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Abstract

Performance prediction is set to play a significant role in supportive middleware that is designed to manage workload on parallel and distributed
computing systems. This middleware underpins the discovery of available resources, the identification of a task’s requirements and the match-
making, scheduling and staging that follow.

This paper documents two prediction-based middleware services that address the implications of executing a particular workload on a given
set of resources. These services are based on an established performance prediction system that is employed at both the local (intra-domain) and
global (multi-domain) levels to provide dynamic workload steering. These additional facilities bring about significant performance improvements,
the details of which are presented with regard to system- and user-level qualities of service. The middleware has been designed for the management
of resources and distributed workload across multiple administrative boundaries, a requirement that is of central importance to grid computing.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The computing architectural landscape is changing. High-
end resources that were once large, multi-processor supercom-
puting systems are being increasingly replaced by heteroge-
neous commodity PCs and complex powerful servers. These
new architectural solutions, including the Internet computing
model [28] and the grid computing [18,25] paradigm, aim to
create integrated computational and collaborative environments
that provide technology and infrastructure support for the effi-
cient use of remote computing facilities. The adoption of such
architectures rests on the outcome of a number of important re-
search areas; one of these – performance – is fundamental, as
the uptake of these approaches relies on their ability to provide
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a steady and reliable source of capacity and capability comput-
ing power.

While the study of performance in relation to computer
hardware and software has been a topic of much scrutiny for a
number of years, it is likely that this research area will change to
reflect the emergence of geographically dispersed networks of
computing resources such as grids. There will be an increased
need for high performance resource allocation services [3] and
an additional requirement for increased system adaptability
in order to respond to the variations in user demands and
resource availability. Performance engineering in this context
raises a number of important questions, the answers to which
will impact on the utilisation and effectiveness of related
performance services:

What does the performance data describe? The response
of a system (or user) to the performance data will depend
on the nature of the data. This might include timing data
for the run-time of a particular application (on a given
resource) or data relating to the monitoring of various network
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and computational resources, for example the communication
latencies provided by network monitors such as NWS [35].

How is this performance data obtained? Gathering
performance data can be achieved by a number of methods.
Monitoring services provide records (libraries) of dynamic
information such as resource usage or characteristics of
application execution. This data can be used as a benchmark for
anticipating the future performance behaviour of an application,
a technique that can be used to extrapolate a wide range of
predictive results [15]. Alternatively it is possible to extract data
from an application through the evaluation of analytical models.
While these have the advantage of deriving a priori performance
data – the application need not be run before performance data
can be collected [1,29] – they are offset by the complexity of
model generation.

How is this data classified? Monitored data is often fixed-
scenario – based on a particular run on a particular machine
– in contrast, analytical approaches can produce parametric
models which allow the investigation of performance scenarios
through extrapolation. Data will also relate to different levels of
abstraction in the system; this may include different application
software components [34] or different machine instruction
benchmarks [23] for example.

How can this data be used? Once the data has been
obtained it needs to be published. This can be achieved through
information services that ensure the shared performance data
remains current amongst the distributed nodes in the system.
The delivery of the data via information services allows it to
be used for resource scheduling [7,33], batch queueing [27],
resource discovery [10,11] or resource brokerage [8,21]. The
data might also be used to manage workload from the point of
view of service contracts, deadlines, or other user and system
defined QoS (Quality of Service) constraints.

What will acting on this data achieve? The provision
of performance information can have a number of benefits:
distributed performance services [19] can be built that allow
middleware to steer tasks to suitable architectures; the QoS
demands of users can be serviced in resource efficient ways; the
architecture can be configured so that the best use is made of its
resources; the capabilities of the architecture can be extended,
and configurations for providing application steering can be
implemented.

This paper addresses these issues in the context of
an application performance prediction environment. The
Performance Analysis and Characterisation Environment
(PACE) [29] developed by the High Performance Systems
Group at the University of Warwick is a performance
prediction system that provides quantitative data concerning the
performance of (typically scientific) applications running on
high performance parallel and distributed computing systems.
The system works by characterising the application and the
underlying hardware on which the application is to be run, and
combining the resulting models to derive predictive execution
data. PACE provides the capability for the rapid calculation
of performance estimates without sacrificing performance
accuracy. PACE also offers a mechanism for evaluating
performance scenarios – for example the scaling effect of
increasing the number of processors – and the impact of
modifying the mapping strategies (of process to processor) and
underlying computational algorithms [12].

The real-time capabilities and parametric prediction func-
tions (see Section 2) allow PACE to be used for the provi-
sion of dynamic performance information services. These in
turn can be used to aid the scheduling of tasks over clusters
of homogeneous resources (see Section 3), and provide a ba-
sis for the higher-level management of grid system resources
(see Section 4). Results (in Section 5) show that employing pre-
diction techniques at these two system levels provides an effi-
cient framework for the management and distribution of multi-
ple tasks in a wide-area, heterogeneous distributed computing
environment.

2. The PACE toolkit

Details of the PACE toolkit can be seen in Fig. 1. An
important feature of the design is that the application and
resource modelling are separated and there are independent
tools for each.

The Application Tools provide a means of capturing the
performance aspects of an application and its parallelisation
strategy. Static source code analysis forms the basis of this
process, drawing on the control flow of the application,
the frequency at which operations are performed, and
the communication structure. The resulting performance
specification language (PSL) scripts can be compiled to an
application model. Although a large part of this process is
automated, users can modify the performance scripts to account
for data-dependent parameters and also utilise previously
generated scripts stored in an object library.

The capabilities of the available computing resources are
modelled by the Resource Tools. These tools use a hardware
modelling and configuration language (HMCL) to define the
performance of the underlying hardware. The resource tools
contain a number of benchmarking programs that allow the
performance of the CPU, network and memory components of
a variety of hardware platforms to be measured. The HMCL
scripts provide a resource model for each hardware component
in the system, since these models are (currently) static, once
a model has been created for a particular hardware, it can be
archived and reused.

Once the application and hardware models have been
generated, they can be evaluated using the PACE Evaluation
Engine. PACE allows: time predictions (for different systems,
mapping strategies and algorithms) to be evaluated; the
scalability of the application and resources to be explored;
system resource usage to be predicted (network usage,
computation, idle time etc.), and predictive traces to be
generated through the use of standard visualisation tools.

The PACE performance evaluation and prediction capabil-
ities have been validated using ASCI (Accelerated Strategic
Computing Initiative) high performance demonstrator applica-
tions [12,24]. The toolkit provides a good level of predictive
accuracy (an approximate 5% average error) and the evalua-
tion process typically completes in a matter of seconds. PACE
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Fig. 1. An outline of the PACE system including the application and resource modelling components and the parametric evaluation engine which combines the two.
has been used in a number of other high-performance settings;
these include the performance optimisation of financial appli-
cations [30], real-time performance analysis and application
steering [2] and the predictive performance and scalability mod-
elling of the application Sweep3D [12].

This work is different from our previous research in that
the prediction data (from PACE) is integrated in and applied
to a dynamic workload steering environment. To enable such
an application, new techniques have been devised that allow
PACE performance data to be generated, published and queried
in real time. This provides the basis for the services documented
in Sections 3 and 4.

This paper also documents two levels of performance
management (intra-domain and multi-domain) based on
performance data. These services are supported by abstract
and domain views of prediction data provided through an
integration of PACE with the Monitoring and Discovery Service
(MDS) [16] from the Globus Toolkit [17].

Finally this paper demonstrates a new mapping between
PACE prediction data and high-level system metrics, including
average system delay, idle time and resource utilisation.

3. Intra-domain management

The management of resources at the intra-domain level is
provided by the combination of a co-scheduler Titan [32] and
a standard commodity scheduler (in this case Condor [27],
operated in dedicated mode rather than cycle-stealing mode).
Titan employs the PACE predictions to manage the incoming
tasks and improve resource utilisation by coupling application
performance data with a genetic algorithm (GA). The objective
of the GA is to minimize the run-time of applications, reduce
the resource idle time and maintain the service contracts
(deadline) of each task. This is achieved by targeting suitable
resources and scaling the applications using the evaluated
performance models.

Titan uses a cluster-connector that instructs the underlying
cluster management software to execute tasks in a particular
order with predetermined resource mappings. This approach
allows the predictive information obtained from PACE to
drive the task execution provided by established workload
management systems. In the case of Condor, this is achieved
by generating specific resource advertisements (ClassAds [31])
that instruct Condor to run a particular task on a designated
resource (or set of resources) and generating a custom
submit file that details the various input, output and argument
parameters as required. Execution commands are issued to the
cluster manager just-in-time, ensuring that the task queue is
not reordered by Condor before the tasks are deployed to the
underlying resources. Fig. 2 provides an overview of the intra-
domain level middleware components.

An advantage of the co-scheduler is that when predictive
data is not available, the task can simply pass to Condor directly.
The architecture does not therefore dictate a sea change in the
choice of platform that is required in order to benefit from these
techniques.

The cluster connector monitors the resources using Condor’s
status tools and can respond to resource variations such as
machines going off-line or being re-introduced into the local
domain. In each case, the genetic algorithm is able to respond to
the changes in state and compensate accordingly. This prevents
the schedule queue becoming blocked by a task that specifies
more resources than are available and allows the system to
utilise new resources as they come on-line.

Tasks enter the system by means of a portal from which
the user specifies an application name, deadline and PACE
performance model. A pre-execution script can also be
specified, which allows application-specific initialisation such
as modifying input control files based on the processor mapping
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Fig. 2. Intra-domain level middleware components. Tasks that have associated
performance data are processed by the Titan co-scheduler. This maps the tasks
to the resources before they are finally committed to the physical hardware by
Condor.

recommended by Titan, or down-loading appropriate binaries
for the resource type.

Titan combines the PACE application model with the
hardware model for a particular resource. The combined model
is evaluated for different processor configurations to obtain a
scaling graph for the application on the given resource. By
comparing the application’s minimum run-time with the run-
time of the existing queued tasks, Titan is able to predict when
the application will complete and can compare this with the
user-specified deadline. If the deadline of the task can be met,
the task is submitted to the local queue for processing. If the
deadline cannot be met then Titan will negotiate with other
co-schedulers to determine whether the task request can be
satisfied by neighbouring resource domains (see Section 4). If
it is not possible to meet the deadline, the task is submitted to
the resource that minimises the deadline failure.

When a task is accepted for processing it is placed in Titan’s
scheduling queue with the other accepted tasks. The genetic
algorithm works on this queue while the jobs are waiting,
exploring task mappings that reduce the makespan (end-to-end
run-time), idle time (locked between processes) and average
delay (the amount of time tasks complete before or after
their deadline). The GA creates multiple scheduling solutions,
evaluates these and then rejects unsuccessful schedules while
maintaining the good schedules for the next generation. As
better schedules are discovered, they replace the current best
schedule and the queue is reordered appropriately. When
resources are free to accept the tasks at the front of the queue,
the tasks are despatched by the cluster connector.

On task completion, Titan compares the actual run-time of
the task against the predicted run-time generated by PACE,
feeding back refinements where possible.
Fig. 3. Top — run-time schedule using just Condor (70.08 min); Bottom —
run-time schedule using Condor and the predictive co-scheduler Titan (35.19
min).

The capabilities of the predictive co-scheduler are demon-
strated. This is performed by selecting 30 random tasks from a
set of 5 parallel kernels and queuing the tasks onto 16 homo-
geneous hosts. Each of the parallel kernels has a corresponding
PACE application model and the task set is chosen so that each
of the tasks exhibit different parallel scaling behaviours.

The results in Fig. 3 are based on run-time measurements
obtained from a cluster of 16 1.4 GHz Pentium 4s with
communication across a Fast Ethernet network. Using a
population size of 40, the Titan co-scheduler (running on an
800 MHz Pentium III) is capable of performing approximately
100 GA iterations per second. Each task is assigned an arbitrary
deadline, all the tasks run to completion and pre-empting (the
ability to multi-task or micro-schedule) is not permitted.

Table 1 shows the results of these experiments. In the first
three experiments Condor is operated without the co-scheduler
Titan. The tasks submitted to Condor in the first experiment
are specified with an arbitrary number of hosts (from 1 to 16)
for each task. This is representative of users submitting tasks
without regard to the current queue or how best the tasks scale
over the given resources. In many cases, larger tasks block
smaller tasks (see Fig. 3 — top) and this results in a large idle-
time and makespan.

The second experiment illustrates a common scenario where
users specify the maximum number of machines in the cluster
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Table 1
Experimental results using Condor and using Condor with the Titan co-
scheduler

Experiment Time (min) Idle (%)

Condor
Arbitrary hosts per task 70.08 61
Maximum hosts per task 69.10 28
Calculated hosts per task 38.05 14
Condor & co-sched. Titan 35.19 21

on which to run their tasks. While in most cases this reduces the
single-task execution time, the improvement over fewer hosts
may in fact be marginal and blocking is still common (the run-
time view is omitted for brevity).

In the third experiment the tasks are submitted with a
pre-calculated number of hosts. As one would expect, this
significantly reduces the make-span although it is a scheme
that requires a good deal of pre-execution analysis and user
cooperation.

In the final experiment, the Titan co-scheduler is used
to dynamically map tasks to resources before the tasks are
deployed to the physical resources by Condor (see Fig. 3 —
bottom). Significant improvements are made by searching for
a schedule that minimises the makespan, reduces the idle time
and minimises the average delay, in the context of the other
tasks that are currently executing on the cluster.

The results in Table 1 demonstrate the improvements
obtained using this predictive co-scheduling technique. Over
the first two experiments the Condor–Titan system effectively
halves the makespan (from 70 to 35 min). Even when the
best resource mapping and schedule is pre-calculated by the
users (the third experiment), Condor–Titan still improves the
makespan by 8%. These results are significant, but of additional
interest is the ability of the predictive co-scheduling to self-
manage and adapt according to additional quality of service
features (see Section 5).

4. Multi-domain management

To schedule across multiple grid resources with an agreed
quality of service, the Titan architecture employs agent brokers
that store and disseminate resource and application data. Where
the resources reside outside the administrative domain, the
agents communicate through existing grid information and task
management services.

Each Titan scheduler is represented by an agent that
promotes the capabilities of the available resource. The agent
receives additional service information from other local agents
that is then organised in Agent Capability Tables (ACTs). The
ACTs form the basis of a performance information service,
which is implemented as a series of Titan-specific information
providers to the Monitoring and Discovery Service (MDS) [16]
from the Globus Toolkit [17].

The MDS consists of Grid Resource Information Services
(GRIS) and Grid Index Information Services (GIIS) that can
be configured to propagate service information across Grid
domains [26]. The GRIS uses an OpenLDAP server back-end
Fig. 4. Interconnect of Titan and the MDS-based performance information
service.

which is customisable using extensible modules (information
providers) as shown in Fig. 4. Data that is exposed to these
servers is subsequently cached and propagated to parent GIIS
systems using predetermined configuration rules.

The resource schedulers and agents each bind to a GRIS.
This allows the inspection of current resource capabilities by
the local scheduler and also by other local agents. Higher-
level (multi-domain) access to this information is provided
through the GIIS. The advantage of this is that it provides a
unified solution to the distribution of data, it is decentralised
(and therefore robust) and information providers are located
logically close to the entities which they describe.

Agents use the information from neighbouring agents
(through advertisement) or from the information service
(through discovery) to deliver improved scalability and
adaptability. Each domain in the current implementation is
represented by a single agent and agent-level communication
is used to coordinate inter-domain resource sharing. When a
request enters the system the receiving agent will first evaluate
whether the request can be met locally (an intra-domain query);
if this is not the case then the services provided by the
neighbouring resources are queried (a multi-domain query)
and the request is dispatched to the agent which is able to
provide the best service. The network of agents is dynamic,
so as new resources become available (or current resources go
down) the middleware is able to reconfigure accordingly. The
implementation of the agent system is documented in [11].

An additional feature of this system is the integration of
a performance monitor and adviser (PMA). The PMA is
capable of modelling and simulating the performance of the
agent network while the system is active. Unlike facilitators or
brokers in classical agent-based systems, the PMA is not central
to the rest of the agent system; it neither controls the agent
hierarchy or serves as a communication centre in either the
physical or symbolic sense. The PMA monitors statistical data
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Table 2
Experimental results: r is the number of requests (load); r/s is the request
submission rate per second; M represents whether the predictive middleware is
active; t is the makespan; ε is the average delay and ν is the resource utilisation

r r/s M t (s) ε (s) ν (%)

200 1 OFF 839 −1 24
200 1 ON 302 78 51
200 2 OFF 812 −36 25
200 2 ON 245 72 50
200 5 OFF 814 −64 24
200 5 ON 218 62 49

500 1 OFF 1784 −112 28
500 1 ON 633 78 57
500 2 OFF 1752 −205 29
500 2 ON 461 66 57
500 5 OFF 1877 −276 27
500 5 ON 305 32 68

1000 1 OFF 2752 −314 36
1000 1 ON 1160 79 61
1000 2 OFF 2606 −493 39
1000 2 ON 669 65 74
1000 5 OFF 2756 −681 36
1000 5 ON 467 −6 77

from the agent system and simulates optimisation strategies
in real time. If a better solution (to resource discovery,
advertisement, agent communication, data management etc.) is
discovered, then it can be deployed into the live agent system
(see [10] for details).

5. Case study

The impact of employing this middleware is tested on a
256-node experimental grid. The grid consists of 16 different
resource domains, each of which contains different processing
capabilities. At the intra-domain level, the grid is homogeneous
(each domain contains either a single 16-node multiprocessor
or a commodity cluster of workstations); at the multi-domain
level, the grid is heterogeneous (the entire system consists
of 6 different architecture types). Agents are mapped to each
domain and therefore represent sub-components of the grid
with varying computational capabilities.

This experimental environment is easily reconfigured to
represent a multi-cluster (or a grid of multi-clusters) or
a grid/multi-cluster containing clusters of heterogeneous
resources. The current configuration represents one typical
scientific computational environment, governed as much by the
resources (and resource domains) available to us as by any
particular flavour of computational architecture.

A number of experiments are run in which 200, 500 and
1000 requests (r ) are sent to randomly selected agents at
intervals of 1, 2 and 5 requests per second (r/s); representing a
broad spread of workloads and bursts of activity. During each
experiment three system criteria are monitored:

• Throughput – the makespan or time to completion (t) for
all of the submitted tasks to execute – this is calculated as
the maximum end time (of a task) minus the minimum start
time;
• Quality of service — represented through the average delay
(ε), the amount of time tasks complete before or after
their deadline. The deadlines are randomly assigned from
the range of predicted values for each of the domain
architectures, with suitable time allowed for staging and
network latency;

• Resource utilisation — calculated as the time over which
tasks are mapped to hosts. System-wide utilisation (ν)
represents the average over each of the resource domains.

The experimental results in Table 2 represent two scenarios,
when the predictive middleware (M) is ON and when the
predictive middleware is OFF. In the case when the middleware
is off and the system load and submission rate are low (200
requests submitted at 1 per second), the makespan is 839 s. As
the workload increases to 500 and 1000 tasks, so the makespan
increases accordingly (to 1784 and 2752 s respectively). There
are small variations in the makespan as the submission rate
(r/s) increases, these are not considered significant and will
depend in part on the random selection of tasks for each
experiment.

Of particular importance is the decrease in makespan when
the predictive middleware is activated. When the system load
and submission rate are low (200 requests submitted at 1
per second), the makespan is reduced by 62% (from 839 to
302 s). We also find that as the submission rate increases,
so the improvements brought about by the middleware also
increase — the makespan is reduced by 70% (for 200 tasks)
with a submission rate of 2 tasks per second and by 73%
with a submission rate of 5 tasks per second. This highlights
the effectiveness of the multi- and intra-domain performance-
prediction services. With more tasks on which to operate,
each service is able to explore additional task allocation and
scheduling scenarios and therefore select those mappings that
bring about the best system improvements.

This feature is emphasised most clearly at the highest
workload. When the system is subject to 1000 tasks submitted
1 per second, the middleware is able to reduce the makespan by
58% (from 2752 to 1160 s). As the submission rate increases,
so greater improvements can be observed — a reduction in
makespan of 74% at a submission rate of 2 tasks per second,
and a reduction in makespan of 83% at a submission rate of 5
tasks per second. Run-time views supporting these results can
be found in Fig. 5. The redirection of tasks by the agent system
can be seen under the Task % column to the right of the figure.
When the middleware is off, each resource domain is assigned
roughly the same percentage of tasks. When the middleware is
on, tasks are directed to the resources that have spare capacity
(domains A1 and A8, for example) and moved off domains
whose resources are already over-stretched (domains A6, A7,
A12 and A16, for example).

5.1. Quality of service

There are a number of definitions of quality of service for
distributed Grid systems consisting of non-dedicated resources.
Many of these focus on the resource, for example the network
(including bandwidth and latency), processor availability
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Fig. 5. The results of running 1000 tasks submitted at a request rate of 5 per
second. Top — when the predictive middleware is inactive; bottom — when the
predictive middleware is active. Note the improved makespan, 2756 s to 467 s.
Darker shading indicates greater utilisation.

(including FLOPS and CPU utilisation), or additional hardware
facilities such as disks etc. [20]. Quality of service in this
research symbolises a user-side service that is based on the
deadline assigned to each task. This has different characteristics
from advance or right-now reservation where the emphasis
is on the user choosing a set of resources that have been
pre-selected as being able to meet their needs. The approach
used here is also compatible with the new GRAM-2 [14]
terminology; it deals with task SLAs rather than resource
SLAs or reservation, and the mapping of tasks to resources
– the binding SLA – is performed through the Titan genetic
algorithm.

In this work we draw on web service research where users,
or groups of users, are assigned service classes under which
contractual service agreements are guaranteed for an associated
cost [4]. The QoS emphasis here is on the service, rather
than the tools or resources needed to deliver that service; the
delivery itself is transparent and is handled by the supporting
middleware. In the remainder of this section, quality of service
is analysed on a per-task and then system basis. It is equally
feasible to group tasks to classes or priorities of user; the net
effect would be the same.

The mapping of tasks to resources using the Titan predictive
co-scheduler is also different from previous work on online-
mode mapping, where tasks are assigned to resources as soon as
Table 3
Percentage of tasks meeting their deadlines under low, medium and high
workloads

Workload r r/s M δ (%)

Low 200 1 OFF 57
200 1 ON 89

improvement 32

Medium 500 2 OFF 27
500 2 ON 83

improvement 56

High 1000 5 OFF 9
1000 5 ON 50

improvement 41

The results represent when the middleware is off and on; the results also show
the percentage improvement made by activating the middleware.

they are received, and batch-mode mapping, where sets of tasks
are collected and then manipulated before being despatched
to the underlying resources. Titan is configured with a small
amount of staging time (this can be seen in the bottom run-time
view of Fig. 5) so that 100 iterations of the genetic algorithm
are run before the tasks begin being passed to Condor. This
provides an interaction between the on-line task submission
(which is driven by the availability of the resources) and the
batch processing by the genetic algorithm (that operates for as
long as is possible until the task at the front of the queue is
dispatched).

The Titan task mapping process also differs from other QoS-
based scheduling strategies. In [22] the QoS-guided MinMin
mapping process first assigns tasks with high QoS requirements
to resources before dealing with those task requests that have
a lower priority. While this might seem like a good strategy,
it is possible to use lower priority jobs to pack the tasks (see
Fig. 3), using spare resources for low priority tasks as soon as
the tasks and resources become available. By dealing with the
lower priority tasks as soon as possible, we find that they are
less likely to impact on the higher priority tasks later in the
schedule.

The case study in Section 5 provides two different aspects of
deadline-based quality of service: these are the time in which
tasks complete before or after their deadline, the average delay
ε, and the number of tasks that complete before their deadline,
termed δ and measured as a percentage of the total.

It can be seen in Table 3 that as the workload on the system
increases, so the percentage of tasks that meet their deadline
(δ) decreases. The selection of deadlines in this case study is
deliberately tight so that under a low workload (200 requests
submitted 1 per second) 57% of the tasks complete before
their assigned deadline. This decreases to 27% of tasks under
a medium workload (500 requests submitted 2 per second), and
to only 9% under a high workload (1000 requests submitted 5
per second).

The middleware improves δ by between 32% and 56%,
ensuring that 89% of the tasks meet their deadlines when the
workload is low. This figure drops as the workload increases, to
83% at a medium workload and to 50% at a high workload; this
decrease is not unexpected.
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Fig. 6. The average delay under varying system loads. The bar to the right
represents the delay when the middleware is off; the bar to the left represents
the delay when the middleware is on.

δ provides details on the percentage of tasks which meet
their deadline, but it does not give any indication as to the
degree by which this takes place. We therefore use the average
delay (ε) as an additional measure of quality of service, and in
so doing gain a greater insight into the extra schedule capacity
which the activation of the predictive middleware services can
provide.

In the case when the middleware is off and the system load
and submission rate are low, the average delay ε is −1 s, see
Table 2. As the submission rate increases, so ε increases to
−36 s at a submission rate of 2 requests per second and to
−64 s at 5 requests per second; this trend is also demonstrated at
the higher workloads. Fig. 6 shows the combined average delay
for the low, medium and high workloads. The bar to the right
represents the average delay when the middleware is inactive.

Activating the predictive middleware has a positive effect
on ε; when 200 requests are sent at 1 per second, ε is 78 s,
indicating spare schedule capacity. When the workload and
submission rate are high (1000 requests at 5 per second) the
impact is marked; rather than running 11 min over schedule
(−681 s), the prediction-based middleware is able to reduce this
to −6 s. These results can be seen in Fig. 6, where the bar to the
left represents the average delay when the middleware is active.

It can be seen that without the additional performance-
based middleware services, the quality of the system rapidly
deteriorates, both from the point of view of the number of tasks
that meet their deadlines and also the extra capacity which is
available. With the middleware enabled, the user-side quality
of service is maintained up to the point at which the system
becomes fully loaded.

5.2. Resource usage

The high-level task migration provided by the agent system
delivers basic load balancing across the resources in the
underlying grid. This redirection of tasks is different from
that provided by GrADS [6], which allows the migration
of running tasks in response to system load in order to
improve performance and prevent system degradation. In
the Titan system, once tasks have been staged, they run to
completion. This method essentially moves all the decision
making forward (to pre-staging) and as a result has negligible
Fig. 7. The resource usage under varying system loads. The bar to the right
represents the resource usage when the middleware is off; the bar to the left
represents the resource usage when the middleware is on.

run-time overheads as no additional checkpointing is needed;
all run-time reporting at the co-scheduler level is done using
Condor’s status tools and as such no additional functionality is
therefore required.1 Although this system shares many of the
fundamental properties of the NetSolve Environment [5,13],
its resource management also differs in a number of ways; in
particular, PACE is non-intrusive and the predictive data which
it supplies does not require any link between a client library and
the application itself.

Fig. 7 shows the resource utilisation (ν) for the system under
low, medium and high workloads. As in Fig. 6, the bar to the
left represents the case when the middleware is active and the
bar to the right represents the case when the middleware is
inactive. As can be expected, the resource utilisation increases
as the system load increases (both when the middleware is
active and inactive). What is significant is how the middleware
improves the utilisation, by 28% for the low workload, 31%
for the medium workload and 40% for the high workload. Also
of note is the fact that the these improvements increase as the
workload increases.

If we analyse the resource usage at the intra-domain level,
we find that the difference in resource utilisation (between the
middleware being active and inactive) is larger in the domains
with the highest computational capabilities (for example a 40%
difference for A1 and A8, and a 4% difference for domains
A6 and A16). These results are caused by the predictive
middleware being able to identify and make use of the larger
proportion of idle time on the higher capacity resources. This
trend is found to be uniform across the different workloads.

Of additional interest is the relationship between the quality
of service measures and resource utilisation. The results in
Table 3 and Figs. 6 and 7 allow the point at which the
middleware begins to fail the majority of users to be identified.
This can be seen in Fig. 6 when ε switches from being positive
to negative, and in Table 3 when δ drops to 50%. This system
state corresponds to the case when the resource utilisation
measures 75%.

1 This may not suit the management of very long running tasks, but it does
provide a good cost–benefit for the type of scientific applications that are run in
this case study.
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We are able to choose some combination of these metrics
and some suitable thresholds under which to determine when
the system has reached user-side capacity. This represents the
point at which we can predict when a task will not meet
its deadline, even before the task has been deployed or any
additional service discovery has been instantiated. Similarly,
we can predict what computing reserves are available and know
at which point new facilities will need to be interconnected to
meet the increasing demands on the Grid. These provisioning
and capacity planning features may also link with other
autonomic services (e.g. [9]) which are able to determine time
of use meters to reflect variations in price–time processing, and
are the subject of future work.

6. Conclusions

Performance-based middleware services are set to play an
increasingly important role in the management of resources and
distributed workloads in emerging wide-area, heterogeneous
distributed computing environments. This paper documents
how such services might be built based on existing Condor- and
Globus-enabled Grid infrastructures.

A local (intra-domain) level predictive co-scheduler is
described, which uses performance prediction data generated
by the PACE toolkit to support intra-domain task management.
This service is extended to the global (multi-domain) level
through an information service based on the Globus MDS. The
global middleware uses a peer-to-peer agent system and high-
level workload steering strategies to balance system load and
improve system-wide resource utilisation.

The improvements brought about by these performance-
based middleware services are significant. At the intra-domain
level, predictive co-scheduling can halve the makespan of a
set of typical scientific tasks running on an Condor cluster.
At the multi-domain level, the combination of predictive
co-scheduling and agent-based task migration improves the
makepsan by up to 83% in a heavily loaded 256-node Grid.
These improvements also manifest themselves in the recorded
resource usage and also the associated user-side quality of
service.

A multi-tiered approach to middleware performance-service
provision is likely to prove successful, where improvements
brought about at a local level can be exploited by cooperative
wide-area management tools.
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