
                                                                                     

 

Contents lists available at ScienceDirect 

Chinese Journal of Aeronautics 

Journal homepage: www.elsevier.com/locate/cja 

Final Accepted Version  
 

Integral precession calibration method of PIGA on linear 
vibration table 

Chuang SUNa, Shun-qing RENb, Jun-wei CAOc,*, Ru HUOd 
aDepartment of Automation, Tsinghua University, Beijing 100080, China 

bSchool of Astronautics, Harbin Institute of Technology, Harbin 150001, China 
cBeijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100080, China 

dFaculty of Information technology, Beijing University of Technology, Beijing 100124, China 
 

Received 24 February 2023; revised July 03 2023; accepted July 23 2023 
 

Abstract 

Linear vibration table can provide harmonic accelerations to excite the nonlinear error terms of Pendulous Inte-
grating Gyro Accelerometer (PIGA). Integral precession calibration method is proposed to calibrate PIGA on a line-
ar vibration table in this paper. Based on the precise expressions of PIGA’s inputs, the error calibration model of 
PIGA is established. Precession angular velocity errors of PIGA are suppressed by integer periodic precession and 
the errors caused by non-integer periods vibrating are compensated. The complete calibration process, including 
planning, preparation, PIGA testing, and coefficient identification, is designed to optimize the test operations and 
evaluate the calibration results. The effect of the main errors on calibration uncertainty is analyzed and the relative 
sensitivity function is proposed to further optimize the test positions. Experimental and simulation results verify that 
the proposed 10-position calibration method can improve calibration uncertainties after compensating for the related 
errors. The order of calibration uncertainties of the second- and third-order coefficients are decreased to 10−8 rad/s/g2 
and 10−8 rad/s/g3, respectively. Compared with the other two classical calibration methods, the calibration uncertain-
ties of PIGA’s nonlinear error coefficients can be effectively reduced and the proportional residual errors are de-
creased less than 3×10-6 rad/s/g by using the proposed calibration method. 

Keywords: PIGA; Linear vibration table; Vibration measurement; Calibration; Error analysis; Uncertainty analysis 
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1. Introduction1 

Nowadays, accelerometers such as quartz accelerometers and Pendulous Integrating Gyro Accelerometers (PIGA) 
play a vital role which can provide high-precision measurement of acceleration in Inertial Navigation Systems (INS), 
1 automotive safety system, 2 and biomedical measurement. 3 With increasing requirements for accuracy and stability, 
the key to accuracy improvement is advanced calibration methods that can accurately identify the error coefficients 
of accelerometers. 

The general calibration approaches of accelerometers are utilizing multi-axis turntable and centrifuge. Since the 
local gravitational acceleration and the turn rate of the Earth can be accurately measured, the static multi-position 
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methods were proposed to calibrate bias and scale factor of accelerometers and gyroscopes.4,5 Dynamic calibration 
method was provided to separate the cross-coupling coefficients of a linear accelerometer by utilizing the tilted ro-
tating rate table.6 The high-g test environment could be typically constructed via precision centrifuges to effectively 
excite the high-order error coefficients. The 12-position methods were adopted to calibrate the nonlinear coefficients 
by compensating for static radius errors via a low-cost centrifuge.7 The double turntable centrifuge was developed to 
suppress the installation errors and reduce the test costs.8 The high-order error terms of accelerometers and gyro-
scopes were calibrated by dynamic centrifuges, which can provide constant centripetal and harmonic acceleration.9-11  

Compared with the centrifuge, the simpler vibration tables can simulate the vibration environment, measure the 
sensitivity to dynamic accelerations, and calibrate the nonlinear error coefficients of accelerometers with a lower 
cost.12-15 In addition, due to the smaller angle motion of the linear vibration table, it is suitable for calibrating the co-
efficients of gyroscope and PIGA.14,16 The existing literatures have been surveyed and analyzed from the following 
aspects as shown in Table 114,17-22: calibration objects, error analysis of calibration systems, error compensation, cali-
bration method, test mode, optimal design of process, and calibration magnitude or resolution. The calibration meth-
od of integer periodic precession was proposed to improve the output accuracy of PIGA.15 Some works presented the 
vibration measurement method of the accelerometer’s Vibration Rectification Error (VRE) and transverse sensitivi-
ty.17,18 Some authors proposed a 6-directional method for calibrating the nonlinear error coefficients of quartz accel-
erometer.19 The installation errors were compensated by integrating the static state test and random vibration test.20 
He et al.21 proposed the separation method of nonlinear quadratic term of PIGA within integer periods vibration. Ren 
and Sun22 proposed the integer periodic vibration method for calibrating the high-order error coefficients of PIGA. 

Table 1 Summary of existing calibration methods. 

Ref. Object Error 
Analysis 

Error Com-
pensation 

Calibration 
Method Test Mode Optimal 

Design 
Magnitude 

(ppm) Remark 

[14] Second-order Harmonic 
distortion  Integer periodic 

vibration 6-position  1 
A calibration 

method of gyro-
scope 

[17] VRE Pendulum 
deflection  Fixed-frequency 

vibration   1000 An analysis method 
of VRE 

[18] Transverse 
sensitivity   Simulation 4-frequency  1 

A simulation of 
transverse sensitiv-

ity 

[19] High-order   Fixed-timing 
vibration 6-direction  10 

A calibration 
method of quartz 

accelerometer 

[20] Second-order Installation 
error  1-6g random 

vibration Multi-frequency  10 
A calibration 

method of accel-
erometers 

[21] Second-order   Integer periodic 
precession Multi-frequency  100 A calibration 

method of PIGA 

[22] High-order Main error 
sources  Integer periodic 

vibration 
Multi-frequency 

& 6-position  1-10 A calibration 
method of PIGA 

Our High-order Main error 
sources  

Integer periodic 
precession & 

vibration 

Multi-frequency 
& multi-position  1 A calibration 

method of PIGA 

NOTE: The abbreviation ppm means parts per million. 
Summarily, most of the aforementioned references present the multi-position and multi-frequency test mode for 

calibrating the second-order error coefficients of accelerometers without considering the error propagation analysis 
and error compensation.14-19 Furthermore, the design of parameters and process of calibration test were not optimized 
in these references to further improve the calibration effectiveness and efficiency. For the high-precision accelerom-
eter, the calibration method of integer periodic vibration can reduce the influence of measurement errors on the ac-
curacy of output accelerations,14,17,22 and the integer periodic precession can improve the output accuracy of PI-
GA.15,21 However, the closure errors caused by non-integer periodic vibration are not considered.  

Consequently, the integer periodic precession methods and the integer periodic vibration methods are separately 
applied into the existing calibration schemes, which means that the measurement accuracy of calibration objects and 
test equipment cannot be improved simultaneously. In this paper, an optimal and integral calibration method for PI-
GA precession within integer periods on a linear vibration table is proposed. The error calibration model of PIGA 
precession within integer periods is established based on the calculated inputs and the working principle of PIGA. 
Then, the detailed calibration process is optimized based on the D-optimal design and uncertainty estimation. Thus, 
the main nonlinear error coefficients of PIGA can be accurately and efficiently calibrated. The main contributions of 
this paper are presented as follows. 

(1) The measurement uncertainty of PIGA can be improved by the proposed integral precession calibration method. 
In addition, the influence of vibration errors can be significantly restrained by compensating for the corresponding 
inputs from integer periodic vibration. 

(2) The sensitivity analyses are proposed to precisely evaluate the effect on the calibration uncertainty and the va-
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lidity of the optimum design test positions.  
(3) The comprehensive analyses of calibration results are proposed. The optimized test process of PIGA calibra-

tion is arranged and the proportional residual error is designed to enhance the efficiency of the calibration test. 
The remainder of this article is organized as follows. In Section 2, the corresponding coordinate systems of the 

calibration system are established. Then, the precise inputs of PIGA are deduced in Section 3. In Section 4, the error 
calibration model of PIGA precession within integer periods is proposed. The calibration process is designed in three 
parts, including planning and preparation, PIGA testing, and coefficient identification in Section 5. The experiments 
and simulations are constructed to verify the effectiveness of the proposed calibration method in Section 6. The con-
clusions are drawn in Section 7.  

2. Calibration system 

The calibration system is shown in Fig.1. The system consists of a precision linear vibration table, indexing head, 
control & monitoring system, and PIGA. The linear vibration table consists mainly of a crank disk, center bearing, 
end bearing, read head, grating scale, and table top. The distance between the center point of the center bearing and 
the center point of the end bearing is denoted as A0 (A0 = 0.03 m). The read head and grating scale are used to meas-
ure the displacement of the table top. The grating scale is Renishaw RELA absolute linear grating, of which the ac-
curacy is better than ± 1 µm in the distance of 1 m. In addition, TONiC grating system is used for frequency meas-
urement and monitor, which is composed of a Renishaw T1000-10A reading head and an RGSZ grating ruler. Ideally, 
when the center bearing is driven by the brush-less DC torque motor with the constant angular velocity ―ωv (rad/s), 
the end bearing will horizontally reciprocate with the horizontal guide rail constraint. Then, the table top will verti-
cally reciprocate with the vertical guide rail constraint. Thus, at time t, the displacement of the table top is -A0sinωvt 
and the output acceleration is A0ωv

2sinωvt in the vertical direction. The indexing head is installed on the table top to 
modify the test poses of PIGA. Then PIGA is mounted on the indexing head as shown in Fig.1. The control & moni-
toring system is used to control the measurement system which includes servo circuit, output circuit, magnetic sus-
pension circuit, temperature control circuit, etc. The software operation interface includes parameter setting, device 
status information, process information, measurement information, and result information for monitoring the re-
al-time running status. The power module provides 45 kW power and the data sampling module includes data pro-
cessing software and industrial computer. 
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Fig. 1  Schematic diagram of calibration system. 

The PIGA comprises a single-axis float gyroscope, spin motor pendulous mass, electromagnetic signal generator, 
cylindrical shell, torque motor, signal amplifier, temperature sensor, and cylindrical housing, as shown in Fig.1. The 
float gyroscope with the pendulous mass m is unbalanced located on its Pendulous Axis (PA) line, of which the dis-
placement between the center of the gyro rotor’s mass and the pendulous mass is l. The acceleration aI in the Input 
Axis (IA) direction causes motion about the output axis Then, the corresponding torque mlaI about the Output Axis 
(OA) causes relative rotation of the cylindrical shell. The cylindrical shell will precess about the IA axis while the 
output unit measures the precession angular velocityα  by counting the output pulse. When the gyroscope’s angular 
momentum is HA, a reaction torque HAα  is present due to the friction torque and other disturbance torques. The 
concentric cylindrical housing will rotate about the OA axis with the angular velocity β. The torque motor generates 
the balancing torque to offset the interference torque caused by the precession of the OA axis. The electromagnetic 
signal generator is used to measure the rotation of the float gyroscope with respect to the cylindrical shell and the 
signal amplifier is used to amplify the signal. Thus, 0 0β β≈ ≈ ， , and the kinetic equation of PIGA is: 
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where My is the rotational inertia of the inner frame of the gyroscope and Cm is the damping coefficient. 
Generally, Euler angles are applied to describe the motions of inertial test equipment and inertial navigation sys-

tem.22,23According to the operating principle of the linear vibration table, the coordinate systems are established 
based on the Euler transform, as shown in Fig.2. Then, the corresponding parameters and expressions are shown in 
Table 2. 

o0, ov1, ov2

x0

y0

z0
zv1, zv2

ωv

xv1, xv2

yv1, yv2

 

 

 x

 

 

 xv4

 ov

 

 

 

 ov5

xv5

 

 

 

 

 

 

 

 

 t

 

Fig. 2  Main coordinate systems of measurement system. 

Table 2  Coordinate systems and main parameters of measurement system. 

Coordinate 
system 

Main pa-
rameter Value H -matrix Directional 

cosine matrix 
Translation 

matrix 
o0-x0y0z0      

ov1-xv1yv1zv1 ∆θxv0 , ∆θyv0 <5″ 0
v1T =Rot(x0,∆θxv0)Rot(y0,∆θyv0) Av1  

ov2-xv2yv2zv2 ωv， fv 0.2 ~30π rad/s, 0.1~15 Hz v1
v2T =Rot(xv1,−ωvt) Av2  

ov3-xv3yv3zv3 A0 0.03 m v2
v3 0 2=Trans(0, ,0)Rot( , )v vA x tωT  Av3 Dv3 

ov4-xv4yv4zv4 

Δax(t), 
Δay(t), 
Δaz(t), 
Δyx(t), 

Δyy(t), Δyz(t) 

Δax(t), Δay(t), Δaz(t) < 5″, 
Δyx(t), Δyy(t), Δyz(t) < 5 

μm 

( ) ( ) ( )
( ) ( ) ( )

v3
v4

v3 x v3 y v3 z

Trans( , )

Rot( )Rot( , )Rot( )

x t y t , z t

x , a t y a t z , a t

= ∆ ∆ ∆

∆ ∆ ∆

T


 Av4 Dv4 

ov5-xv5yv5zv5   v4
v5 0 v=Trans(0, cos ,0)A tω−T  I3ⅹ3 Dv5 

ov6-xv6yv6zv6 H 1 m v5
v6 =Trans(0,0, )HT  I3ⅹ3 Dv6 

ov7-xv7yv7zv7 
Δθxv1, Δθyv1,  

Δθzv1, θvi 
<5″ 

v6
v7 v v6 xv1

v6 yv1 v6 zv1 v6 v

=Trans(0,0, )Rot( , )
Rot( , )Rot( , )Rot( , )i

l x
y z x

θ
θ θ θ

∆

∆ ∆
T


 Av7 Dv7 

op-xpypzp 
Δθxv2, Δθyv2, 

Δθzv2 <5″ v7
p v7 xv2 v7 yv2 v7 zv2=Rot( , )Rot( , )Rot( , )x y zθ θ θ∆ ∆ ∆T  Av8  

 
(1) Basic coordinate system o0-x0y0z0. Its origin o0 is located at the center of the center bearing, as shown in Fig.2. 
 The direction of the axes o0x0, o0y0, and o0z0 respectively coincide with local east, north, and upward, as shown in 

Fig.1. 
(2) Center bearing coordinate system ov1-xv1yv1zv1. Its origin ov1 coincides with o0. The main error sources are 2-D 

perpendicularity ∆θxv0 and ∆θyv0 about the o0x0 and o0y0 axes. Based on the Euler angle representation, its H -matrix 
(homogeneous transformation matrix) with respect to o0-x0y0z0 can be expressed as 

0
v1T =Rot(x0,∆θxv0)Rot(y0,∆θyv0)= v1 3 1

1 3 4 4
1
×

× ×

 
 
 

A 0
0

                      (2) 

where Rot (x0, ∆θxv0) indicates that the coordinate system o0-x0y0z0 rotates about o0x0 axis by angle ∆θxv0 and matrix 
Av1 is the directional cosine matrix that can be expressed as 

yv0

v1 xv0

yv0 xv0

1 0
= 0 1

1

θ
θ

θ θ

 ∆
 −∆ 
 −∆ ∆ 

A                            (3) 

(3) Rotation coordinate system ov2-xv2yv2zv2. Its origin ov2 coincides with ov1. The direction of ov2xv2 coincides with 
ov1xv1 and the coordinate system ov1-xv1yv1zv1 rotates about ov1xv1 axis at angular velocity -ωv rad/s (the vibration fre-
quency is fv = ωv/2π). The expression of  v1

v2T with respect to ov1-xv1yv1zv1 is shown in Table 2, where the directional 
cosine matrix is Av2. 

(4) End bearing coordinate system ov3-xv3yv3zv3. The coordinate system ov2-xv2yv2zv2 is first translated along the 
ov2yv2 axis line with the displacement A0. Then the origin ov3 is located at the center of the end bearing, as shown in 
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Fig.2. Next, the coordinate system rotates about ov2xv2 axis at angular velocity ωv. The H -matrix v2
v3T of ov3-xv3yv3zv3 

with respect to ov2-xv2yv2zv2 is shown in Table 2, where Trans (0, A0, 0) means that the coordinate system ov2-xv2yv2zv2 
translates along the ov2yv2 axis line with the displacement A0, while the translation matrix Dv3 can be expressed as  

[ ]Tv3 0= 0 0AD .                                  (4) 
(5) End bearing working coordinate system ov4-xv4yv4zv4. Its origin ov4 coincides with ov3. Due to the manufacturing 

tolerance and assembly errors, the main error sources are 2-D perpendicularity avx0 and avy0, parasitic rotation errors 
(Δax(t), Δay(t), and Δaz(t)), and parasitic translation errors (Δx(t), Δy(t), and Δz(t)). In addition, the linear vibration 
table's output waveform deviation can be considered parasitic translation, which also contains high-order harmonic 
components along the ov3xv3 axis line. Then, the H -matrix of ov4-xv4yv4zv4 with respect to ov3-xv3yv3zv3 is v3

v4T , where 
the directional cosine matrix is Av4 and the translation matrix is Dv4. 

Taking Δax(t) and Δz(t) as examples, when only the first-order and second-order of the Fourier transforms are tak-
en into account, Δax(t) and Δz(t) can be expressed as 

( ) ( )
2

x vx0 xs v xc v
1

sin cosj j
j

a t a a j t a j tω ω
=

∆ = + +∑ ,                           (5)                      

( ) ( )
2

s v c v
1

sin cosj j
j

z t Z j t Z j tω ω
=

∆ = +∑ .                               (6) 

(6) Vertical vibration coordinate system ov5-xv5yv5zv5. It is formed by translating the coordinate system ov4-xv4yv4zv4 
along the ov4yv4 axis with the displacement -A0cosωvt, as shown in Fig.2. Its H -matrix v4

v5T with respect to 
ov4-xv4yv4zv4 is shown in Table 2, where the directional cosine matrix is I3×3 (means identity matrix) and the transla-
tion matrix is Dv5. 

(7) Table top coordinate system ov6-xv6yv6zv6. It is formed by translating the coordinate system ov5-xv5yv5zv5 along 
the ov5zv5 axis line with displacement H. Its H -matrix v5

v6T with respect to ov5-xv5yv5zv5 is shown in Table 2, where 
the directional cosine matrix is I3×3 and the translation matrix is Dv6. 

(8) Indexing head coordinate system ov7-xv7yv7zv7.  It is formed by translating the coordinate system ov6-xv6yv6zv6 
along the ov6zv6 axis line with displacement lv. The main error sources are installation angle errors (Δθxv1, Δθyv1, and 
Δθzv1) about three axes. When the rotation angle about the ov7xv7 axis of indexing head is θvi (i = 0,1,…, n−1), its H 
-matrix v6

v7T of ov7-xv7yv7zv7 with respect to ov6-xv6yv6zv6 is shown in Table 2, where the directional cosine matrix is 
Av7  and the translation matrix is Dv7. 

(9) PIGA coordinate system op-xpypzp. Without considering the installation displacement errors of PIGA, the origin 
op is the effective mass center (EMC) of PIGA that coincides with ov7. The input axis, pendulous axis, and output 
axis of PIGA coincide with opxp, opyp, and opzp, respectively. The main error sources are installation angle errors 
about the three axes of ov7-xv7yv7zv7 (Δθxv2, Δθyv2, and Δθzv2). The H -matrix v7

pT  of op-xpypzp with respect to 
ov7-xv7yv7zv7 is shown in Table 2, where the directional cosine matrix is Av8. 

According to the characteristics of the linear vibration table and established coordinate systems, the main parame-
ters are summarized as shown in Table 2. It is shown that the main error sources are parasitic errors caused by the 
vibration working mechanisms and attitude (position) errors caused by the installation (positioning) devices. 

3. Inputs of PIGA on precision linear vibration table 

The input accelerations of PIGA consist of the sinusoidal accelerations generated by the linear vibration, Coriolis 
accelerations, and gravitational accelerations. The complete input accelerations of PIGA along the three axes are 
obtained: 

O vx cx gx

P vy cy gy

I vz cz gz

= + +
a a a a
a a a a
a a a a

      
      
      
             

                                 (7) 

 According to the coordinate systems, the H -matrix of ov6-xv6yv6zv6 with respect to o0-x0y0z0 can be expressed as 
v2 v3 v4 vv1 v2 v3 v4 v5

v2 v3 v4 v5 v6 1
 

=  
 

A A A D
T T T T T

0
                              (8) 

where ( )v v2 v3 v4 v6 v5 v2 v3 v4 v2 v3+ + +D = A A A D D A A D A D . 
Thus, the sinusoidal input accelerations (avx, avy, and avz) generated by the linear vibration table along the OA, PA, 

and IA axes of PIGA are: 
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( )
2

T T v
vx vy z v2 v3 v4 v7 p 2

d
dva a a

t
  = 

D
A A A A A                        (9) 

Coriolis acceleration components (acx, acy, and acz) along the three axes of PIGA are calculated as follows: 

[ ] [ ]
[ ]

T

cx cy cz

T T
ie ie 0 v v

T
0 ie v v

2 0 cos sin 0 0 cos

2 cos cos 0 0

a a a

A t

A t

ω λ ω λ ω ω

ω ω λ ω

  

= × −

= −

               (10) 

where ωie is the turn rate of the Earth and λ is the local latitude.23 
Gravitational acceleration components (agx, agy, and agz) along the three axes of PIGA are calculated: 

( ) [ ]T T T
gx gy gz v1 v2 v3 v4 v7 p 0 0a a a g  =  A A A A A A                   (11) 

where g is the local acceleration reacted to gravity and can be calculated by the typical equation.24  
Then, without considering the high-order harmonic acceleration components generated by the parasitic error 

sources, the complete expression of aI can be deduced by substituting Eqs.(5) and (6) into Eq.(7): 
( ) 2

I v xv0 vx vx0 v xs1 0 v v xs1 v v xc1 v v xs2 v v xc2 v v

2
x0 0 xc2 0 c1 v c1 xc1 xs2 0 v v

1= cos sin sin sin sin sin cos sin sin2 sin cos2
2

1 1cos sin cos
2 2

i i i i i i i

i i

a g a g a A a g t a g t a g t a g t

a A a A Z Y a H a A

θ θ θ θ ω θ θ ω θ ω θ ω θ ω

θ θ ω ω

− ∆ + ∆ + + − − − −

    + + − + − +    
    

( ) ( ) ( )

v

2
0 xs2 0 s1 v s1 xs1 v vx x0 xc2 0 v v v

2
xs1 s2 v s2 xs2 xc1 v 0 v v xc1 c2 v c2 xc2 xs1

1 1cos sin sin
2 2

1 12 4 cos 4 4 sin sin2 2 4 cos 4
2 2

i i i

i i i

t

A a A Z Y a H a a A t

a Z Y a H a A t a Z Y a H a

θ θ θ θ ω ω

θ θ ω ω θ

     + + − + − − ∆ + ∆ + −     
     
   + − + − − + − + − +   

   
2

v 0 v v

2 2
xs2 v xc2 v 0 v xc2 v xs2 v 0 v

sin cos2

9 1 9 1cos sin sin3 cos sin cos3
2 2 2 2

i

i i v i i v

A t

a a A t a a A t

θ ω ω

θ θ ω ω θ θ ω ω

 
 

 
   + − + +   
   

.       (12) 
where vy yv1 yv2=θ θ θ∆ ∆ + ∆  and  vx xv0 xv1 xv2=θ θ θ θ∆ ∆ + ∆ + ∆ . 

Ideally, the nominal input acceleration aIA of PIGA along the IA axis can be expressed as 
( )2

IA 0 v v v= sin 1 cos ia A t gω ω θ+                             (13) 
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Fig. 3 Simulation results of input accelerations and acceleration errors. 

When θvi = 0, the simulations are constructed to describe the input accelerations along the three axes of PIGA as 
shown in Fig.3(a). The peak-to-peak values of aO and aP are equal to 0.0230 g and 0.0112 g, respectively, due to the 
error sources in Eqs.(12) and (13). The simulation results are shown in Fig.3(b) for the acceleration error along the 
IA axis equal to ΔaI =aIA−aI. It can be observed that errors in Eq.(12) cause significant distortion of the vibration 
wave form, while the amplitude of acceleration errors are higher than 0.15 g. The uncertainty of aIA can be calculated 
by 

v 0 v

2 2 2 2

IA IA IA IA
IA

v 0 v
iA g

i

a a a aa
A gω θσ σ σ σ σ

ω θ
       ∂ ∂ ∂ ∂

= + + +       ∂ ∂ ∂ ∂      
,                 (14) 

where 
vω

σ , 
0Aσ , 

viθσ  , and gσ are the uncertainties of ωv, A0, θvi, and g, respectively. 

Based on the aforementioned simulations, the initial values of 
vω

σ ,
0Aσ ,  and 

viθσ  are set as 1.0×10−10 Hz, 

1.0×10−10m, and 1.0×10−10 rad, respectively. Then, the values of IAaσ  range from 1.0×10−4 m∙s−2 to 3.4×10−7 m∙s−2, 
when the maximum values of gσ range from 1.0×10−5 m∙s−2 to 1.0×10−7 m∙s−2. It is noted that the calculated uncer-
tainty of g should be less than 1.0×10−7 m∙s−2 to ensure the accuracy of input accelerations. In addition, when gσ = 
1.0×10−7 m∙s−2 and gσ = 1.0×10−8 m∙s−2, the maximum values of IAaσ  are 3.4×10−7 m∙s−2 and 3.2×10−7 m∙s−2, 
which only have a small difference. Thus, the gravitational acceleration g needs to be accurate at the eighth signifi-
cant digit in this paper, that is, 1 g = 9.8016093 m∙s−2, when the local latitude λ is 39.94° and the altitude is 2.7 m. 

The input angular velocities along the three PIGA axes consist of the angular velocity component of the earth 
rotation and the parasitic rotation errors: 

[ ] ( ) [ ] ( ) ( ) ( ) ( ) T
T TT T yx z

O P I v1 v2 v3 v4 v7 p ie ie v7 p

dd d
= 0 cos sin +

d d d
a ta t a t

t t t
ω ω ω ω λ ω λ

∆ ∆ ∆
 
 

A A A A A A A A         (15) 

4. Error calibration model of PIGA 
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Actually, numerous factors can affect the measurement accuracy of PIGA, such as the design and assembly errors, 
disparities in elasticity, mass imbalances, elastic torque, static friction torque, and vibration interference torque. Thus, 
the error model of PIGA testing in the high-g environment should be deduced firstly: 

2 3 2 2
0 I I 3 I O P I I I= + + + +z zz x y oqk k a k a k a k a k a k a aα ω ε+ + − +&                     (16) 

where k0 is the bias (rad·s−1), kz is the scale factor [(rad·s−1)/g] and kz = ml/H, kzz is the second-order error coefficient 
[(rad·s−1)/g2], k3 is the third-order error coefficient [(rad·s−1)/g3], kx and ky are the second-order error coefficient along 
the OA axis line and PA axis line [(rad·s−1)/g] respectively, koq is an odd quadratic error coefficient [(rad·s−1)/g2], and 
ε is the random error. 

According to the simulation results of aO, the maximum value of the error term kxaO
2 is less than 10−8 rad/s when 

the vibration frequency is 20 Hz; hence, kxaO
2 can be assumed as negligible. This is another advantage of the linear 

vibration table test, i.e., it can automatically eliminate the influence of Coriolis acceleration if the direction of the OA 
axis refers to the east. The output of PIGA is the average precession angular velocity obtained by counting the num-
ber of output pulses PA (the number of output pulses of PIGA is 16384 per period). When the position of indexing 
head is θvi (i = 0, 1, 2, …) and the angular velocity of the crank disk is ωvj (j = 0,1,2, …), the average precession an-
gular velocity of PIGA during the test time Tm (i, j) can be calculated as follows: 
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(17) 
where  ( )s1 xs1 0 vx vx0 xc22 / 2 2Y a H A a aϕ θ∆ = − + ∆ + − . 

In Eq.(17), the main error sources of the average precession angular velocity include the harmonic terms of the 
parasitic rotation, the first order sinusoidal term of the output waveform deviation Zs1, and position errors Δφ. When 
the value of Δφ is greater than 0.001 rad, the new error term (kzz−ky) Δφ is excited and significantly affects the cali-
bration uncertainty of PIGA. Thus, the installation angle errors should be less than 1×10−3 rad to modify the error 
calibration model of PIGA. In addition, the main error sources of the output of PIGA are the counting and timing 
errors defined in Eq.(17). Thus, the calibration method of PIGA testing within integer-periods is proposed to sup-
press the influence of the counting error.  

When θvi = 0, the nominal input acceleration of PIGA along the IA axis is: N v= sina A t gω + , where 2
0 v=A Aω . 

The input acceleration and output pulse of PIGA within integer-periods are shown in Fig.4, where the number of vi-
bration period is Np, the vibration time is TN = 2πNp/ωv, t1 is the period of the first time that the read head has moved 
to the zero position, and t2 = t1+2πNp/ωv−Tm. Although electromagnetic interference from the test equipment and en-
vironment could be efficiently decreased by integrating the input accelerations within the integer precession periods 
of PIGA, the error interference generated during 0~t1 and Tm~TN should also affect the measurement accuracy of 
PIGA. Thus, the corresponding errors should be considered and compensated in PIGA output.  
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Fig. 4 Input accelerations and output pulses of PIGA testing within integer-periods precession. 

The average precession angular velocity of PIGA is: 
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According to Eq. (18), the static errors can be eliminated by subtracting the PIGA output in the static state. The 
calibration equation is obtained as 
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Compared with Eq.(17), it is shown that the calibration model of PIGA precession within the integer periods 
can be used to calibrate the nonlinear error terms of PIGA more accurately after compensating for the extra outputs 
generated by linear vibrating without integer periods.  

5. Calibration process design 

The complete test process for PIGA offline calibration on the linear vibration table is proposed as shown in Fig.5. 
The test process is divided into three parts: 
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Fig. 5 Test flowchart of PIGA within integer-period precession on linear vibration table. 

5.1. Planning and Preparation 

Error and sensitivity analyses should be conducted before PIGA test to analyze the influences of the main error 
sources and test positions. Then, calibration uncertainty can be estimated to pre-evaluate the calibration results. Ac-
cording to the analyses and calculation results mentioned above, the corresponding parameters of the calibration test 
should be reasonably designed. The detailed process is presented below. 

 
5.1.1. Error analysis 

The error analysis of the input acceleration of PIGA was provided in Section 3. In order to illustrate the influence 
of error sources on the accuracy requirements of the linear vibration table, the numerical calculations are shown in 
Table 3. 
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It is shown that the error accelerations caused by installation errors, parasitic rotation errors, and parasitic transla-
tion errors strongly affect the input accelerations of PIGA. When the nominal input acceleration aIA equals 10 g, the 
acceleration errors caused by installation angle and parasitic rotation errors are approximately 2.5×10−4 g. Moreover, 
the acceleration errors caused by the parasitic translation errors and output waveform deviation are approximately 
equal to 1.7×10−3 g.  

Table 3  Analysis of error accelerations on linear vibration table 

Error source Value  Error acceleration (g) 

∆θxv0，∆θyv0 5″ 2.5×10−5 
( )x tα∆ ， ( )y tα∆  2″ 1×10−4 

( )z tα∆  5″ 2.5×10−4 

( )x t∆ ， ( )y t∆ ， ( )z t∆  5 μm 1.67×10−3 

xv1θ∆ ， yv1θ∆ ， zv1θ∆  5″ 2.5×10−4 

5.1.2. Sensitivity analysis 

According to the error calibration model in Section 4, the Least-Squares (LS) method is adopted to identify the 
nonlinear error coefficients as follows: 
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The residual matrix e and the standard deviation of the residual σ can be calculated as follows: 
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= / 4nσ
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e Y LK

e e
                                     (21) 

It is assumed that the output uncertainty of PIGA is constant. When the information matrix is T=Q L L , the 
standard deviation of the nonlinear error coefficients can be obtained as 
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                           (22) 

where d11, d22, d33, and d44 are main diagonal elements of Q−1. 
The calibration uncertainty of the nonlinear error coefficients can be expressed as the standard deviation of the 

nonlinear error coefficients in Eq.(21). Thus, the calibration uncertainty should be improved by increasing the num-
ber of the test position n and decreasing the value of the main diagonal elements of Q−1. Although increasing test 
positions can effectively decrease the calibration uncertainty, the test cost and efficiency should also be increased.  
Therefore, it is necessary to scientifically and reasonably optimize the test positions to meet the calibration uncer-
tainty and ensure the test efficiency.  

Currently, the most common inertial calibration test method is optimizing the matrix Q based on the D-optimal 
criterion. In order to accurately identify the coefficients in the PIGA error calibration model via the LS method, the 
rank of Q must be greater than the number of coefficients, and the value of the determinant det (Q) should be de-
signed as high as possible.  
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Fig. 6. Relationship between det(Q) and the number of test positions 

 

Fig. 7 Relationship between RES and the number of test positions. 

The values of det (Q) for different numbers of test positions are shown in Fig.6 for the test angle positions of PI-
GA taken as interval angles on the indexing head. An exponential growth trend of det (Q) can be observed with an 
increase in n. 

In order to evaluate the sensitivity of det (Q) and optimize the test positions, the relative sensitivity function is 
constructed as 
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                             (23) 

where ( )= 1 =1N n n∆ − − . 
The calculation results of RES(n) in Fig.7 indicate that the value of relative sensitivity sharply increases when n is 

less than nine, and the maximum value is approximately equal to 1.8 for n = 9. It is illustrated that the 9-position test 
is the most sensitive and effective. Moreover, the value of RES(n) declines when n ≥10 and the curve gradually flat-
tens when n ≥40. Consequently, an excess of test positions may be unsuitable for high-efficiency tests, whereas the 
optimal range of n is usually from 9 to 40.  

 
5.1.3. Calibration uncertainty estimation 

As the expression of the average precession angular velocity of PIGA has been given in Eq.(17), the propagation 
of the measurement uncertainty of ( )i, jα can be expressed as follows: 

( ) ( ) ( )
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P T
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i, j i, j
i, j

P T
α α

σα σ σ
  ∂ ∂
 = +    ∂ ∂   

 
                          (24) 

where Pσ  is the counting uncertainty of the output pulse and Tσ  is the timing uncertainty of the timing system.  
When Pσ  = 1 and Tσ = 10−6 s, the combined standard measurement equals ( )i, jσα  ≈ 3.84×10−4/ Tm (i, j). 

Thus, to ensure that the measurement uncertainty of PIGA is less than 1×10−6 rad/s, the test time must be longer than 
384 s. Then, the calibration uncertainty could be estimated according to Eq.(22) and calculation results of RES(n). In 
order to analyze the influence of the different numbers of positions on the calibration uncertainty, the simulations of 
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integer periodic vibration method22 for PIGA testing on the linear vibration are constructed. The simulation parame-
ters of PIGA are set as follows: k0 =1.5×10−4rad∙s−1, kz = 0.56 (rad∙s−1)/g, kzz =6.0×10−6 (rad∙s−1)/g2, ky=5.0×10−6 
(rad∙s−1)/g2, and k3 =7×10−7 (rad∙s−1)/g3.  

The uncertainty estimation results of the nonlinear error coefficients for different numbers of the test positions 
{6-position (θvi=π(i-1)/3, 1,2, 6i = ， ), 9-position (θvi= 2π(i-1)/9, 1,2, 9i = ， ), 10-position (θvi= 
π(i-1)/5, 1,2, 10i = ， ), and 22-position (θvi = π(i-1)/12, 1,2, 24i = ， ; 7,19i ≠ )} and different vibration frequencies 
(5Hz, 7Hz, and 10Hz) are shown in Fig.8.  

 

Fig. 8 Calibration uncertainty of nonlinear error coefficients for different numbers of test positions and different vibratio
n frequencies. 

Obviously, the nonlinear error terms of PIGA cannot be fully excited in the lower vibration frequency test. The 
magnitudes of calibration uncertainties are more than 10−6 rad/s/g2 when fv = 5 Hz and fv = 7 Hz. In addition, it is 
shown that the calibration uncertainties of the second-order nonlinear coefficients for the 6-position calibration test 
are more than 7×10−7 rad/s/g2 which are much higher than those for the other three multi-position calibration tests. It 
is verified that the number of test positions can significantly affect the calibration uncertainty of nonlinear coeffi-
cients when n ≤10. Moreover, the calibration uncertainty of ky in 9-position test is higher than that in 10-position test. 
It is indicated that the calibration pose of PIGA will also affect the calibration uncertainty. With the increase of the 
number of test positions, the calibration uncertainties only slightly increase in the 22-position test. Thus, the number 
of the test positions should be reasonably designed to match the calibration uncertainty and cost requirements.  

 
5.1.4. Parameter design, PIGA installation, and alignment 

Based on the above analyses and error calibration model of PIGA, the test positions, time, and vibration frequen-
cies should be reasonably set before the calibration test. Specifically, the number of the precession period should be 
designed to ensure that t2 (in Fig.4) is kept as short as possible.  

PIGA is installed on the indexing head while ensuring that the table top's static balance is corrected. According to 
the error calibration model of PIGA, the installation errors may also affect the calibration uncertainty. Thus, PIGA 
must be aligned before the test. The common alignment method calculates the misalignment angle by PIGA itself in 
2-position test (θvi = 0° and 180°). Since the input accelerations are too small to excite the nonlinear error terms of 
PIGA, the alignment model of PIGA can be expressed as follows: 

( ) ( )ie v 0 v hsin = cos +i z ik kα ω λ θ θ θ+ − + ∆&                           (25) 
where hθ∆ is the misalignment angle. 

Then, the misalignment angle can be approximately calculated as follows: 

0 180 ie
h

2 sinarccos
2 zk

α α ω λθ
 − +

∆ =  
 

 
                           (26) 

where the value of kz can be obtained via the gravity field test. 
When ασ   is equal to 6.8×10−6 rad/s, the measurement uncertainty of latitude is 0.1°. Moreover, the calibration 

uncertainty of kz is 1×10−4 (rad∙s−1)/g, and the propagation of the measurement uncertainty of hθ∆ is expressed as 
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Thus, the acceleration errors caused by hθ∆ may be less than 8.6×10−5 g and the corresponding error terms in the 
error calibration model of PIGA can be assumed as negligible.  

5.2. PIGA test 

After planning and preparation, the calibration test should be started in different positions in sequence. According 
to Eq.(19), the PIGA testing comprises two parts: 

(1) Linear Vibration Test: When the linear vibration table is running stably, the control & monitoring system starts 
to monitor the running status. Then, the zero time and t1 values are recorded. Parameter Tm is recorded once the 
number of the output pulses reaches the preset value. Once the read head moves to the zero position for the next time, 
t2 and Np are recorded.  

(2) Static Test: The static test is designed after vibration test in the same position to compensate for the installation 
errors such as ∆θxv0 and Δθxv2. The test process is similar to the linear vibration test. However, the linear vibration 
table should remain static state. The test time should also ensure that PIGA precesses within integer periods. Then, 
once the PIGA test is completed, the corresponding data should be acquired. 

5.3. Coefficient identification 

Once the PIGA has been tested for all positions and vibration frequencies in the designed order, the nonlinear error 
coefficients can be identified based on LS method. Then, the residuals and the standard deviations of residual are 
calculated via Eq.(21). According to Ref.24, the statistical analysis was conducted to evaluate the test reliability:  

c

max /

1.25 ln / 3N

µ σ

µ

 =


= +

e
                                  (28) 

where N is the number of the test points.  
If μ ≥μc, the test data may have a breaking point. If μ <μc, the test data could be accepted. Then, the calibration 

uncertainty of the nonlinear coefficients of PIGA can be calculated by Eq.(22) to determine whether they meet the  
requirements of the calibration uncertainty. In order to evaluate the calibration uncertainty with respect to the input 
acceleration, the proportional residual error is designed as follows: 

( ) ( ) ( )nominala i , j i , je e / a i, j=                                   (29) 

where ( )i , je is the residual error and ( )nominala i, j is the nominal amplitude of the input acceleration of linear vibration 
table. 

6. Experiments and simulations 

Based on the error calibration model of PIGA and the calibration test process, the main error sources should be 
firstly measured and compensated for the error calibration model. 
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Fig. 9 Overall measurement experimental diagram of main error sources. 
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6.1. Error measurement experiments 

The error measurement experiments are conducted, including parasitic translation errors experiment, frequency 
stability experiment, parasitic rotation errors experiment, and lateral acceleration experiment, as shown in Fig.9, 
which utilize position monitor system, frequency monitor system, electronic gradienter, and CapaNCDT measure-
ment system respectively. The detailed parameters of linear vibration table, measurement systems, and PIGA are 
summarized as shown in Table 4. 

Table 4  Detailed parameters of experimental system. 

System Parameter Performance System Parameter Performance 

Linear Vibration Table 

Top Table Size Φ=300 mm 
Position Monitor System 

Measurement Accuracy < ±1 μm 

Payload Size 
200 mm×200 mm ×220 

mm 
Resolution < 2 nm 

Useful Load 10 kg 

Frequency Monitor System 
 (TONiC Grating System) 

Measurement Accuracy < ±1 μm 

Frequency Range 0.1-10 Hz Low Signal Output Jitter 
<±0.5 nm RMS 

 

Frequency Stability <5.0×10-4 
Sub-Divisional Error 

(SDE) 
<±30 nm 

Working Amplitude ±30 mm Resolution < 2 nm 
Acceleration Ampli-

tude 
0.1 G-10 G Electronic Gradienter Measurement Accuracy     < 0.01″ 

Waveform Distortion <1.7×10-3 

CapaNCDT Measurement 
System 

Measuring Range 1 mm 

Lateral Acceleration <0.1 g Resolution 
0.75 nm (static, 2Hz) 
20 nm (dynamic, 8.5 

kHz) 
Magnetic Field Inten-

sity 
<0.5 Gs Linearity 

±0.05 FSO 
 

PIGA 
Parameter Performance Parameter Performance Parameter Performance 

Synchronization Accu-
racy 

<100 μs Measurement range ≥10-6 g – 20 g Output Pulse 16384 per period 

Timing Accuracy <100 μs Angle Measurement Error <1.5′ Pulse Counting Error <±2 per period 

 

6.1.1. Parasitic translation errors experiment 

The position monitor system is composed of absolute grating ruler, reading head, and grating interface circuit 
which are all mounted in the linear vibration table. The absolute grating ruler is high-precision invar steel RELA 
absolute linear grating of which the precision is less than ±1 µm. The signal sampling frequency of the grating inter-
face is 5000 Hz. The harmonic components of Dz(t) can be calculated by the Fast Fourier Transform (FFT) algorithm 
as shown in Table 5. The amplitude of displacement can be expressed as follows:  

( ) ( ) ( ) ( ) ( ) ( )( )z s s1 0 v 0 c1 v 0 s v 0 c v 0
2

= sin cos sin cosj j
j

D t A Z A t Z t Z j t Z j tω γ ω γ ω γ ω γ
∞

=

+ + + + + + + + +∑  (30) 

where sA is the average value of the measured displacement and 0γ  is the initial phase.  
Taking the highest frequency of 10 Hz as an example, the measurement error of the maximum vibration amplitude 

caused by sampling delay can be calculated by 
6

max 0 0
π π 10sin( ) sin( 2π ) 2.37 10 m
2 2 5000

A A A −∆ = − + × = ×                        (31)    

The other values of ΔAmax for different frequencies are estimated as shown in Table 5. Compared with the values 
of parasitic translation errors in Table 5, the values of ΔAmax are close to the second-order harmonic coefficients and 
much smaller than the value of Zs1. According to Eq. (19), the maximum values of the output errors caused by sam-
pling delay are all less than 7×10−8 rad/s. Generally, the output uncertainty of PIGA is about 1×10−7 rad/s. Thus, the 
measurement error caused by sampling delay cannot affect the calibration of high-order error coefficients of PIGA. 

It is illustrated that the value of Zs1 increases with the vibration frequency within the range from −88 μm to 83 μm. 
Then, the error accelerations caused by Zs1 could be higher than 1.80×10−6g when the vibration frequency is 10Hz. 
Based on the measurement results, Zs1 can be obtained as follows:  

 ( )s1 v0.1299 0.0032 jZ j ω= − +                                    (32) 
The error calibration model should be compensated with Eq.(32) to identify the nonlinear error coefficients of 

PIGA. 
Table 5 Measurement results of parasitic translation in vertical direction. 
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Frequency 
(Hz) Zs1 (mm) maxA∆ (mm) Zs2 (mm) Zc2 (mm) 

1 −0.0886 2.37×10−5 0.0024 −0.0042 
3 −0.0774 0.0002 0.0004 −0.0207 

5 −0.0548 0.0006 −0.0030 0.0043 
7 −0.0048 0.0012 −0.0019 −0.0141 
9 0.0504 0.0019 −0.0014 0.0475 
10 0.0834 0.0024 0.0021 −0.0024 

 

6.1.2. Frequency stability experiment 

The TONiC grating system is utilized in the measurement system. It is regarded as a new generation of ul-
tra-compact linear grating, which is specially designed for high-dynamic-precision linear motion systems and 
providing higher accuracy. TONiC grating system consists of an incremental grating ruler, a reading head and a 
grating interface circuit board as shown in Fig.9. In order to measure the frequency stability, the linear vibration table 
should vibrate at the nominal frequency from 0.1 Hz to 10 Hz. After the vibration is stable, the measurement fre-
quency fe is recorded continuously over 10 periods (e=1,2,3,... ,10). Then, the vibration frequency stability can be 

calculated by ( )
10 2

1

1
3f e

e
f f f

f
σ

=

= −∑ , where f  is the average value of fe. The measurement results of f  and 

the average frequency errors ∆fv (∆fv= f − f ) are given in Table 6. It is verified that the accuracy of frequency can be 
ensured because the maximum value of ∆fv and f fσ  are less than 5.0×10−6 Hz and 2.0×10−5, respectively, which 
are far less than the specified value in Table 4. 

Then, the average precession angular velocity error of PIGA caused by the vibration frequency error can be ap-
proximately estimated as 
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00
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∫
                         (33) 

The maximum value of iα∆  is less than −3.4×10−11 rad/s as shown in Table 6. It is illustrated that the frequency 
stability of the linear vibration table can meet the requirement of test accuracy for calibrating PIGA. 

Table 6  Measurement results of vibration frequency stability 

Frequency 
(Hz) 

0.1  1 2 3 4 5 6 7 8 9 10 

f  0.1000013 1.0000005 1.999999 3.000001 4.000003 4.9999973 6.000004 6.9999978 8.0000013 8.9999971 10.000040 

∆fv (Hz) −1.3×10−6 −5.0×10−7 1.0×10−7 −1.0×10−7 −3.0×10−6 2.7×10−6 −4.0×10−6 2.2×10−6 −1.3×10−6 2.9×10−6 4.0×10−6 

σf/f 1.8×10−5 3.5×10−6 4.0×10−6 6.0×10−6 5.5×10−6 7.4×10−6 9.0×10−6 7.5×10−6 1.0×10−5 9.6×10−6 1.8×10−5 

eα∆   
(rad/s) 

−3.4×10−11 −2.4×10−14 −1.8×10−14 −4.0×10−14 −2.3×10−14 −3.9×10−14 −6.6×10−14 −3.4×10−14 −7.2×10−14 −5.5×10−14 −3.1×10−13 

 

6.1.3. Parasitic rotation errors experiment 

According to Eq.(17), the parasitic rotation error terms axs1 will also affect the calibration uncertainty. Thus, the 
magnitude of parasitic rotation errors should be estimated by unitizing the electronic gradienter (the equivalent accu-
racy of position is less than 0.01″ and the equivalent resolution is 0.005″). When the angular positions of the crank 
disk are 0°, 60°, 120°, 180°, 240°, or 300°, the indication outputs of gradienter along the three axis lines xφ , yφ , 

zφ  are shown in Table 7.  
The harmonic components of ( )x tα∆  can be obtained as follows:  

11

xs1 x
0

11

xc1 x
0

2 2π 2πsin
12 12 12

2 2π 2π= cos
12 12 12

i

i

i ia

i ia

φ

φ

=

=

   =      


  
     

∑

∑
.                                 (34) 
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Similarly, the harmonic components of Δay(t) and Δaz(t) can also be calculated by Fourier transforms. The calcu-
lated results are shown as follows: axs1 = −0.92″, axc1 =0.19″, ays1 = −0.46″, ayc1 = −1.49″, azs1 = 0.16″, and azc1 = 
0.16″. According to the conducted error analysis in Section 5, error accelerations caused by the parasitic rotation 
errors are 5×10−5 g, 7.5×10−5 g, and 7.5×10−5 g, respectively. Thus, the corresponding influence of Δay(t) and Δaz(t) 
on the identification of nonlinear coefficients can be assumed as negligible. Therefore, the error calibration model 
defined by Eq.(20) should be compensated with the measurement value of axs1.  

Table 7  Measurement results of parasitic rotation errors 

Angle position xφ (″) yφ (″) zφ (″) 

0° 15.7 0.15 10.08 
60° 16.6 −1.725 10.09 

120° 16.725 −1.20 9.74 
180° 17.8 0.90 10.45 
240° 16.925 1.50 10.03 
300° 15.725 0.75 10.23 

 

6.1.4. Lateral acceleration experiment 

Based on the kinetic analysis of the linear vibration table, we can find that the main error component during the 
PIGA testing caused by resonance is lateral acceleration. The lateral acceleration can be calculated by using the ca-
pacitive Non-Contact Displacement Transducer (CapaNCDT) system, as shown in Fig.9. When the working fre-
quency is 10 Hz, the parasitic translation ∆x(t) in the horizontal plane can be measured, and the maximum value of 
∆x(t) is less than 0.006 mm.22 Thus, the maximum amplitude of lateral acceleration O-maxa  has been restrained to be 
less than 2.4×10−3 g. Then, the value of 2

la O-max0.5 xk aα =&  is less than 5.8×10−11 rad/s when xk is approximately 
equal to 1×10−5 rad/s/g2. Obviously, the lateral acceleration caused by resonance cannot affect the calibration accu-
racy of PIGA. Therefore, as long as we ensure that the lateral acceleration is less than 2.4×10−3 g during the calibra-
tion testing, the resonance influence could be ignored. 

 
6.2. PIGA calibrations 

6.2.1. Design of integral precession calibration method 

Based on the results of the error measurement experiment, the simulations are constructed to verify the applicabil-
ity and effectiveness of the proposed calibration method. The clock frequency of the CPU in the measurement system 
is set to 2.9 GHz, the period is 340 ps, and the timing resolution is 50 ns to measure the relative test time precisely. 
Thus, the timing uncertainty can reach 10-7s.  

It is assumed that the local latitude is 39.94°. Taking θvi = 0° and 180° as examples, the time parameters of PIGA 
calibration are constructed for different vibration frequencies as shown in Table 8. It should be noted that the test 
time of different vibration frequencies are relatively close to the static test because the magnitudes of the nonlinear 
error terms of PIGA are much smaller than those of the other linear accelerometers in the sinusoidal vibration test. 
Thus, the timing uncertainty should significantly affect the output accuracy of PIGA.  

Table 8  Time parameters of integral precession calibration. 

fv 

Parameter 
8 Hz 9 Hz 10Hz 

Np(0, j) 4485 5042 5602 
t1(0, j) (s) 0.009945 0.009466 0.0107632 
Tm(0, j) (s) 560.532589 560.165550 560.133591 
t2(0, j) (s) 0.102357 0.066135 0.0771802 

Tm(0, 0) (s) 560.842523 560.845114 560.850239 
Np(π, j) 4490 5053 5613 

t1(π, j) (s) 0.010760 0.010706 0.0097032 
Tm(π, j) (s) 561.244595 561.352932 561.285019 
t2(π, j) (s) 0.016166 0.102216 0.024692 

Tm(π, 0) (s) 561.149292 561.153358 561.162066 

 
6.2.2. Comparison of integer periodic vibration method 
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Furthermore, a comparison of the integer periodic vibration method is performed to verify the superiority of the 
proposed method. According to Eq.(17), the calibration error model of the integer periodic vibration method can be 
deduced as  

( ) ( ) 2 2 2 2 2 2 2 2 3s1 s1
V V xs1 v v 2 v 3 v

0 0

1 1 2 1 2 3, ,0 / sin 1 / cos 1 / sin / cos
2 2 2 2z j i zz j i j i j i

Z Zi j i a k A g k A g k A g k A g
A A

α α θ θ θ θ
    ′− = + − + − +   
   

     (35) 

Thus, the nonlinear error coefficients of PIGA can be identified by LS method. The number of vibration periods 
should be the same as shown in Table 8, and the vibration time of the integer periodic vibration calibration TV(i, j) is 
set as shown in Table 9. It is noted that the testing time of the two calibration methods are almost the same, which 
means that the test cost and efficiency will not significantly increase.   

Table 9  Time parameters of integer periodic vibration calibration 

fv 

Parameter 
8 Hz 9 Hz 10Hz 

TV(0, j) (s) 560.625000 560.222222 560.200000 
TV(π, j) (s) 561.250000 561.4444444 561.300000 

 
6.2.3. Calibration results 

The calibration results of integral precession calibration and integer periodic vibration calibration are shown in 
Table 10. It is shown that the calibration uncertainties significantly decrease with the increase of fv since the higher 
input acceleration can excite nonlinear error terms more adequately. Meanwhile, compared with the simulation re-
sults of integer periodic vibration method, the proposed calibration method can calibrate main nonlinear error coeffi-
cients more accurately. The magnitude of absolute error zzk̂∆  decreases from 10-6 rad/s/g2 to 10-7 rad/s/g2. In addi-

tion, the magnitude of 3k̂∆  decreases from 10-7 rad/s/g3to 10-8 rad/s/g3.  
Table 10  Simulation calibration results of error coefficients 

fv 

Coefficient 
8 Hz 9 Hz 10Hz 

Proposed  
method 

zzk (rad/s/g2) 6.13×10−6 5.90×10−6 6.02×10−6 

zzk∆ (rad/s/g2) 1.26×10−7 1.05×10−7 1.56×10−8 

3k (rad/s/g3) 7.09×10−7 6.70×10−7 6.98×10−7 

3k∆ (rad/s/g3) 9.19×10−9 7.02×10−8 2.49×10−9 

Integer  
periodic  
vibration  
method 

zzk (rad/s/g2) 6.87×10−6 9.05×10−6 5.82×10−6 

zzk∆ (rad/s/g2) 8.68×10−7 3.05×10−6 1.86×10−7 

3k (rad/s/g3) 1.25×10−6 1.65×10−6 1.33×10−6 

3k∆ (rad/s/g3) 5.47×10−7 9.53×10−7 6.32×10−7 

Furthermore, the calibration results for different test positions by utilizing the proposed method are given in Table 
11 when the vibration frequency is 10 Hz. The absolute errors of second error coefficients are all less than 10−7 
rad/s/g2, and their values decrease with the increase of the number of test positions. Meanwhile, according to the 
calculation results of the sensitivity analysis in Section 5, standard deviations are significantly decreased. Conse-
quently, the calibration uncertainty is decreased by over 50%. It is also shown that the absolute error and the calibra-
tion uncertainty significantly increase without compensating for the parasitic translation errors and parasitic rotation 
errors for PIGA calibration. Thus, it is necessary to accurately measure and compensate for these errors. 

In order to further verify the effectiveness of the proposed method, the integer periodic precession method for 
multi-frequency test21 and the integer periodic vibration method for 9-position test22 are applied. The multi-frequency 
calibration method is often used to calibrate the second-order coefficients by upward and downward testing with 
PIGA mounted vertically, and then the cross-quadratic term coefficient can be calibrated by inclined position testing 
(θvi = 45°). Thus, the multi-frequency calibration test is conducted at 3 angular positions (θvi = 0°, 45°, and 180°), 
and each position is tested for 3 frequencies (8, 9, and 10 Hz). 

Table 11  Calibration results of multi-position and classical methods 

Multi- 
position 

Calibration results Absolute error Calibration uncertainty 

kzz  
(rad/s/g2) 

ky  
(rad/s/g2) 

k3  
(rad/s/g3) 

Δkzz  
(rad/s/g2) 

Δky  
(rad/s/g2) 

Δk3  
(rad/s/g3) 

Standard  
Deviation (rad/s) zzkσ  

ykσ  
3kσ  
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(rad/s/g2) (rad/s/g2) (rad/s/g3) 

6 6.04×10−6 4.92×10−6 6.13×10−7 3.6×10−8 8.2×10−8 8.7×10−8 8.9×10−6 8.7×10−8 8.6×10−8 5.1×10−8 

9 5.96×10−6 5.04×10−6 7.30×10−7 3.6×10−8 3.9×10−8 3.0×10−8 7.4×10−6 7.4×10−8 5.9×10−8 3.4×10−8 

10 5.99×10−6 5.05×10−6 7.33×10−7 6.0×10−9 4.5×10−8 3.3×10−8 4.4×10−6 3.5×10−8 3.3×10−8 2.0×10−8 
10 

(axs1 =5×10−6 rad) 5.96×10−6 5.06×10−6 6.42×10−7 4.4×10−8 5.8×10−8 5.8×10−8 8.5×10−6 6.9×10−8 6.4×10−8 4.0×10−8 

10 
(Zs1 =0.0834 mm) 5.89×10−6 5.09×10−6 6.72×10−7 1.0×10−7 9.1×10−8 2.8×10−8 6.2×10−6 4.7×10−8 4.7×10−8 2.3×10−8 

Integer periodic  
Precession method  
for multi-frequency 

6.12×10−6 5.12×10−6 1.20×10−6 1.2×10−7 1.2×10−7 5.0×10−7 1.7×10−5 1.4×10−7 1.3×10−7 7.6×10−7 

Integer periodic  
vibration method  

for 9-position 
6.20×10−6 5.15×10−6 7.95×10−7 2.0×10−7 1.5×10−7 9.5×10−8 3.99×10−5 4.3×10−7 4.3×10−7 1.5×10−7 

The calibration results of the two compared methods are shown in Table 11. It is shown that the standard devia-
tions of the compared calibration methods are all more than 1×10−5 rad/s, but the order of the standard deviation of 
the proposed calibration methods for 9-position testing is 10-6 rad/s. Similarly, the order of absolute error and calibra-
tion uncertainty of the second-order term coefficients are decreased from 10−7 rad/s/g2 to 10−8 rad/s/g2 by utilizing the 
proposed method. It is verified that the proposed method can precisely and efficiently calibrate the nonlinear error 
coefficients of PIGA. Compared with the other two multi-position calibration method based on D-optimal design, the 
order of absolute error of k3 increases from 10−8 rad/s/g3 to 10−7 rad/s/g3, and the calibration uncertainty of k3 in-
creases by more than five times by using the integer periodic precession method for multi-frequency test. In addition, 
the absolute errors of integer periodic precession method are obviously less than those of the integer periodic vibra-
tion method. It is illustrated that the calibration accuracy of the nonlinear error term coefficients can be significantly 
improved by compensating for the error terms generated by linear vibration without integer periods. 

 
6.3. Calibration result evaluation 

Residual errors for different test positions are restrained within ±8×10−6 rad/s, while the residual errors of the 
10-position test are smaller than those of the 6-position test as shown in Fig.10 (a). It is also verified that additional 
test positions can significantly improve the calibration uncertainty of the nonlinear error coefficients of PIGA. In 
addition, the residual error distribution illustrates that no apparent systematic errors exist in the error calibration 
model and that the proposed calibration method can meet the adequacy of model equations.   

 

Fig. 10  Calibration result evaluation of proposed methods for different numbers of test positions. 
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According to Eq.(27), the reliability of the multi-position test can be calculated as follows: (μ6 = 0.7105) < (μc6 = 
1.5964), (μ9 = 0.9908) < (μc9 = 1.7993), (μ10 = 1.0153) < (μc10 = 1.8516). In other words, the test data can be accepted 
to identify the nonlinear error coefficients of PIGA.  

 Proportional residual errors of the three multi-position tests are shown in Fig.10 (b). The distribution of the pro-
portional residual errors for different tests is sinusoidal due to the cosine input accelerations Ajcosθvi. Moreover, alt-
hough the standard deviation of the 9-position test is smaller than that of the 6-position test, the proportional residual 
errors of the 9-position test are more than double the value of that of the 6-position test and the 10-position test. It is 
indicated that, since the smaller input acceleration cannot fully excite the nonlinear error terms of PIGA, the test po-
sitions of PIGA should be reasonably designed to avoid the test points that are close to the angle position θvi = 90° 
and θvi = 270°.  

 

Fig. 11 Calibration result evaluation of different calibration methods. 

The residual errors for different calibration methods are shown in Fig.11 (a). Compared with the two classical cal-
ibration methods, the residual errors are much smaller by using the proposed calibration method. Obviously, a low 
residual generally signifies that the model is proficient at delineating the distributional characteristics of the test data. 
It is verified that the proposed error calibration model has a higher applicability for the multi-position vibration test. 
The proportional residual errors of the different calibration methods are shown in Fig.11 (b). The proportional resid-
uals of the last three test points by using the integer periodic vibration method for 9-position testing are more than 
4.0×10−6 rad/s/g, which are much larger than those of the other two calibration methods. It is demonstrated that the 
common error calibration model is not suitable for high-precise calibration testing of PIGA without compensating for 
the error terms of nonintegral vibration. In addition, the distribution of proportional residuals is concentrated within 
2.2×10−6 rad/s/g by using the proposed method. It is verified that the proposed D-optimal multi-position mode could 
be more effectiveness.   

4. Conclusions 

In this paper, the integral precession calibration method was proposed to calibrate the nonlinear error coefficients 
of the pendulous integrating gyroscopic accelerometer (PIGA). According to the established corresponding coordi-
nate systems, the precise inputs about the three referent axes of PIGA were deduced and the error calibration model 
of PIGA precession within integer periods was established. The main errors of the measurement systems could be 
avoided, and the designed calibration process could suppress the output interference of PIGA; hence, the measure-
ment uncertainty and the calibration efficiency of PIGA were further improved. According to the conducted analysis, 
experimental investigation, and simulation results, the following conclusions can be drawn: 

(1) Compared with the integer periodic vibration method, the proposed integral precession calibration method 
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can more accurately identify the nonlinear error coefficients of PIGA. More specially, the calibration uncertainty of 
k3 could be approximately decreased to one-tenth of the value. 

(2) The optimization and design of the complete calibration process can further improve the calibration uncertainty 
and test efficiency. According to the verification results, the calibration uncertainties were reduced by about 50% 
using the 10-position calibration test.  

(3) By comparing the calibration test without parameter optimization, without compensating for the parasitic er-
rors, and the other two classical calibration method, it was observed that the proposed method could significantly 
reduce the influence of the errors caused by the test instruments and the PIGA output unit. 

Consequently, the proposed calibration method and the designed calibration process can significantly improve the 
calibration uncertainty of PIGA. In addition, the proposed method can be applied for enhancing the high-g perfor-
mance of high-precision inertial instruments. Further work will be conducted using this calibration method for sensor 
array and the online calibration method can be investigated by upgrading the calibration system and identification 
algorithm. 
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