
IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 1

Optimal Power Allocation and Load
Distribution for Multiple Heterogeneous

Multicore Server Processors across Clouds
and Data Centers

Junwei Cao, Senior Member, IEEE Keqin Li, Senior Member, IEEE Ivan Stojmenovic, Fellow, IEEE

Abstract—For multiple heterogeneous multicore server processors across clouds and data centers, the aggregated performance
of the cloud of clouds can be optimized by load distribution and balancing. Energy efficiency is one of the most important issues
for large-scale server systems in current and future data centers. The multicore processor technology provides new levels of
performance and energy efficiency. The present paper aims to develop power and performance constrained load distribution
methods for cloud computing in current and future large-scale data centers. In particular, we address the problem of optimal
power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers.
Our strategy is to formulate optimal power allocation and load distribution for multiple servers in a cloud of clouds as optimization
problems, i.e., power constrained performance optimization and performance constrained power optimization. Our research
problems in large-scale data centers are well defined multivariable optimization problems, which explore the power-performance
tradeoff by fixing one factor and minimizing the other, from the perspective of optimal load distribution. It is clear that such power
and performance optimization is important for a cloud computing provider to efficiently utilize all the available resources. We
model a multicore server processor as a queueing system with multiple servers. Our optimization problems are solved for two
different models of core speed, where one model assumes that a core runs at zero speed when it is idle, and the other model
assumes that a core runs at a constant speed. Our results in this paper provide new theoretical insights into power management
and performance optimization in data centers.

Index Terms—Load distribution, multicore server processor, power allocation, queueing model, response time.

F

1 INTRODUCTION

1.1 Motivation

C LOUD computing has recently received consid-
erable attention and is widely accepted as a

promising and ultimate way of managing and im-
proving the utilization of data and computing center
resources and delivering various computing and IT
services. Currently, server sprawl is a common situ-
ation, in which multiple under-utilized servers take
up more space and consume more energy than can
be justified by their workload. According to a recent
report [2], many companies typically run at 15-20% of
their capacity, which is not a sustainable ratio in the

• J. Cao is with the Research Institute of Information Technology,
Tsinghua National Laboratory for Information Science and Technology,
Tsinghua University, Beijing 100084, China.
E-mail: jcao@mail.tsinghua.edu.cn

• K. Li is with the Department of Computer Science, State University
of New York, New Paltz, New York 12561, USA.
E-mail: lik@newpaltz.edu (This is the author for correspondence.)

• I. Stojmenovic is with the School of Electrical Engineering and Com-
puter Science, University of Ottawa, Ontario K1N 6N5, Canada; and
the School of Software, Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: ivan@site.uottawa.ca

current economic environment. Server consolidation
is an effective cloud computing approach to increasing
the efficient usage of computer server resources in
order to reduce the total number of servers or server
locations that an organization requires. By centralized
management of computing resources, cloud comput-
ing delivers hosted services over the Internet, such
that access to shared hardware, software, databases,
information, and all resources are provided to users
on-demand.

In a data center with multiple servers, the aggre-
gated performance of the data center can be optimized
by load distribution and balancing. Cloud-based appli-
cations depend even more heavily on load balancing
and optimization than traditional enterprise applica-
tions. For end users, load balancing capabilities will
be seriously considered when they select a cloud com-
puting provider. For cloud providers, load balancing
capabilities will be a source of revenue, which is
directly related to service quality (e.g., task response
time). Hence, an efficient load balancing strategy is a
key component to building out any cloud computing
architecture.

Power and cooling costs for data centers have sky-
rocketed by 800% since 1996, and the escalating costs
see no end in sight [15]. Energy efficiency is one of the

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 2

most important issues for large-scale server systems
in current and future data centers. Cloud computing
provides the ultimate way of effective and efficient
management of energy consumption. Cloud comput-
ing can be an inherently energy-efficient technology,
due to centralized energy management of computa-
tions on large-scale computing systems, instead of
distributed and individualized applications without
efficient energy consumption control [6]. Moreover,
such potential for significant energy savings can be
fully explored with balanced consideration of system
performance and energy consumption.

Permanently altering the course of computing, the
multicore processor technology provides new levels of
performance and energy efficiency. Ideal for mul-
titasking, multimedia, and networking applications,
multicore technology delivers exceptional energy-
efficient performance for the ultimate computing ex-
perience. Incorporating multiple processor cores in
a single package that delivers parallel execution of
multiple software applications, multicore technology
enables higher levels of performance and consumes
less power typically required by a higher frequency
single core processor with equivalent performance.

Software techniques for power reduction are sup-
ported by a mechanism called dynamic voltage scaling
(equivalently, dynamic frequency scaling, dynamic
speed scaling, dynamic power scaling). A power-
aware system management algorithm can change sup-
ply voltage and frequency at appropriate times to
optimize a combined consideration of performance
and energy consumption. Dynamic power manage-
ment at the operating system level provides sup-
ply voltage and clock frequency adjustment schemes
implemented while tasks are running. These energy
conservation techniques explore the opportunities for
tuning the energy-delay tradeoff [28].

As cloud computing evolves into the next genera-
tion, a cloud of clouds is able to utilize computing re-
sources across multiple clouds and data centers. Such
cloud federation not only integrates heterogeneous re-
sources and computing power, but also provides more
powerful and flexible services to various requests
in scientific, business, and industrial applications. In
such an environment with multiple heterogeneous
servers across multiple clouds and data centers, op-
timal power allocation and load distribution makes
even more impact to the aggregated performance
and energy efficiency of a cloud of clouds. Such a
situation provides us a more challenging opportunity
to address and discuss power and performance in a
wider scale and to generate more significant influence.

1.2 Our Contributions

The present paper aims to develop power and per-
formance constrained load distribution methods for
cloud computing in current and future large-scale

data centers. In particular, we address the problem
of optimal power allocation and load distribution for
multiple heterogeneous multicore server processors
across clouds and data centers. We define two im-
portant research problems which explore the power-
performance tradeoff in large-scale data centers from
the perspective of optimal power allocation and load
distribution. Our strategy is to formulate optimal power
allocation and load distribution for multiple servers in
a cloud of clouds as optimization problems. Our
problems are defined for multiple multicore server
processors with different sizes, and certain workload.

• Power constrained performance optimization – Given
a power constraint, our problem is to find an
optimal power allocation to the servers (i.e., to
determine the server speeds) and an optimal
workload distribution among the servers, such
that the average task response time is minimized
and that the average power consumption of the
servers does not exceed the given power limit.

• Performance constrained power optimization – Given
a performance constraint, our problem is to find
an optimal power allocation to the servers (i.e.,
to determine the server speeds) and an opti-
mal workload distribution among the servers,
such that the average power consumption of
the servers is minimized and that the average
task response time does not exceed the given
performance limit.

Our research problems in large-scale data centers
are well defined multivariable optimization problems,
which explore the power-performance tradeoff by
fixing one factor and minimizing the other, from the
perspective of optimal load distribution. By power
constrained performance optimization, a cloud of
clouds can deliver the highest quality of service, while
maintaining low cost for energy consumption. By per-
formance constrained power optimization, a cloud of
clouds can minimize the cost for energy consumption,
while guaranteeing certain quality of service.

We model a multicore server processor as a queue-
ing system with multiple servers. Our optimization
problems are solved for two different models of core
speed, where one model assumes that a core runs
at zero speed when it is idle, and the other model
assumes that a core runs at a constant speed. Our
investigation in this paper makes initial effort to
analytical study of power-performance tradeoff in
data centers with heterogeneous servers. Our results
in this paper provide new theoretical and practical
insights into power management and performance
optimization in cloud computing. To the best of our
knowledge, such optimal power allocation and load
distribution for multiple heterogeneous servers has
not been investigated before as optimization prob-
lems.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 3

2 RELATED RESEARCH

Load distribution and balancing in general parallel
and distributed computing systems have been exten-
sively studied and a huge body of literature exists
(see the excellent collection [27]). In particular, the
problems of optimal load distribution have been in-
vestigated by using queueing models [16], [30], with
various performance metrics such as weighted mean
response time [19], arithmetic average response time
[20], probability of load imbalance [21], probability of
load balancing success [25], mean response ratio [29],
and mean miss rate [14]. Optimal load distribution
in a heterogeneous distributed computer system with
both generic and dedicated applications was studied
in [7], [26]. Optimal load distribution of generic tasks
without special tasks for a group of heterogeneous
multiserver queueing systems was studied in [14].
Optimal load distribution of generic tasks together
with special tasks in cluster and grid computing
environments was studied in [22], where each server
is modeled as a queueing system with a single server.
Optimal load distribution of generic tasks together
with special tasks for a group of heterogeneous blade
servers in a cloud computing environment was in-
vestigated in [24], where each server is modeled as a
queueing system with multiple servers. To the best of
our knowledge, optimal load distribution with power
and performance constraints for multiple queueing
systems with multiple servers has not been considered
before.

There exists a huge body of literature on energy-
efficient computing and communication (see [3], [4],
[5], [31], [32] for comprehensive surveys). Efficient
power management and performance optimization
in large-scale data centers and server clusters has
gained much attention in the research community
in recent years [9], [10], [11], [12], [13]. In [17],
the authors developed a framework for hierarchical
autonomic power and performance management in
high-performance distributed data centers. In [23],
the author formulated and solved the optimal power
allocation problem for multiple heterogeneous servers
in a data center. In [33], the authors proposed a
highly scalable hierarchical power control architec-
ture for large-scale data centers. In [34], the authors
presented a novel cluster-level control architecture
that coordinates individual power and performance
control loops for virtualized server clusters. In [36],
the authors proposed an energy proportional model
based on queuing theory and service differentiation
in server clusters, which can provide controllable
and predictable quantitative control over power con-
sumption with theoretically guaranteed service per-
formance, where a server is treated as an M/G/1
queueing system, i.e., a single server system. Fur-
thermore, the vary-on vary-off mechanism is adopted
which turns servers on and off to adjust the number

- -

-
-

-

-
-

-

gg
gppp

- -

-
-

-

-
-

-

gg
gppp

- -

-
-

-

-
-

-

gg
gppp

ppp
-λ -A load

distribution
algorithm

λ1

λ2

λn

waiting
queue server S1 with

m1 cores and
speed s1
from cloud 1

server S2 with
m2 cores and
speed s2
from cloud 2

server Sn with
mn cores and
speed sn
from cloud n

Fig. 1. A group of n heterogeneous multicore servers
S1, S2, ..., Sn.

of active servers based on the workload.

3 MODELING MULTICORE SERVER PRO-
CESSORS

To formulate and study the problem of optimal load
distribution and balancing for multiple heterogeneous
multicore server processors in a cloud computing en-
vironment with power and performance constraints,
we need a model for a multicore server and a group
of multicore servers. A queueing model for a group
of n heterogeneous multicore servers S1, S2, ..., Sn of
sizes m1, m2, ..., mn and speeds s1, s2, ..., sn across
multiple clouds and data centers is given in Figure
1. Assume that a multicore server Si has mi identical
cores with speed si. In this paper, a multicore server
processor is treated as an M/M/m queueing system
which is elaborated as follows.

There is a Poisson stream of tasks with arrival rate
λ (measured by the number of tasks per second), i.e.,
the inter-arrival times are independent and identically
distributed (i.i.d.) exponential random variables with
mean 1/λ. A load distribution and balancing algo-
rithm will split the stream into n substreams, such
that the ith substream with arrival rate λi is sent to
server Si, where 1 ≤ i ≤ n, and λ = λ1 +λ2 + · · ·+λn.
A multicore server Si maintains a queue with infinite
capacity for waiting tasks when all the mi cores are
busy. The first-come-first-served (FCFS) queueing dis-
cipline is adopted by all servers. The task execution re-
quirements (measured by the number of instructions
to be executed) are i.i.d. exponential random variables
r with mean r̄. The mi cores of server Si have identical
execution speed si (measured by billion instructions
per second (BIPS)). Hence, the task execution times
on the cores of server Si are i.i.d. exponential random
variables xi = r/si with mean x̄i = r̄/si.

Power dissipation and circuit delay in digital
CMOS circuits can be accurately modeled by simple
equations, even for complex microprocessor circuits.
CMOS circuits have dynamic, static, and short-circuit

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 4

power dissipation; however, the dominant component
in a well designed circuit is dynamic power consump-
tion p (i.e., the switching component of power), which
is approximately P = aCV 2f , where a is an activity
factor, C is the loading capacitance, V is the supply
voltage, and f is the clock frequency [8]. Since s ∝ f ,
where s is the processor speed, and f ∝ V φ with
0 < φ ≤ 1 [35], which implies that V ∝ f1/φ, we
know that power consumption is P ∝ fα and P ∝ sα,
where α = 1+2/φ ≥ 3. For ease of discussion, we will
assume that the power allocated to a processor core
with speed s is simply sα.

We will consider two types of core speed models.
In the idle-speed model, a core runs at zero speed when
there is no task to perform. Let µi = 1/x̄i = si/r̄ be
the average service rate, i.e., the average number of
tasks that can be finished by a processor core of server
Si in one unit of time. The core utilization is ρi =
λi/(miµi) = λix̄i/mi = (λi/mi) · (r̄/si), which is the
average percentage of time that a core of Si is busy.
Since the power for speed si is sα

i , the average amount
of energy consumed by a core in one unit of time is
ρis

α
i = (λi/mi)r̄sα−1

i , where we notice that the speed
of a core is zero when it is idle. The average amount
of energy consumed by an mi-core server Si in one
unit of time, i.e., the average power supply to server
Si, is Pi = miρis

α
i = λir̄s

α−1
i , where miρi = λix̄i is the

average number of busy cores in Si. Since a processor
core still consumes some amount of power P ∗

i even
when it is idle (assume that an idle core consumes
certain base power P ∗

i , which includes static power
dissipation, short circuit power dissipation, and other
leakage and wasted power [1]), we will include P ∗

i in
Pi, i.e., Pi = mi(ρis

α
i + P ∗

i) = λir̄s
α−1
i +miP

∗
i . Notice

that when P ∗
i = 0, the above Pi is independent of mi.

In the constant-speed model, all cores run at the speed
si even if there is no task to perform. Again, we use
Pi to represent the power allocated to server Si. Since
the power for speed si is sα

i , the power allocated to
server Si is Pi = mi(sα

i + P ∗
i).

4 POWER CONSTRAINED PERFORMANCE
OPTIMIZATION

Let pi,k denote the probability that there are k tasks
(waiting or being processed) in the M/M/m system
for Si. Then, we have ([18], p. 102)

pi,k =

pi,0

(miρi)k

k!
, k ≤ mi;

pi,0
mmi

i ρk
i

mi!
, k ≥ mi;

where

pi,0 =

(
mi−1∑
k=0

(miρi)k

k!
+

(miρi)mi

mi!
· 1
1− ρi

)−1

.

The probability of queueing (i.e., the probability that
a newly arrived task must wait because all processor
cores are busy) is

Pq,i =
pi,mi

1− ρi
= pi,0

mmi
i

mi!
· ρmi

i

1− ρi
.

The average number of tasks (in waiting or in execu-
tion) in Si is

N̄i =
∞∑

k=0

kpi,k = miρi +
ρi

1− ρi
Pq,i.

Applying Little’s result, we get the average task re-
sponse time as

Ti =
N̄i

λi
= x̄i +

Pq,i

mi(1− ρi)
x̄i = x̄i

(
1 +

Pq,i

mi(1− ρi)

)
.

In other words, the average task response time on
multicore server Si is

Ti = x̄i

(
1 + pi,0

mmi−1
i

mi!
· ρmi

i

(1− ρi)2

)
=

r̄

si

(
1 + pi,0

mmi−1
i

mi!
· ρmi

i

(1− ρi)2

)
.

The average task response time T on a group of n
heterogeneous multicore servers S1, S2, ..., Sn is

T =
λ1

λ
T1 +

λ2

λ
T2 + · · ·+ λn

λ
Tn.

Notice that the above T can be treated as a function
of load distribution λ1, λ2, ..., λn and server speeds
s1, s2, ...sn, i.e., T (λ1, λ2, ..., λn, s1, s2, ..., sn).

The average power consumption
P (λ1, λ2, ..., λn, s1, s2, ..., sn) of a group of n
heterogeneous multicore servers S1, S2, ..., Sn is
also a function of load distribution λ1, λ2, ..., λn and
server speeds s1, s2, ...sn. For the idle-speed model,
we have

P (λ1, λ2, ..., λn, s1, s2, ..., sn) =
n∑

i=1

Pi

=
n∑

i=1

mi(ρis
α
i + P ∗

i) =
n∑

i=1

λir̄s
α−1
i +

n∑
i=1

miP
∗
i .

For the constant-speed model, we have

P (λ1, λ2, ..., λn, s1, s2, ..., sn) =
n∑

i=1

Pi

=
n∑

i=1

mi(sα
i + P ∗

i) =
n∑

i=1

mis
α
i +

n∑
i=1

miP
∗
i ,

which is actually a function of server speeds
s1, s2, ...sn, i.e., P (s1, s2, ..., sn).

Our optimal power allocation and load distribution
problem for multiple heterogeneous multicore server
processors can be specified as follows: given the num-
ber of multicore servers n, the sizes of the servers
m1,m2, ...,mn, the base power supply P ∗

1 , P
∗
2 , ..., P

∗
n ,

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 5

the average task execution requirement r̄, the task
arrival rate λ, and the available power P̃ , find the
task arrival rates on the servers λ1, λ2, ..., λn, and
the server speeds s1, s2, ..., sn, such that the average
task response time T (λ1, λ2, ..., λn, s1, s2, ..., sn) is min-
imized, subject to the constraints F (λ1, λ2, ..., λn) = λ,
where F (λ1, λ2, ..., λn) = λ1+λ2+ · · ·+λn, and ρi < 1,
i.e., λi < mi/x̄i = misi/r̄, for all 1 ≤ i ≤ n; and
P (λ1, λ2, ..., λn, s1, s2, ..., sn) = P̃ , namely,

G(λ1, λ2, ..., λn, s1, s2, ..., sn)

=
n∑

i=1

λir̄s
α−1
i = P̃ −

n∑
i=1

miP
∗
i ,

for the idle-speed model, and

G(s1, s2, ..., sn) =
n∑

i=1

mis
α
i = P̃ −

n∑
i=1

miP
∗
i ,

for the constant-speed model. The optimization prob-
lem defined above is a power constrained performance
optimization problem, i.e., optimizing performance
(minimizing the average task response time) subject
to power consumption constraint.

To solve the above well defined multivariable opti-
mization problem, one can employ the classic method
of Lagrange multiplier. However, this method results
in a system of nonlinear equations with 2(n + 1)
variables, i.e., λ1, λ2, ..., λn, s1, s2, ..., sn, and two La-
grange multipliers. These equations are nontrivial to
solve. There is absolutely no closed-form solution.
The main contribution of the paper is to develop an
effective and efficient algorithm to find a numerical
solution. Our strategy is to carefully analyze the prob-
lem structure and to reveal the intricate relationship
between the speed and the workload of a server. Our
analysis successfully reduces the 2(n + 1) variables
into n+ 1 variables, i.e., λ1, λ2, ..., λn and a Lagrange
multiplier. We then develop two procedures to find
λ1, λ2, ..., λn and the Lagrange multiplier respectively.
Since the standard bisection method is used to search
each value in a small interval, our algorithm is very
time efficient in finding a solution to the multivariable
optimization problem.

The above centralized problem definition and so-
lution can be justified in two ways. First, the main
approach in cloud computing is centralized resource
management and performance optimization to min-
imize the cost of computing and to maximize the
quality of service. Second, our optimization problem
is solved once a while for a cloud based on stable
statistical information such as λ and r̄. As the user de-
mand in an application environment changes, the op-
timization problem can be solved again to reconfigure
the servers, so that system operation and performance
can be optimized for the new user requirement.

5 THE IDLE-SPEED MODEL

First of all, we establish the following result, which
gives the optimal server speed setting for the idle-
speed model.

Theorem 1: For the idle-speed model, the average
task response time T on n multicore servers is min-
imized when all servers have the same speed, i.e.,
s1 = s2 = · · · = sn = s, where

s =

(
1
λr̄

(
P̃ −

n∑
i=1

miP
∗
i

))1/(α−1)

.

Proof. We can minimize T by using the method of
Lagrange multiplier, namely,

∇T (λ1, λ2, ..., λn, s1, s2, ..., sn)
= φ∇F (λ1, λ2, ..., λn)

+ψ∇G(λ1, λ2, ..., λn, s1, s2, ..., sn),

that is,

∂T

∂λi
= φ

∂F

∂λi
+ ψ

∂G

∂λi
= φ+ ψr̄sα−1

i ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier
and ψ is another Lagrange multiplier, and

∂T

∂si
= ψ

∂G

∂si
= ψλir̄(α− 1)sα−2

i ,

for all 1 ≤ i ≤ n.
It is clear that

∂T

∂λi
=

1
λ

(
Ti + λi

∂Ti

∂λi

)
,

where
∂Ti

∂λi
=
∂Ti

∂ρi
· ∂ρi

∂λi
=

r̄

misi
· ∂Ti

∂ρi
,

that is,
∂T

∂λi
=

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
.

Hence, we get

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
= φ+ ψr̄sα−1

i , (1)

where

∂Ti

∂ρi
=
mmi−1

i

mi!
· r̄
si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

)
,

and

∂pi,0

∂ρi
= −p2

i,0

(
mi−1∑
k=1

mk
i ρ

k−1
i

(k − 1)!

+
mmi

i

mi!
· ρ

mi−1
i (mi − (mi − 1)ρi)

(1− ρi)2

)
,

for all 1 ≤ i ≤ n.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 6

It is also clear that
∂T

∂si
=
λi

λ
· ∂Ti

∂si
.

Let Ti = (r̄/si)Di = r̄(Di/si), where

Di = 1 + pi,0
mmi−1

i

mi!
· ρmi

i

(1− ρi)2
.

Then, we have

∂Ti

∂si
= r̄

(
−Di

s2i
+

1
si
· ∂Di

∂ρi
· ∂ρi

∂si

)
= −r̄

(
1
r̄si

Ti +
1
si
· ∂Di

∂ρi
· λir̄

mis2i

)
= −r̄

(
1
r̄si

Ti +
ρi

s2i
· ∂Di

∂ρi

)
.

Since

∂Di

∂ρi
=

mmi−1
i

mi!

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

)
=

si

r̄
· ∂Ti

∂ρi
,

we get
∂Ti

∂si
= − 1

si

(
Ti + ρi

∂Ti

∂ρi

)
,

which implies that

∂T

∂si
=
λi

λ
· ∂Ti

∂si
= − λi

λsi

(
Ti + ρi

∂Ti

∂ρi

)
= ψλir̄(α− 1)sα−2

i , (2)

namely,

− 1
λr̄(α− 1)sα−1

i

(
Ti + ρi

∂Ti

∂ρi

)
= ψ, (3)

for all 1 ≤ i ≤ n.
Based on the above discussion, i.e., Eqs. (1) and (3),

we have −r̄(α − 1)sα−1
i = φ/ψ + r̄sα−1

i , which gives
rise to si = (−(φ/ψ) · 1/(αr̄))1/(α−1), for all 1 ≤ i ≤ n.
The above result means that all servers must have the
same speed s, i.e., s1 = s2 = · · · = sn = s, where

s =
(
−φ
ψ
· 1
αr̄

)1/(α−1)

.

Consequently, from the constraint

G(λ1, λ2, ..., λn, s1, s2, ..., sn)

=
n∑

i=1

λir̄s
α−1
i = λr̄sα−1 = P̃ −

n∑
i=1

miP
∗
i ,

we get the identical server speed as

s =

(
1
λr̄

(
P̃ −

n∑
i=1

miP
∗
i

))1/(α−1)

.

Hence, the theorem is proven.

By the above theorem, we immediately get

Pi = λir̄s
α−1
i +miP

∗
i = λir̄s

α−1 +miP
∗
i

=
λi

λ

(
P̃ −

n∑
i=1

miP
∗
i

)
+miP

∗
i ,

for all 1 ≤ i ≤ n. It remains to find λ1, λ2, ..., λn. We
will describe our method in Section 6.

From the above proof, we also know that ψr̄sα−1
i =

ψr̄sα−1 = −φ/α. Therefore, by Eq. (1), we have

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
=
(

1− 1
α

)
φ, (4)

for all 1 ≤ i ≤ n.

6 THE CONSTANT-SPEED MODEL

The following result gives the optimal server speed
setting for the constant-speed model.

Theorem 2: For the constant-speed model, the aver-
age task response time T on n multicore servers is
minimized when si = (λi/(βmi))

1/α, for all 1 ≤ i ≤ n,
where

β =
λ

P̃ − (m1P ∗
1 +m2P ∗

2 + · · ·+mnP ∗
n)
.

Proof. Again, we can minimize T by using the method
of Lagrange multiplier, namely,

∇T (λ1, λ2, ..., λn, s1, s2, ..., sn)
= φ∇F (λ1, λ2, ..., λn) + ψ∇G(s1, s2, ..., sn),

that is,
∂T

∂λi
= φ

∂F

∂λi
= φ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier,
and

∂T

∂si
= ψ

∂G

∂si
= ψmiαs

α−1
i ,

for all 1 ≤ i ≤ n, where and ψ is another Lagrange
multiplier.

Notice that Eq. (1) becomes

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
= φ. (5)

Also, Eq. (2) becomes

∂T

∂si
= − λi

λsi

(
Ti + ρi

∂Ti

∂ρi

)
= αψmis

α−1
i ,

namely,

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
= −αψmis

α
i

λi
. (6)

Based on Eqs. (5) and (6), we get φ = −αψ(mis
α
i /λi),

and equivalently, λi = −α(ψ/φ)mis
α
i . From the last

equation, and the constraint that

G(s1, s2, ..., sn) = m1s
α
1 +m2s

α
2 + · · ·+mns

α
n

= P̃ −
n∑

i=1

miP
∗
i ,

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 7

we obtain

λ = −
(
α
ψ

φ

)(
P̃ −

n∑
i=1

miP
∗
i

)
,

which implies that λi = βmis
α
i , and si =

(λi/(βmi))
1/α, for all 1 ≤ i ≤ n, where

β = −αψ
φ

=
λ

P̃ − (m1P ∗
1 +m2P ∗

2 + · · ·+mnP ∗
n)
.

This proves the theorem.

By the above theorem, we immediately get the
power allocation as

Pi = mi(sα
i + P ∗

i) = mi

(
λi

βmi
+ P ∗

i

)
=
λi

λ

(
P̃ −

n∑
i=1

miP
∗
i

)
+miP

∗
i ,

for all 1 ≤ i ≤ n. Notice that the above expression
of Pi is the same as that of the idle-speed model;
however, the actual value of Pi is different because
λi is different; also the resulting speed si is different.

The above theorem essentially means that Ti can
be viewed as a function of λi, and T can be viewed
as a function of λ1, λ2, ..., λn. It remains to find
λ1, λ2, ..., λn. The method will be presented in the
next section. Notice that if we keep the relation si =
(λi/(βmi))

1/α, then ρi only depends on (and is an
increasing function of) λi, and we have

ρi =
λir̄

misi
= βr̄sα−1

i = βr̄

(
λi

βmi

)(α−1)/α

= β1/αr̄

(
λi

mi

)(α−1)/α

,

which implies that

∂ρi

∂λi
=
β1/αr̄

mi
(1− 1/α)

(
λi

mi

)−1/α

,

and

λi
∂ρi

∂λi
= β1/αr̄(1− 1/α)

(
λi

mi

)1−1/α

= (1− 1/α)ρi,

for all 1 ≤ i ≤ n. Thus, we obtain

∂T

∂λi
=

1
λ

(
Ti + λi

∂ρi

∂λi
· ∂Ti

∂ρi

)
=

1
λ

(
Ti + (1− 1/α)ρi

∂Ti

∂ρi

)
,

and similar to Eq. (4), we get

1
λ

(
Ti + (1− 1/α)ρi

∂Ti

∂ρi

)
= φ, (7)

for all 1 ≤ i ≤ n. We observe that Eqs. (4) and (7)
are very similar and can be solve by using the same
algorithm.

Algorithm: Find λi (mi, r̄, λ, idle, φ, s, β).

Input: mi, r̄, λ, idle, φ, s, β.
Output: λi.

//Initialize [lb, ub] for λi (1)
lb← 0; (2)
ub← idle ? mis/r̄ : mi/(β1/(α−1)r̄α/(α−1)); (3)
//Search λi in [lb, ub] (4)
while (ub− lb > ε) (5)

middle← (lb+ ub)/2; (6)
λi ← middle; (7)
si ← idle ? s : (λi/βmi)1/α; (8)
if (1/λ(Ti + (idle ? 1 : (1− 1/α))ρi∂Ti/∂ρi)

< (idle ? (1− 1/α) : 1)φ) (9)
lb← middle; (10)

else (11)
ub← middle; (12)

end if; (13)
end while; (14)
λi ← (lb+ ub)/2; (15)
return λi. (16)

Fig. 2. An algorithm to find λi.

7 THE ALGORITHM

Since Eqs. (4) and (7) are very similar, the optimal
load distribution λ1, λ2, ..., λn and the optimal server
speeds s1, s2, ..., sn (i.e., the optimal power allocation
P1, P2, ..., Pn) as well as the optimal task response
time T can be found by using the same algorithm for
the two core speed and power consumption models.
We use a boolean parameter idle to distinguish the
two models, namely, we refer to the idle-speed model
when idle is true, and the constant-speed model when
idle is false.

Given n, m1,m2, ...,mn, P ∗
1 , P

∗
2 , ..., P

∗
n , r̄, λ, P̃ , and

idle, our optimal power allocation and load distribu-
tion algorithm to find φ, λ1, λ2, ..., λn, s1, s2, ..., sn, and
T is given in Figure 3. The algorithm uses another
subalgorithm Find λi described in Figure 2, which,
given mi, r̄, λ, idle, φ, s, and β, finds λi that satisfies
Eq. (4) or Eq. (7).

The key observation is that the left-hand sides of
Eqs. (4) and (7) are increasing functions of λi. There-
fore, given φ, we can find λi by using the bisection
method to search λi in certain interval [lb, ub] (lines
(5)–(14) in Figure 2). We set lb simply as 0 (line (2)).
For ub, we notice that

λi =
ρimis

r̄
<
mis

r̄
,

for the idle-speed model with s given in Theorem 1,
and

λi =
miρ

α/(α−1)
i

β1/(α−1)r̄α/(α−1)
<

mi

β1/(α−1)r̄α/(α−1)
,

for the constant-speed model with β given in The-
orem 2, where 1 ≤ i ≤ n. Hence, ub is set in line

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 8

Algorithm: Calculate T .

Input: n, m1,m2, ...,mn, P ∗
1 , P

∗
2 , ..., P

∗
n , r̄, λ, P̃ , idle.

Output: φ, λ1, λ2, ..., λn, s1, s2, ..., sn, and T .

s← ((1/λr̄)(P̃ − (m1P
∗
1 + · · ·+mnP

∗
n)))1/(α−1); (1)

β ← λ/(P̃ − (m1P
∗
1 +m2P

∗
2 + · · ·+mnP

∗
n)); (2)

//Initialize [lb, ub] for φ (3)
φ← (1/λ)r̄/s; (4)
do (5)

φ← 2φ; (6)
for (i← 1; i ≤ n; i++) (7)

λi ← Find λi(mi, r̄, λ, idle, φ, s, β); (8)
end for; (9)

while (λ1 + λ2 + · · ·+ λn < λ); (10)
//Search φ in [lb, ub] (11)
lb← 0; (12)
ub← φ; (13)
while (ub− lb > ε) (14)

middle← (lb+ ub)/2; (15)
φ← middle; (16)
for (i← 1; i ≤ n; i++) (17)

λi ← Find λi(mi, r̄, λ, idle, φ, s, β); (18)
end for; (19)
if (λ1 + λ2 + · · ·+ λn < λ) (20)

lb← middle; (21)
else (22)

ub← middle; (23)
end if; (24)

end while; (25)
φ← (lb+ ub)/2; (26)
//Calculate λ1, λ2, ..., λn and s1, s2, ..., sn (27)
for (i← 1; i ≤ n; i++) (28)

λi ← Find λi(mi, r̄, λ, idle, φ, s, β); (29)
si ← idle ? s : (λi/βmi)1/α; (30)

end for; (31)
//Calculate and return T (32)
T ← (λ1/λ)T1 + (λ2/λ)T2 + · · ·+ (λn/λ)Tn; (33)
return T . (34)

Fig. 3. An algorithm to calculate the minimized T .

(3) based on the above discussion, where the value
of a conditional expression c ? u : v is u if the
condition c is true and v if the condition c is false.
For a given λi, the server speed si is s given by
Theorem 1, and (λi/βmi)1/α given by Theorem 2 (line
(8)). The left-hand side of Eq. (4) or (7) is compared
with (1−1/α)φ or φ (line (9)), and the search interval
[lb, ub] is adjusted accordingly (lines (10) and (12)).

The value of φ can also be found by using the
bisection method (lines (14)–(25) in Figure 3). The
search interval [lb, ub] for φ is determined as follows.
We set lb simply as 0 (line (12)). As for ub, we notice
that φ is at least (1/λ)r̄/s (line (4)) for both speed
models, because Ti ≥ xi = r̄/s. Then, φ is repeatedly
doubled (line (7)), until the sum of the λi’s found

by Find λi (line (8)) is at least λ (lines (5)–(10) and
(13)). Once [lb, ub] is decided, φ can be searched based
on the fact that the λi’s increase with φ (lines (20)–
(24)). After φ is determined (line (26)), λ1, λ2, ..., λn

and s1, s2, ..., sn can be computed routinely (lines (28)–
(31)) and T can be obtained easily (line (33)).

8 THE EQUAL-POWER METHOD

In this section, we analyze a baseline method, i.e., the
equal-power method. The baseline method is a simple
method without optimization applied.

8.1 The Analysis

In the equal-power method, all cores of all servers
consume the same amount of power. Let M = m1 +
m2 + · · · + mn be the total number of cores of the n
multicore servers.

8.1.1 The Idle-Speed Model
The following result gives the server speed setting for
the idle-speed model.

Theorem 3: For the idle-speed model, we have si =
ci/λ

1/(α−1)
i , where

ci =

(
mi

r̄

(
P̃

M
− P ∗

i

))1/(α−1)

,

for all 1 ≤ i ≤ n.
Proof. Since a core in server Si consumes power ρis

α
i +

P ∗
i , and all cores consume the same amount of power,

we have

ρis
α
i + P ∗

i =
λir̄

mi
sα−1

i + P ∗
i =

P̃

M
,

which gives

si =

(
mi

λir̄

(
P̃

M
− P ∗

i

))1/(α−1)

,

for all 1 ≤ i ≤ n.

By the above theorem, we immediately get

Pi = λir̄s
α−1
i +miP

∗
i

= λir̄ ·
mi

λir̄

(
P̃

M
− P ∗

i

)
+miP

∗
i =

mi

M
P ∗

i ,

for all 1 ≤ i ≤ n.
Since si is a function of λi and no longer an

independent variable, our optimal power allocation
and load distribution problem for multiple hetero-
geneous multicore server processors is modified as
follows: given the number of multicore servers n, the
sizes of the servers m1,m2, ...,mn, the base power
supply P ∗

1 , P
∗
2 , ..., P

∗
n , the average task execution re-

quirement r̄, the task arrival rate λ, and the available
power P̃ , find the task arrival rates on the servers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 9

λ1, λ2, ..., λn, such that the average task response time
T (λ1, λ2, ..., λn) is minimized, subject to the constraint

F (λ1, λ2, ..., λn) = λ1 + λ2 + · · ·+ λn = λ,

and ρi < 1, for all 1 ≤ i ≤ n.
By using the method of Lagrange multiplier,

namely,

∇T (λ1, λ2, ..., λn) = φ∇F (λ1, λ2, ..., λn)

that is,
∂T

∂λi
= φ

∂F

∂λi
,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier,
we get

1
λ

(
Ti + λi

∂Ti

∂λi

)
= φ.

Notice that
∂si

∂λi
= − 1

α− 1
· ci
λα/(α−1)

= − 1
α− 1

· si

λi
,

and
∂ρi

∂λi
=

r̄

misi
− λir̄

mis2i
· ∂si

∂λi
=
ρi

λi
− ρi

si
· ∂si

∂λi

= ρi

(
1
λi

+
1

α− 1
· 1
λi

)
=

α

α− 1
· ρi

λi
.

Hence, we get

∂Ti

∂λi
= − r̄

s2i
· ∂si

∂λi
· Ti

si

r̄

+
mmi−1

i

mi!
· r̄
si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

)
∂ρi

∂λi

=
1

α− 1
· Ti

λi

+
α

α− 1
· m

mi−1
i

mi!
· ρi

λi
· r̄
si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

)
,

where

∂pi,0

∂ρi
= −p2

i,0

(
mi−1∑
k=1

mk
i ρ

k−1
i

(k − 1)!

+
mmi

i

mi!
· ρ

mi−1
i (mi − (mi − 1)ρi)

(1− ρi)2

)
,

for all 1 ≤ i ≤ n. Consequently, we have

α

α− 1
· 1
λ

(
Ti +

mmi−1
i

mi!
ρi
r̄

si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

))
= φ, (8)

for all 1 ≤ i ≤ n. The above equation looks like

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
=
(

1− 1
α

)
φ,

for all 1 ≤ i ≤ n.

8.1.2 The Constant-Speed Model
The following result gives the server speed setting for
the constant-speed model.

Theorem 4: For the constant-speed model, we have
si = d

1/α
i , where di = P̃ /M − P ∗

i , for all 1 ≤ i ≤ n.
Proof. Since a core in server Si consumes power
sα

i + P ∗
i , and all cores consume the same amount

of power, we have sα
i + P ∗

i = P̃ /M , which gives

si =
(
P̃ /M − P ∗

i

)1/α

, for all 1 ≤ i ≤ n.

By the above theorem, we immediately get the
power allocation as

Pi = mi(sα
i + P ∗

i) =
mi

M
P ∗

i ,

for all 1 ≤ i ≤ n.
Notice that

∂si

∂λi
= 0,

and
∂ρi

∂λi
=

r̄

misi
− λir̄

mis2i
· ∂si

∂λi
=
ρi

λi
.

Hence, we get

∂Ti

∂λi
= − r̄

s2i
· ∂si

∂λi
· Ti

si

r̄

+
mmi−1

i

mi!
· r̄
si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

)
∂ρi

∂λi

=
mmi−1

i

mi!
· ρi

λi
· r̄
si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

)
,

Consequently, we have

1
λ

(
Ti +

mmi−1
i

mi!
ρi
r̄

si

(
∂pi,0

∂ρi
· ρmi

i

(1− ρi)2

+pi,0
ρmi−1

i (mi − (mi − 2)ρi)
(1− ρi)3

))
= φ, (9)

for all 1 ≤ i ≤ n. The above equation looks like

1
λ

(
Ti + ρi

∂Ti

∂ρi

)
= φ,

for all 1 ≤ i ≤ n.

8.2 The Algorithm
The left-hand sides of Eqs. (8) and (9) are increasing
functions of λi. Therefore, we can adapt our algorithm
in Section 6 to find an optimal equal-power solution.

The Find λi (mi, r̄, λ, idle, φ, ci, di) algorithm has
change in the input parameters, i.e., s and β are
replaced by ci and di. For the idle-speed model, since

ρi =
λi

mi
r̄
λ

1/(α−1)
i

ci
=

1
ci
· r̄
mi

λ
α/(α−1)
i < 1,

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 10

we need
λi <

(
ci
mi

r̄

)(α−1)/α

,

for all 1 ≤ i ≤ n. For the constant-speed model, since

ρi =
λi

mi
· r̄
si
< 1,

we need
λi <

mi

r̄
si =

mi

r̄
d
1/α
i ,

for all 1 ≤ i ≤ n. Line (3) is therefore changed to
ub← idle ? (ci(mi/r̄))(α−1)/α : (mi/r̄)d

1/α
i ;

According to Theorems 3 and 4, line (8) is changed
si ← idle ? ci/λ

1/(α−1)
i : d1/α

i ;
According to Eqs. (8) and (9), line (9) is changed

if (1/λ(Ti + ρi∂Ti/∂ρi) < (idle ? (1− 1/α) : 1)φ)
In the Calculate T algorithm, the output parame-

ters are changed to φ, λ1, λ2, ..., λn, and T . Lines (1)
and (2) are changed to
ci ← ((mi/r̄)(P̃ /M − P ∗

i))1/(α−1), for all 1 ≤ i ≤ n;
di ← P̃ /M − P ∗

i , for all 1 ≤ i ≤ n;
In lines (8), (18), (29), the parameters in calling the
Find λi (mi, r̄, λ, idle, φ, ci, di) algorithm are changed.
Line (30) should be identical to line (8) in Find λi.

9 NUMERICAL EXAMPLES
In this section, we demonstrate some numerical ex-
amples. Notice that all parameters in our examples
are for illustration only. They can be changed to any
other values in any real clouds.

9.1 The Optimal Method
First, we show two numerical examples of the optimal
method.

Example 1. Let us consider a group of n = 7 multicore
servers S1, S2, ..., S7. The server sizes are mi = 2i,
where 1 ≤ i ≤ n. The base power consumption is
P ∗

i = 2 Watts, for all 1 ≤ i ≤ n. The average task
execution requirement is r̄ = 1 (giga instructions).
The task arrival rate is λ = 55 per second. Assume
that we are given P̃ = 200 Watts. In Table 1, we show
the optimal load distribution λ1, λ2, ..., λn, the optimal
server speeds s1, s2, ..., sn, the optimal power alloca-
tion P1, P2, ..., Pn, the server utilizations ρ1, ρ2, ..., ρn,
and the average task response times T1, T2, ..., Tn on
the n servers, for the idle-speed model. The overall
average task response time of the n multicore servers
is T = 0.94682 seconds.

Example 2. In Table 2, we demonstrate the same data
with the same input as in Example 1 for the constant-
speed model. It is observed that slightly more load
and power are shifted from servers S1–S3 to servers
S4–S7. Due to constant power consumption, server
speeds are reduced, which result in increased server
utilizations and increased task response times. The
overall average task response time of the n multicore
servers is T = 1.20203 seconds, which is greater than
that of the idle-speed model.

Table 1: Numerical Data in Example 1.

i mi λi si Pi ρi Ti

1 2 1.3999752 1.2649111 6.2399603 0.5533888 1.1395417
2 4 3.4217464 1.2649111 13.4747942 0.6762820 1.0302701
3 6 5.5628638 1.2649111 20.9005821 0.7329717 0.9836460
4 8 7.7653623 1.2649111 28.4245797 0.7673822 0.9564001
5 10 10.0069820 1.2649111 36.0111713 0.7911214 0.9380458
6 12 12.2763491 1.2649111 43.6421585 0.8087755 0.9246230
7 14 14.5667212 1.2649111 51.3067539 0.8225717 0.9142652

Table 2: Numerical Data in Example 2.

i mi λi si Pi ρi Ti

1 2 1.3313957 1.0212507 6.1302331 0.6518457 1.7026538
2 4 3.3866304 1.1064775 13.4186087 0.7651828 1.4187500
3 6 5.5507005 1.1396518 20.8811207 0.8117539 1.2984137
4 8 7.7718142 1.1583793 28.4349027 0.8386517 1.2279322
5 10 10.0295116 1.1707565 36.0472185 0.8566693 1.1803212
6 12 12.3132388 1.1796966 43.7011820 0.8698026 1.1454166
7 14 14.6167089 1.1865349 51.3867343 0.8799157 1.1184247

9.2 The Equal-Power Method
Now, we show two numerical examples of the equal-
power method.

Example 3. Let us consider the same group of
multicore servers in Example 1 with the same pa-
rameter setting. In Table 3, we show the optimal
load distribution λ1, λ2, ..., λn, the optimal server
speeds s1, s2, ..., sn, the optimal power allocation
P1, P2, ..., Pn, the server utilizations ρ1, ρ2, ..., ρn, and
the average task response times T1, T2, ..., Tn on the
n servers, for the idle-speed model, produced by the
equal-power method. It is observed that compared
with the optimal solution in Example 1, workloads are

Table 3: Numerical Data in Example 3.

i mi λi si Pi ρi Ti

1 2 1.6112542 1.3966266 7.1428571 0.5768379 1.0730646

2 4 3.6101020 1.3195249 14.2857143 0.6839776 1.0001381

3 6 5.6846204 1.2878706 21.4285714 0.7356615 0.9703481

4 8 7.7983979 1.2696664 28.5714286 0.7677605 0.9534032

5 10 9.9372898 1.2575155 35.7142857 0.7902320 0.9422039

6 12 12.0940316 1.2486836 42.8571429 0.8071188 0.9341315

7 14 14.2643041 1.2418983 50.0000000 0.8204205 0.9279738

Table 4: Numerical Data in Example 4.

i mi λi si Pi ρi Ti

1 2 1.5887468 1.1626033 7.1428571 0.6832712 1.6133435

2 4 3.5970867 1.1626033 14.2857143 0.7734983 1.3818819

3 6 5.6794299 1.1626033 21.4285714 0.8141828 1.2820683

4 8 7.7999873 1.1626033 28.5714286 0.8386338 1.2234023

5 10 9.9449398 1.1626033 35.7142857 0.8554027 1.1837327

6 12 12.1072106 1.1626033 42.8571429 0.8678233 1.1546431

7 14 14.2825990 1.1626033 50.0000000 0.8775011 1.1321492

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 11

slightly shifted from servers S5–S7 to servers S1–S4.
Furthermore, server speeds are now different. Com-
pared with the optimal solution in Example 1, servers
S5–S7 have reduced workload, reduced speeds, re-
duced power consumption, reduced utilization, and
increased response time. The overall average task re-
sponse time of the n multicore servers is T = 0.94887
seconds, which is slightly greater than that of the
optimal solution.

Example 4. In Table 4, we demonstrate the same data
with the same input as in Example 3 for the constant-
speed model. Notice that the server speeds happen
to be the same, because P ∗

1 = P ∗
2 = · · · = P ∗

n .
Again, compared with the optimal solution in Ex-
ample 2, servers S5–S7 have reduced workload, re-
duced speeds, reduced power consumption, reduced
utilization, and increased response time. The overall
average task response time of the n multicore servers
is T = 1.20508 seconds, which is slightly greater than
that of the optimal solution.

10 PERFORMANCE COMPARISON

In this section, we compare our optimal solutions with
the solutions produced by the equal-power method.

10.1 The Optimal Method
To plot the minimized average task response time T as
a function of λ, we need to know the maximum task
arrival rate λmax. For the idle-speed model, since λi <
mi(si/r̄) = mi(s/r̄), λmax satisfies λmax < M(s/r̄),
where M =

∑n
i=1mi. By Theorem 1, we have

s =
(

1
λmaxr̄

(P̃ − (m1P
∗
1 +m2P

∗
2 + · · ·+mnP

∗
n))
)1/(α−1)

,

that is,

λα−1
max <

Mα−1

r̄α−1
· 1
λmaxr̄

(P̃−(m1P
∗
1 +m2P

∗
2 +· · ·+mnP

∗
n)),

or,

λα
max <

Mα−1

r̄α
(P̃ − (m1P

∗
1 +m2P

∗
2 + · · ·+mnP

∗
n)),

which implies that

λmax <
1
r̄
M (α−1)/α(P̃−(m1P

∗
1 +m2P

∗
2 +· · ·+mnP

∗
n))1/α.

For the constant-speed model, by Theorem 2, we
have

λi < mi
si

r̄
=
mi

r̄

(
λi

βmi

)1/α

,

that is,
λi <

mi

β1/(α−1)r̄α/(α−1)
,

where

β =
λmax

P̃ − (m1P ∗
1 +m2P ∗

2 + · · ·+mnP ∗
n)
.

30 40 50 60 70 80

λ

0
1
2
3
4
5
6
7
8
9

10

T

...
.......................................

..................
............
............
........
.........
........
.........
........
........
.........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
..

...
..

.........................
...............
..........
..........
.........
........
.........
........
........
.........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
.......

...
...

.............................
................

............
..........
........
.........
........
.........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
...

..
...

...............................
..................

............
..........
..........
........
.........
........
........
.........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
........
....

..
..

.................................
...................

...........
...........
.........
.........
........
.........
........
........
........
.........
........
........
........
........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
......

P̃ = 150 175 200 225 250

Fig. 4. Average task response time T vs. λ and P (idle-
speed model).

30 40 50 60 70 80

λ

0
1
2
3
4
5
6
7
8
9

10

T

..
..

....................
..............
............
..........
.........
........
.........
........
........
.........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
........
.........
..

..
...

............................
.................

.............
...........
.........
.........
........
.........
........
........
.........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
.........
........
...

..
..

...................................
...................

.............
...........
..........
.........
.........
........
.........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
........
.

...
...

..
.....................

..............
............
..........
........
.........
.........
........
........
.........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
.........
........
........
........
..

...
..

...
.....................

...............
...........
..........
.........
.........
........
.........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
........
........
........
........
........
........
........
.....

P̃ = 150 175 200 225 250

Fig. 5. Average task response time T vs. λ and P
(constant-speed model).

Consequently, λmax satisfies

λmax <
M

β1/(α−1)r̄α/(α−1)
,

that is,

λmaxβ
1/(α−1) <

M

r̄α/(α−1)
,

or,

λα−1
maxβ <

Mα−1

r̄α
,

or,

λα
max

P̃ − (m1P ∗
1 +m2P ∗

2 + · · ·+mnP ∗
n)

<
Mα−1

r̄α
,

which implies that

λmax <
1
r̄
M (α−1)/α(P̃−(m1P

∗
1 +m2P

∗
2 +· · ·+mnP

∗
n))1/α.

Hence, both models have the same λmax.
For the same servers in Examples 1 and 2, we dis-

play the minimized average task response time T as a
function of λ in Figures 4 and 5 for the two core speed
models respectively, where P̃ = 150, 175, 200, 225, 250
Watts. It is clear that the constant-speed model yields
longer average task response time than the idle-speed
model.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 12

10.2 The Baseline Method
To plot the average task response time T obtained
by the equal-power method as a function of λ,
we need to know the maximum task arrival rate
λmax. For the idle-speed model, by Theorem 3, since
λi < mi(si/r̄) = (mi/r̄) · (ci/λ1/(α−1)

i), we get λi <

(ci(mi/r̄))
(α−1)/α, and λmax satisfies

λmax <

n∑
i=1

(
ci
mi

r̄

)(α−1)/α

.

For the constant-speed model, by Theorem 4, since

λi < mi
si

r̄
=
mi

r̄
d
1/α
i ,

we get

λmax <

n∑
i=1

mi

r̄
d
1/α
i .

It can be verified that both models have the same
λmax, i.e.,

λmax <

n∑
i=1

mi

r̄

(
P̃

M
− P ∗

i

)1/α

.

Furthermore, we have

n∑
i=1

mi

r̄

(
P̃

M
− P ∗

i

)1/α

≤ 1
r̄
M (α−1)/α

(
P −

n∑
i=1

miP
∗
i

)1/α

,

where the equality holds only when P ∗
1 = P ∗

2 = · · · =
P ∗

n . To show this, we notice that the inequality is
actually

n∑
i=1

mi

M

(
P̃

M
− P ∗

i

)1/α

≤

(
P̃

M
−

n∑
i=1

mi

M
P ∗

i

)1/α

.

Let us consider the function f(z) =
(
P̃ /M − z

)1/α

. It
is easy to verify that f(z) is a concave function (i.e.,
f ′′(z) < 0), which implies that

n∑
i=1

mi

M
f(zi) ≤ f

(
n∑

i=1

mi

M
zi

)
,

where the equality holds only when z1 = z2 = · · · =
zn, which is equivalent to P ∗

1 = P ∗
2 = · · · = P ∗

n , if
zi = P ∗

i , for all 1 ≤ i ≤ n. The above inequality means
that the equal-power method has a smaller saturation
point than the optimal solution, and thus results in
longer average task response time.

For the same servers in Examples 1–4, we display
the average task response time of the equal-power
(EP) method and the optimal (OPT) average task
response time as a function of λ in Tables 5 and 6 for
the idle-speed model and the constant-speed model
respectively. The task arrival rate is λ = yλmax, where
0.80 ≤ y ≤ 0.99, and λmax is the saturation point
of the equal-power method. The power constraint is
P̃ = 150, 175, 200, 225, 250 Watts. It is easily observed

30 40 50 60 70 80

λ

0

50

100

150

200

250

300

350

P
(W

at
ts

)

...
..

...
....................................

..............................
............................

..........................
........................

........................
.....................

....................
...................

.................
..................

..................
.................

.................
...............

...
...

...
....................................

................................
............................

...........................
.........................

.......................
......................

.....................
....................

...................
...................

..................
.................

............

...
...

..
.....................................

...............................
.............................

..........................
.........................

........................
......................

.....................
....................

...................
...................

.................
.................

......

..
..

..
.....................................

................................
.............................

..........................
..........................

.......................
......................

.....................
....................

...................
...................

..................
................

...

...
...

..
.....................................

.................................
............................

..........................
..........................

.......................
......................

.....................
....................

...................
..................

..................
.................

T̃ = 1

T̃ = 2

T̃ = 3

T̃ = 4

T̃ = 5

Fig. 6. Average power consumption P vs. λ and T̃
(idle-speed model).

30 40 50 60 70 80

λ

0

50

100

150

200

250

300

350

P
(W

at
ts

)
..

..
...

..................................
..............................

...........................
.........................

.......................
......................

.....................
...................

...................
..................

..................
.................

.................
...............

................
.........

..
..

...
....................................

................................
............................

.........................
..........................

.......................
......................

....................
...................

...................
...................

..................
................

.................
......

...
...

...
....................................

................................
............................

...........................
.........................

.......................
......................

.....................
....................

...................
...................

..................
.................

............

...
..

..
.....................................

...............................
.............................

..........................
.........................

........................
......................

.....................
....................

...................
...................

.................
.................

.......

...
..

..
.....................................

................................
.............................

..........................
..........................

.......................
......................

.....................
....................

...................
...................

..................
................

....

T̃ = 1

T̃ = 2

T̃ = 3

T̃ = 4

T̃ = 5

Fig. 7. Average power consumption P vs. λ and T̃
(constant-speed model).

that the equal-power method yields noticeably longer
average task response time than the optimal average
task response time, especially when λ is close to λmax

and P̃ is not large.

11 PERFORMANCE CONSTRAINED POWER
OPTIMIZATION

The optimal power allocation and load distribution prob-
lem for multiple heterogeneous multicore server pro-
cessors can also be formulated in a dual form,
namely, given the number of multicore servers n, the
sizes of the servers m1,m2, ...,mn, the base power
supply P ∗

1 , P
∗
2 , ..., P

∗
n , the average task execution re-

quirement r̄, the task arrival rate λ, and a per-
formance constraint T̃ , find the task arrival rates
on the servers λ1, λ2, ..., λn, and the server speeds
s1, s2, ..., sn, such that the average power consump-
tion P (λ1, λ2, ..., λn, s1, s2, ..., sn) is minimized, sub-
ject to the constraints F (λ1, λ2, ..., λn) = λ, where
F (λ1, λ2, ..., λn) = λ1 + λ2 + · · · + λn, and ρi < 1,
i.e., λi < mi/x̄i = misi/r̄, for all 1 ≤ i ≤ n, and
T (λ1, λ2, ..., λn, s1, s2, ..., sn) = T̃ . The optimization
problem defined above is a performance constrained
power optimization problem, i.e., minimizing power
consumption subject to performance (average task
response time) constraint.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 13

Table 5: Comparison of Equal-Power Solutions and Optimal Solutions (Idle-Speed Model).

P̃ = 150 P̃ = 175 P̃ = 200 P̃ = 225 P̃ = 250
y EP OPT EP OPT EP OPT EP OPT EP OPT

0.80 1.39038 1.15937 1.05061 0.99560 0.91035 0.88371 0.82457 0.80799 0.76428 0.75252
0.81 1.41988 1.17416 1.07182 1.01352 0.92864 0.90059 0.84110 0.82377 0.77958 0.76735
0.82 1.45231 1.18994 1.09533 1.03318 0.94891 0.91922 0.85942 0.84120 0.79654 0.78377
0.83 1.48825 1.20685 1.12156 1.05490 0.97153 0.93990 0.87988 0.86059 0.81548 0.80205
0.84 1.52847 1.22505 1.15106 1.07904 0.99698 0.96303 0.90289 0.88233 0.83679 0.82256
0.85 1.57389 1.24475 1.18450 1.10608 1.02584 0.98910 0.92897 0.90689 0.86094 0.84576
0.86 1.62569 1.26616 1.22276 1.13658 1.05886 1.01873 0.95883 0.93487 0.88858 0.87222
0.87 1.68542 1.28956 1.26698 1.17129 1.09702 1.05271 0.99333 0.96707 0.92053 0.90272
0.88 1.75513 1.31527 1.31867 1.21117 1.14164 1.09210 1.03367 1.00451 0.95787 0.93824
0.89 1.83759 1.34370 1.37991 1.25747 1.19450 1.13832 1.08146 1.04861 1.00212 0.98015
0.90 1.93669 1.37532 1.45358 1.31188 1.25810 1.19329 1.13895 1.10131 1.05534 1.03035
0.91 2.05804 1.41074 1.54387 1.37675 1.33603 1.25976 1.20940 1.16538 1.12057 1.09154
0.92 2.21004 1.45071 1.65702 1.45537 1.43370 1.34173 1.29771 1.24491 1.20232 1.16775
0.93 2.40589 1.49619 1.80288 1.55262 1.55961 1.44525 1.41153 1.34620 1.30769 1.26519
0.94 2.66757 1.54843 1.99784 1.67592 1.72791 1.58004 1.56367 1.47948 1.44853 1.39410
0.95 3.03466 1.60904 2.27140 1.83723 1.96404 1.76261 1.77713 1.66260 1.64615 1.57246
0.96 3.58627 1.68023 2.68254 2.05715 2.31895 2.02357 2.09797 1.92964 1.94316 1.83522
0.97 4.50705 1.76501 3.36893 2.37436 2.91145 2.42671 2.63358 2.35489 2.43900 2.26025
0.98 6.35086 1.86766 4.74350 2.87114 4.09799 3.13071 3.70619 3.13685 3.43197 3.06371
0.99 11.88700 1.99442 8.87094 3.75885 7.66084 4.66995 6.92695 5.04481 6.41356 5.15204

Table 6: Comparison of Equal-Power Solutions and Optimal Solutions (Constant-Speed Model).

P̃ = 150 P̃ = 175 P̃ = 200 P̃ = 225 P̃ = 250
y EP OPT EP OPT EP OPT EP OPT EP OPT

0.80 1.76054 1.45169 1.32357 1.24881 1.14589 1.10918 1.03750 1.01443 0.96141 0.94491
0.81 1.79942 1.47099 1.35228 1.27258 1.17066 1.13186 1.05989 1.03570 0.98214 0.96496
0.82 1.84315 1.49141 1.38462 1.29913 1.19857 1.15730 1.08512 1.05960 1.00550 0.98750
0.83 1.89257 1.51255 1.42123 1.32893 1.23016 1.18596 1.11369 1.08657 1.03194 1.01295
0.84 1.94878 1.53587 1.46292 1.36252 1.26615 1.21843 1.14621 1.11717 1.06206 1.04187
0.85 2.01313 1.56161 1.51070 1.40060 1.30738 1.25544 1.18349 1.15212 1.09657 1.07493
0.86 2.08738 1.59011 1.56588 1.44403 1.35500 1.29791 1.22654 1.19233 1.13642 1.11299
0.87 2.17380 1.62178 1.63014 1.49391 1.41047 1.34705 1.27668 1.23897 1.18284 1.15720
0.88 2.27545 1.65709 1.70577 1.55168 1.47575 1.40442 1.33569 1.29360 1.23747 1.20907
0.89 2.39647 1.69665 1.79586 1.61922 1.55351 1.47214 1.40598 1.35832 1.30254 1.27062
0.90 2.54269 1.74117 1.90474 1.69906 1.64749 1.55312 1.49094 1.43603 1.38119 1.34469
0.91 2.72249 1.79154 2.03867 1.79471 1.76309 1.65144 1.59544 1.53091 1.47793 1.43534
0.92 2.94847 1.84891 2.20703 1.91112 1.90841 1.77312 1.72681 1.64906 1.59954 1.54860
0.93 3.24040 1.91469 2.42458 2.05558 2.09619 1.92723 1.89655 1.79995 1.75668 1.69381
0.94 3.63126 1.99075 2.71588 2.23922 2.34764 2.12835 2.12386 1.99893 1.96711 1.88629
0.95 4.18039 2.07953 3.12519 2.48001 2.70095 2.40123 2.44325 2.27275 2.26277 2.15305
0.96 5.00648 2.18432 3.74100 2.80880 3.23251 2.79179 2.92376 2.67253 2.70761 2.54647
0.97 6.38645 2.30963 4.76976 3.28364 4.12055 3.39571 3.72653 3.30969 3.45076 3.18336
0.98 9.15110 2.46187 6.83089 4.02793 5.89973 4.45099 5.33488 4.48201 4.93967 4.38798
0.99 17.45440 2.65043 13.02142 5.35871 11.24345 6.75923 10.16551 7.34340 9.41159 7.51997

Fortunately, the method we have already developed
for power constrained performance optimization is
readily applicable to performance constrained power
optimization. The key observation is that the average
task response time T is a decreasing function of
the average power consumption P . Therefore, for a
given performance guarantee T̃ , we can search P
(i.e., the minimized average power consumption) such
that T (λ1, λ2, ..., λn, s1, s2, ..., sn) = T̃ by using the
bisection method.

For the same servers in Examples 1 and 2 and
Figures 4 and 5, we display the minimized average
power consumption P as a function of λ in Figures
6 and 7 for the two core speed models respectively,
where T̃ = 1, 2, 3, 4, 5 seconds. It is clear that the
constant-speed model consumes more average power
than the idle-speed model.

12 CONCLUDING REMARKS

We have mentioned the importance and significance
of performance optimization and power reduction in

data centers for cloud computing. We demonstrated
the feasibility of studying the power-performance
tradeoff for a cloud of clouds with heterogeneous
servers in an analytically way. We have described a
queueing model for a group of heterogeneous mul-
ticore servers with different sizes and speeds. We
formulated two optimization problems for optimal
power allocation and load distribution on multiple
heterogeneous multicore server processors in a cloud
computing environment. We proved optimal server
speed setting for two different core speed models, i.e.,
the idle-speed model and the constant-speed model.
We also developed our algorithms to solve the opti-
mization problems and demonstrated some numerical
examples. Our work makes initial contribution to op-
timal load distribution with power and performance
constraints for multiple queueing systems with mul-
tiple servers. Our models, results, and algorithms in
this paper are also applicable to other server systems
and computing environments.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 14

ACKNOWLEDGMENTS

The authors would like to express their gratitude to
the reviewers for their comments on improving the
presentation and structure of the paper.

This work is partially supported by Ministry of
Science and Technology of China under National 973
Basic Research Grants No. 2011CB302805 and No.
2011CB302505, and National Natural Science Founda-
tion of China Grant No. 61233016.

The work of I. Stojmenovic was supported by the
Government of China for the Tsinghua 1000-Plan Dis-
tinguished Professorship (2012-2015) and by NSERC
Canada Discovery grant.

Part of the work was performed while K. Li was
visiting Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, in the
winter of 2011 and 2013 and the summer of 2012 as an
Intellectual Ventures endowed visiting chair professor
(2011-2013).

REFERENCES

[1] http://en.wikipedia.org/wiki/CMOS
[2] http://searchdatacenter.techtarget.com/definition/server-

consolidation
[3] S. Albers, “Energy-efficient algorithms,” Communications of the

ACM, vol. 53, no. 5, pp. 86-96, 2010.
[4] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A

taxonomy and survey of energy-efficient data centers and
cloud computing systems,” Advances in Computers, vol. 82, pp.
47-111, 2011.

[5] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 8, no. 3, pp. 299-316, 2000.

[6] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De
Meer, M. Q. Dang, and K. Pentikousis, “Energy-efficient cloud
computing,” The Computer Journal, Advance Access published
online on August 19, 2009.

[7] F. Bonomi and A. Kumar, “Adaptive optimal load balancing
in a nonhomogeneous multiserver system with a central job
scheduler,” IEEE Transactions on Computers, vol. 39, no. 10, pp.
1232-1250, 1990.

[8] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-
power CMOS digital design,” IEEE Journal on Solid-State Cir-
cuits, vol. 27, no. 4, pp. 473-484, 1992.

[9] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle, “Managing energy and server resources in hosting
centers,” Proceedings of the 18th ACM Symposium on Operating
Systems Principles, pp. 103-116, 2011.

[10] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-aware server provisioning and load dispatching for
connection-intensive internet services,” Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Imple-
mentation, pp. 337-350, 2008.

[11] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam, “Managing server energy and operational costs
in hosting centers,” Proceedings of the ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer
Systems, pp. 303-314, 2005.

[12] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch,
“Optimality analysis of energy-performance trade-off for
server farm management,” Performance Evaluation, vol. 67, no.
11, pp. 1155-1171, 2010.

[13] B. Guenter, N. Jain, and C. Williams, “Managing cost, per-
formance, and reliability tradeoffs for energy-aware server
provisioning,” Proceedings of INFOCOM, pp. 1332-1340, 2011.

[14] L. He, S. A. Jarvis, D. P. Spooner, H. Jiang, D. N. Dillenberger,
and G. R. Nudd, “Allocating non-real-time and soft real-
time jobs in multiclusters, IEEE Transactions on Parallel and
Distributed Systems, vol. 17, no. 2, pp. 99-112, 2006.

[15] IBM, “The benefits of cloud computing – a new era of respon-
siveness, effectiveness and efficiency in IT service delivery,”
Dynamic Infrastructure, July 2009.

[16] H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal load balancing
in distributed computer systems, Springer-Verlag, London, 1997.

[17] B. Khargharia, S. Hariri, F. Szidarovszky, M. Houri, H. El-
Rewini, S. Khan, I. Ahmad, and M. S. Yousif, “Autonomic
power and performance management for large-scale data cen-
ters,” NFS Next Generation Software Program, 2007.

[18] L. Kleinrock, Queueing Systems, Volume 1: Theory, John Wiley
and Sons, New York, 1975.

[19] K. Li, “Minimizing mean response time in heterogeneous
multiple computer systems with a central stochastic job dis-
patcher,” International Journal of Computers and Applications, vol.
20, no. 1, pp. 32-39, 1998.

[20] K. Li, “Optimizing average job response time via decentral-
ized probabilistic job dispatching in heterogeneous multiple
computer systems”, The Computer Journal, vol. 41, no. 4, pp.
223-230, 1998.

[21] K. Li, “Minimizing the probability of load imbalance in het-
erogeneous distributed computer systems,” Mathematical and
Computer Modelling, vol. 36, no. 9/10, pp. 1075-1084, 2002.

[22] K. Li, “Optimal load distribution in nondedicated heteroge-
neous cluster and grid computing environments,” Journal of
Systems Architecture, vol. 54, no. 1-2, pp. 111-123, 2008.

[23] K. Li, “Optimal power allocation among multiple heteroge-
neous servers in a data center,” Sustainable Computing: Infor-
matics and Systems, vol. 2, pp. 13-22, 2012.

[24] K. Li, “Optimal load distribution for multiple heterogeneous
blade servers in a cloud computing environment,” Journal of
Grid Computing, in press.

[25] C. G. Rommel, “The probability of load balancing success
in a homogeneous network,” IEEE Transactions on Software
Engineering, vol. 17, no. 9, pp. 922-933, 1991.

[26] K. W. Ross and D. D. Yao, “Optimal load balancing and
scheduling in a distributed computer system,” Journal of the
ACM, vol. 38, no. 3, pp. 676-690, 1991.

[27] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, eds., Scheduling
and Load Balancing in Parallel and Distributed Systems, IEEE
Computer Society Press, Los Alamitos, California, 1995.

[28] M. R. Stan and K. Skadron, “Guest editors’ introduction:
power-aware computing,” IEEE Computer, vol. 36, no. 12, pp.
35-38, 2003.

[29] X. Tang and S. T. Chanson, “Optimizing static job scheduling
in a network of heterogeneous computers,” Proceedings of Inter-
national Conference on Parallel Processing, pp. 373-382, Toronto,
Canada, August 2000.

[30] A. N. Tantawi and D. Towsley, “Optimal static load balancing
in distributed computer systems,” Journal of the ACM, vol. 32,
no. 2, pp. 445-465, 1985.

[31] O. S. Unsal and I. Koren, “System-level power-aware design
techniques in real-time systems,” Proceedings of the IEEE, vol.
91, no. 7, pp. 1055-1069, 2003.

[32] V. Venkatachalam and M. Franz, “Power reduction techniques
for microprocessor systems,” ACM Computing Surveys, vol. 37,
no. 3, pp. 195-237, 2005.

[33] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “SHIP:
scalable hierarchical power control for large-scale data cen-
ters,” Proceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques, pp. 91-100, 2009.

[34] X. Wang and Y. Wang, “Coordinating power control and per-
formance management for virtualized server clusters,” IEEE
Transactions on Parallel and Distributed Systems, to appear, 2011.

[35] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theoretical
and practical limits of dynamic voltage scaling,” Proceedings of
the 41st Design Automation Conference, pp. 868-873, 2004.

[36] X. Zheng and Y. Cai, “Achieving energy proportionality in
server clusters,” International Journal of Computer Networks, vol.
1, no. 2, pp. 21-35, 2010.

IEEE TRANSACTIONS ON COMPUTERS, VOL. ??, NO. ??, MONTH 2013 15

Junwei Cao received his Ph.D. in computer science from the Uni-
versity of Warwick, Coventry, UK, in 2001. He received his bachelor
and master degrees in control theories and engineering in 1996 and
1998, respectively, both from Tsinghua University, Beijing, China.
He is currently a Professor and Vice Director, Research Institute
of Information Technology, Tsinghua University, Beijing, China. He
is also Director of Common Platform and Technology Division, Ts-
inghua National Laboratory for Information Science and Technology.
Before joining Tsinghua University in 2006, he was a research
scientist at MIT LIGO Laboratory and NEC Laboratories Europe
for about 5 years. He has published over 130 papers and cited by
international scholars for over 3,000 times. He is the book editor
of Cyberinfrastructure Technologies and Applications, published by
Nova Science in 2009. His research is focused on advanced com-
puting technologies and applications. Dr. Cao is a senior member of
the IEEE Computer Society and a member of the ACM and CCF.

Keqin Li is a SUNY Distinguished Professor of computer science
and an Intellectual Ventures endowed visiting chair professor at
the National Laboratory for Information Science and Technology,
Tsinghua University, Beijing, China. His research interests are mainly
in design and analysis of algorithms, parallel and distributed com-
puting, and computer networking. He has contributed extensively
to processor allocation and resource management; design and
analysis of sequential/parallel, deterministic/probabilistic, and ap-
proximation algorithms; parallel and distributed computing systems
performance analysis, prediction, and evaluation; job scheduling,
task dispatching, and load balancing in heterogeneous distributed
systems; dynamic tree embedding and randomized load distribution
in static networks; parallel computing using optical interconnections;
dynamic location management in wireless communication networks;
routing and wavelength assignment in optical networks; energy-
efficient computing and communication. Dr. Li has published over
245 journal articles, book chapters, and research papers in refereed
international conference proceedings. He has received several Best
Paper Awards for his highest quality work. He is currently or has
served on the editorial board of IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, Journal of
Parallel and Distributed Computing, International Journal of Parallel,
Emergent and Distributed Systems, International Journal of High
Performance Computing and Networking, and Optimization Letters.

Ivan Stojmenovic received his Ph.D. degree in mathematics. He is
a Full Professor at the University of Ottawa, Canada. He held reg-
ular and visiting positions in Serbia, Japan, USA, Canada, France,
Mexico, Spain, UK (as Chair in Applied Computing at the University
of Birmingham), Hong Kong, Brazil, Taiwan, China, and Australia. He
published over 300 different papers, and edited seven books on wire-
less, ad hoc, sensor and actuator networks and applied algorithms
with Wiley. He is an editor of over dozen journals (including IEEE
Network), the editor-in-chief of IEEE Transactions on Parallel and
Distributed Systems (2010-13), and the founder and editor-in-chief
of three journals (MVLSC, IJPEDS, and AHSWN). Dr. Stojmenovic
is one of about 250 computer science researchers with h-index at
least 50, has top h-index in Canada for mathematics and statistics,
and has more than 12000 citations. He received four best paper
awards and the Fast Breaking Paper for October 2003, by Thomson
ISI ESI. He is a recipient of the Royal Society Research Merit Award,
UK. He is a Tsinghua 1000 Plan Distinguished Professor (2012-
15). He is a Fellow of the IEEE (Communications Society, class
2008), and Canadian Academy of Engineering (since 2012). He
was an IEEE CS Distinguished Visitor 2010-11 and received 2012
Distinguished Service award from IEEE ComSoc Communications
Software TC. He received Excellence in Research Award of the
University of Ottawa 2009. Dr. Stojmenovic chaired and/or organized
over 60 workshops and conferences, and served in over 200 program
committees. He was program co-chair of IEEE PIMRC 2008, IEEE
AINA-07, IEEE MASS-04 and 07, founded several workshop series,
and is/was Workshop Chair at IEEE ICDCS 2013, IEEE INFOCOM
2011, IEEE MASS-09, ACM Mobihoc-07 and 08.

