store
volume. Cloudstack[23] is used to manage a VMware
vshphere based computing servers. The whole cloud
infrastructure is shown in Figure 1.

3.1.2 Hadoop Storage for Mobile apps
There are about 40 servers and 40TB storage in our

experimental research platform which based HDFS.

3.2 Work principle

MobSafe is a system to check whether an android app
is virulence or benignancy based some customized tool
in cloud platform. The procedure of mobsafe is shown

in Figure 2.

Fig. 2 The procedure of android app analysis in mobsafe

MobSafe is a automatize system which can be used
to analyze android apps. When you submit an unknown
apk file to MobSafe for analysis, it will check the key-
value store whether the apk is already analyzed and its
result is store in hadoop storage. This comparison based
on the hashing of the apk file as the key to query the
reddis key value store. In this implementation, the redis
version is 2.1.3. If the key is matched in reddis, then the
result is returned as response to submitter. If the key is
not matched, it indicts a new apk file. In such case, the
apk is stored in hadoop storage. After that, a daemon
invoke the automatize tool, such as ASEF and SAFF, to
collect the log and store in hadoop specified directory.
Also the daemon inserts the key to reddis and updates
the value with the result directory in hadoop storage.

3.3 Frontend

Mobsafe has a web frontend, which is based
on SpringSource’s Spring framework, and Twitter
Boostrap. It provides suspect apps upload function and
return the analysis result demonstrated in web page.

3.4 Backend

3.4.1 ASEF

ASEF(Android Security Evaluation Framework)
ASEF[24] is a automatize tool which can be used

to analyze android application. When you submit
an unknown apk file to ASEF for analysis, firstly it
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Fig. 1 Infrastructure cloud platform based on CloudStack.

will start the ADB logging and traffic sniffing using
TCPDUMP, then launch an android virtual machine
(AVD) and installs the application on it. After that
ASEF begins to launch the application to be analyzed
and send a number of random gestures to simulate
human integration on the application. Meanwhile,
ASEF also compare the log of android virtual machine
with a CVE library, and its internet activity with Google
Safe browser API[27]. After a certain number of gestures
are sent to virtual machine, the test circle is end and
the application will be uninstalled. Then ASEF will
begin to analyze the log file and the Internet traffic
the apps generated. ASEF uses Google Safe Browsing
API to find out whether the URLs the app try to reach
is malicious or not. ASEF also checks the existed
vulnerability with a known vulnerability list to find out
whether the application has some serious vulnerability.

3.4.2 SAAF

SAAF(Static Android Analysis Framework)
SAAF[26] is a static analyzer for Android apk files. It

is the acronym of Static Android Analysis Framework.
It can extract the content of apk files, and then decode
the content to smali code, then it will apply program
slicing on the smali code, to analyse the permissions
of apps, match heuristic patterns, and perform program
slicing for functions of interest.

3.4.3 Other tools
There are also a lot of other assistance static

analysis tools, such as readelf[27], ded[28], apktool[29],
androguard[30] and soot[31], to help us analyse the
android apps. Most of these tools are based on
reversing engineering. some dynamic analysis tools like

Strace[32] and randoop[33] to detect android apps based
on runtime behaivor. Strace watches system call in
Linux kernel while randoop stimulates the android apps
by random inputs and watches the output messages.

4 Evaluation

4.1 Global Statistics of the Dataset

We have collected data set from AppChina, a china
android market with own Android app installation
tool. This assistance tool help user to install, upgrade
and remove android apps quickly and logging such
operations for analysis. The data set is collected
during the three-month period from May 1st to July
31st in 2012. The size of data set is about 1 TB
zipped logs (expanded size above 10 TB). Totally there
are about 100 K active Android apps in logs. We
downloads android apps from AppChina to verify based
on MobSafe. Each downloaded Android app has its web
page on the Market website. We also crawled the web
version of the Android Market to supply android app
with text description. We also conduct some correct
proof by self-written malware verification.

Figure 3 shows the total number active apps in
AppChina keep steadily increase during these three
months. it maintained a growth rate above 10%.

From Table 1, all these resolution android devices
account for the about 90% of total android devices.
We also notice that high resolution display android
device users are increased steadily while some middle
resolution display android device users are decreased
steadily.

We classify the android devices into three categories:



6 Tsinghua Science and Technology, April 2013, 18(2): 000-000

Table 1 Different display resolution with different portion account for all android devices in year 2012

Display
resolution

240x320 320x480 480x800 480x854 540x960 720x1280 800x1280

May 5.40% 26.45% 37.60% 13.00% 7.11% 1.22% 4.30%
June 4.12% 29.41% 35.31% 12.88% 5.99% 1.93% 5.54%
July 3.77% 31.76% 35.1% 11.83% 5.39% 2.73% 5.47%

Fig. 3 The trend of android mobile apps in AppChina in one
quarter (in year 2012)

Fig. 4 The portion of three different display’s resolutions
varied in three month in year 2012

Low class, Middle class and High class according to the
display resolution. It seems that the display resolution
of android devices is increased steadily in these three
months as shown in Figure 4.

It also needs to notice that the number of apps
installed in mobile android devices is about 30
according to three months’ statistics in Figure 5. But
as more and more user choice high resolution android
device, the number of apps installed in device is
increased too.

Fig. 5 The average number of apps installed in three
category android devices in year 2012

4.2 Performance metrics

4.2.1 ASEF
In order to measure how much time ASEF takes to

analyse an app, we write a script which can record
the timestamp of the beginning of running a program
and use ASEF to analyse 20 different android apps
downloaded from AppChina. The results is shown
in Figure 6, where the time it takes to analyse one
application varies from 64 seconds to 150 seconds, and
the average time is about 100 seconds. It means that we
can finish the analysis and acquire the result in less than
2 minutes on average.

When we look up the whole analysis procedure in
detail, we can find out that there are 6 steps during
analyzing one app. And the preparing step, the starting
log service step, the ending process step and analyzing
step take up 3%,3%,5%,10% of total time separately.
About 80% of time is consumed on the installing and
testing stage, shown in Figure 7. So if we want to reduce
the total time, we should try to speed up these two steps.

In the analysis step, the time it takes depends on
the random gestures we input. The more gestures,
the longer it takes. Figure 8 presents the result of
reduced time by cutting down some gestures. We
decrease the number of gestures sent to android
virtual machine(AVD) so that the testing time will be
shortened. After we decrease the number of gestures
from 1000 to 200, the total time decreases in 20
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Fig. 6 ASEF: The total consumed time of each app (s)

seconds, which accounts for 20% of the total time. This
method is effective and we can also use it to improve
user’s experience.

4.2.2 SAAF
We apply SAAF to 25 android apps downloaded from

AppChina for static smali code analysis, to evaluate the
performance of this tool. From the Figure 9 below, we
can see that the most time consuming step of SAAF
is the slicing step, and the second is the permission
categorizing step. The average time of analysing one
app consumed by SAAF in one Linux virtual machine,
which runs on Intel-i5 four core CPU with 4 GB of
memory, is about 33.93 seconds.

From Figure 10, we know that the analysing of
different app will consume different time, and the total
time depends on the complexity of apps, such as the
amount of methods etc. But for most apps, SAAF will
finish the analysis in a acceptable period.

4.3 Estimated instances

That means if we apply ASEF to all the apps in
Google Play market, which has 800,000 apps in total,
it will consume about 450 hours by 50 such virtual
machines, which runs on Intel-i5 four core CPU with

4 GB of memory.
If we apply SAAF to all the apps in Google Play

market too, it will consume about 151 hours by 50 such
virtual machines.

From the above calculation, it also needs to notice
that the dynamic method(such as ASEF) costs more
time than the static one(such as SAAF) as the former
one needs to monitor app’s system call and network
behaviour.

According to average number of apps installed in one
android device is about 30 shown above, it costs about
1 hour to use ASEF and SAAF to finish the analysis in
one virtual machine and android AVD. But if we can
distribute the installed apps into separated individual
VMs or AVDs, the whole time can be lesser than one
minute, which is acceptable for user’s experience in
security check.

5 Conclusion

In this paper, we propose a methodology to evaluate
the security of android mobile apps based on cloud
computing platform. We also implement a prototype
system, i.e., MobSafe, for automation forensic analysis
of mobile apps’ static code and dynamical behavior.
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Fig. 7 ASEF: Time consumed of each step (s)

Based on the real trace from AppChina, a mobile app
market, we can estimate that the number of active
android apps and the average number apps installed in
one android device, and the increasing ratio of mobile
apps. We adopt ASEF and SAAF, the two representative
dynamic analysis method and static analysis method, to
evaluate the android apps and estimate the total time
needed to evaluate all the apps stored in a mobile app
market. As mobile app market serves as the main line
of defence against mobile malwares, it is practical to
use cloud computing platform to defence malware in
mobile app markets as shown in the results.

6 Future Work

Machine Learning(ML)[34] is a promising technology
to identify mobile app’s virulence or benignancy based
on data mining. As we collect more and more app’s

logging and network behaviour data, we can further
use K-means method to classify apps after training
a classifier. In this case, the well-known accuracy
metrics includes precision and recall can be measured
to evaluate the calssifier agorithm. other method
such as PCA (primary component analysis) and Matrix
Factorization also can be try and test.
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