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On the Mathematical Nature of Wireless Broadcast Trees
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Abstract: Trees are arguably one of the most important data structures that are widely used in information theory

and computing science. For example, different number of intermediate nodes in wireless broadcast trees may

have great impact on energy consumption of each node that are typically equipped with limited power supplies in

a wireless sensor network, which may eventually determine how long the given wireless sensor network can last.

Thus, it is of great importance to have a deep understanding of the mathematical nature of wireless broadcast trees.

In this paper, we give a new proof of Cayley’s famous theorem for counting labeled trees. A distinct feature in this

proof is that we purely use combinatorial structures instead of constructing a bijection between two kinds of labeled

trees as almost all of the existing proofs do [1,8,9]. Another contribution of this work is the presentation of a new

theorem on trees based on the number of intermediate nodes in the tree. To be best of our knowledge, it is the first

time that a tree enumeration theorem based on the number of intermediate nodes in the tree has been presented.
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1 Introduction

Notably, trees are arguably one of the most important
data structures that are widely used in information
theory and computing science. From B+ trees that
are used in almost every major database system’s
indexing and queries, to decision and strategy trees
that are used in probabilistic inferences such as the one
used in Google’s AlphaGo system that defeated human
champions in recent human-machine grand challenge,
trees are almost the most-sought utilities to depict
and represent a variety of choice-making strategies.
For example, different number of intermediate nodes
i.e., the non-leaf nodes except the root node, in
wireless broadcast trees may have great impact on
energy consumption of each node that are typically
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equipped with limited power supplies in a wireless
sensor network, which may eventually determine how
long the given wireless sensor network can last. It is
of great importance to have a deep understanding of the
mathematical nature of wireless broadcast trees.

The studies of trees have captured the imaginations
of some of the most prominent minds in history.
In 1889, British mathematician Arthur Cayley, who
helped found the modern British school of pure
mathematics, published his famous theorem on trees.
Donald Knuth, a Turing award winner and a professor
at Stanford University, and Peter Shor, a winner
of Nevanlinna Prize, a professor at MIT and the
inventor of Shor’s algorithm that is widely regarded
as a major breakthrough for quantum algorithm for
integer factorization, all explored deep understanding of
Cayley’s theorem on trees [4,9].

The rest of the paper is organized as follows: we
revisit the free tree theorem presented by Cayley in his
landmark work in 1889 and present our new results
of tree enumeration theorems based on the number
of intermediate nodes in the tree (see Equation 10)
in Section 2. We examine the nm series and its
combinatorial structures in Section 3, which pave the
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way for our new proof of Cayley’s theorem in Section 4.
We give a formal proof of the NP-hardness of wireless
broadcast problems towards the optimization of certain
objectives in Section 5. The conclusions are given in
Section 6.

2 Free Tree Theory Revisited

According to Cayley’s theory, there are nn−2 distinct
labeled free trees on n vertices [2]. For if X is
a particular vertex, the free trees are in one-to-one
correspondence with oriented trees having root X [4].
Therefore, for the case with one root node S , which is
also called the source node in wireless broadcast trees
[5,6], and N non-root nodes, which are also called
destination nodes in wireless broadcast trees, we have
(N + 1)(N−1) distinct labeled free trees.

In the following, we give another look at Cayley’s
free tree theory based on the number of intermediate
nodes in the tree, i.e., the non-leaf nodes except the root
node, which are also called relaying nodes in wireless
broadcast trees. The motivation behind this work is
that the number of intermediate nodes in the tree often
plays an important role in the design of energy-efficient
communication protocols in wireless ad hoc networks
and in particular on the construction of energy-efficient
broadcast trees in multi-hop wireless ad hoc networks
[5,6]. As stated at the beginning of this section, we
consider a root node S and N non-root nodes. The
number of possible trees with zero intermediate nodes
is given by:

R(0) =

(
N

N

)
=1 (1)

Namely, for the case with zero intermediate nodes,
i.e., all the non-root nodes are leaf nodes, the unique
tree is a hub-like tree with every non-root node as direct
child node of the root node.

The number of possible trees with one intermediate
node is given by:

R(1) =

(
N

1

)
×(
(
N − 1

1

)
+

(
N − 1

2

)
+(

N − 1

3

)
+...+

(
N − 1

N − 2

)
+

(
N − 1

N − 1

)
)

=

(
N

1

)
×

N−1∑
i=1

(
N − 1

i

) (2)

The above formula indicates that we first need to pick
one among N non-root nodes as the intermediate node.
Then we will decide which nodes are direct child nodes

of the intermediate node (the remaining nodes are direct
child nodes of the root node S ). Notably, the only
intermediate node has to be the direct child node of the
root node, thus the maximum number of direct child
nodes of the intermediate node in this case is (N − 1)

and the minimum number of direct child nodes of the
intermediate node is one.

Similarly, the number of possible trees with two
intermediate nodes is given by:

R(2) =

(
N

2

)
×

N−2∑
i=1

(

(
N − 1

i

)
×

N−1−i∑
j=1

(
N − 1− i

j

)
) (3)

Roughly, Equation (3) states that first we need to
decide how many choices there exist to pick up the
two intermediate nodes among N non-root nodes,
then we decide how many of the remaining non-root
nodes except those two intermediate nodes are directly
reached by one of the intermediate nodes and how many
of the remaining non-root nodes are directly reached by
the other intermediate node.

By analogy, the number of possible trees with i

intermediate nodes can be given as follows:

R(i)=

(
N

i

)
×

N−i∑
k1=1

(

(
N − 1

k1

)
×

N−1−k1−(i−2)∑
k2=1

(

(
N − 1− k1

k2

)
×.

..×

N−1−
m−1∑
j=1

kj−(i−m)∑
km=1

(

N − 1−
m−1∑
j=1

kj

km

×

...×

N−1−
i−1∑
j=1

kj∑
ki=1

N − 1−
i−1∑
j=1

kj

ki

))...)

(4)

Simply put, Equation (4) states the same
straightforward philosophy as that of Equation
(3). Essentially, the maximum number of direct
child nodes of the mth picked relaying node, i.e.,

(N − 1 −
m−1∑
j=1

kj − (i−m)) (
m−1∑
j=1

kj is the sum

of the directly child nodes of the first (m − 1)

relaying nodes), guarantees the basic principle for the
subsequent intermediate nodes that each intermediate
node must have at least one direct child node. While we
will provide a simplified formula later, this seemingly
clumsy formula gives a different view and the number
be easily calculated by a computer program due to its
special structures.

Notably, among all the possible trees with one root
node and N non-root nodes, the number of intermediate
nodes ranges from zero to (N − 1) . For the extreme
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case with (N − 1) intermediate nodes, among N non-
root nodes only one node is the non-intermediate node,
i.e., the leaf node. In theory, all of the possible trees
can be categorized into zero-intermediate-node trees,
one-intermediate-node trees, two-intermediate-nodes
trees, and so forth until (N − 1)-intermediate-nodes
trees and they are mutually exclusive and collectively
exhaustive. Therefore, the total number of possible
trees according to the classification based on the number
of intermediate nodes is summarized as:

Ttotal(N) =
N−1∑
i=0

R(i) = R(0) +
N−1∑
i=1

(
N

i

)
×

(
N−i∑
k1=1

(

(
N − 1

k1

)
×

N−1−k1−(i−2)∑
k2=1

(

(
N − 1− k1

k2

)
×

...×

N−1−
m−1∑
j=1

kj−(i−m)∑
km=1

(

N − 1−
m−1∑
j=1

kj

km

× .

..×

N−1−
i−1∑
j=1

kj∑
ki=1

N − 1−
i−1∑
j=1

kj

ki

))...)

(5)

The above analysis provides a novel view on the
tree enumeration theory based on the number of
intermediate nodes, which has crucial impact on some
emerging applications, e.g., the power consumption and
signal interference analysis in the broadcast protocols in
multi-hop wireless ad hoc networks [5,6].

The following table illustrates the relationship
between the total number of trees and the number of
trees with different number of relaying nodes as dictated
in Formula (5). T (i,N) denotes the number of trees
with i intermediate nodes and N non-root nodes.

While we will use the clumsy Eq. (4) and Eq. (5)
in the final proof of Cayley’s formula in Section III, we
also give a simplified form of it by virtue of the results
on labeled rooted trees with degree sequence given by
Goulden and Jackson in [3].

Regarding the number of labeled trees with i

intermediate nodes in the tree, we have the following
theorem:

Theorem 1.1: R(i) denote the number of labeled
trees with i intermediate nodes in the tree, we have

R(i) =

(
N

i

)
i+1∑
k=1

(

(
i

k − 1

)
(−1)i+1−kk(N−1))

Proof: following [3], we first define the degree of a
vertex v to be the number of edges incident to vertex
v, and a sequence r = (r1, r2, ...) of non-negative
integers, where ri is the number of vertices that have

degree i , is the type of labeled rooted trees with N + 1

vertices if and only if
∑

ri = N + 1
∑

i× ri = 2N (6)

To make it self-contained, let us recall the results on
labeled rooted trees with degree sequence in [3].

In [3], it states that the number of labeled rooted trees
with degree sequence (r1, r2, ...) (i.e., rj vertices are of
degree j , for j ≥ 1), is

(N + 1)(N − 1)!(N + 1)!∏
j≥1

rj !(j − 1)!rj
forN ≥ 1, (7)

where r1+r2+... = N+1, r1+2r2+3r3+... = 2N.

Thus, the number of labeled trees with degree
sequence (r1, r2, ...) (i.e., rj vertices are of degree j

, for j ≥ 1 ), is

(N − 1)!(N + 1)!∏
j≥1

rj !(j − 1)!rj
forN ≥ 1, (8)

where r1+r2+... = N+1, r1+2r2+3r3+... = 2N.

Further, let R(i) denote the number of labeled trees
with i intermediate nodes in the tree. We have

R(i) =
∑ (N − 1)!(N + 1)!∏

j≥1

rj !(j − 1)!rj
forN ≥ 1, (9)

where the sum is over all degree sequence (r1, r2, ...)

such that rj is a non-negative integer for each j , and
r1 = N− i if the degree of the root node is greater than
1 and r1 = N − i + 1 if the degree of the root node is
1, r1 + r2 + ... = N + 1, r1 + 2r2 + 3r3 + ... = 2N.

Further, by virtue of Lagrange Theorem [3], we have

R(i) =

(
N

i

)
i+1∑
k=1

(

(
i

k − 1

)
(−1)i+1−kk(N−1)) (10)

Notably, Eq. (5) and Eq. (10) show different aspects
on the same counting problem.

3 The nm Series and its Combinatorial
Structures

To give the proof of formula (5) against Cayley’s
theorem, first let us have a look at the interesting
combinatorial structures of the nm series, which will
be used in the proof in Section III. In the following,
we give the specific combinatorial structures of n2 , n3

and n4 , the combination of which covers all the new
combinatorial structures based on which we will derive
the generalized form for nm.
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(
n

1

)
+

(
n

2

)
×
(
2

1

)
= n2 (11)

(
n

1

)
+

(
n

2

)
×(
(
3

1

)
+

(
3

2

)
)+

(
n

3

)
×
(
3

1

)
×
(
2

1

)
=n3 (12)

(
n

1

)
+

(
n

2

)
×(
(
4

1

)
+

(
4

2

)
+

(
4

3

)
)

+

(
n

3

)
×(
(
4

1

)
×(
(
3

1

)
+

(
3

2

)
)+

(
4

2

)
×
(
2

1

)
)

+

(
n

4

)
×
(
4

1

)
×
(
3

1

)
×
(
2

1

)
= n4

(13)

We give the proof for the Equation (11), (12)
and (13) respectively, based on which we will derive
a generalized form for the similar combinatorial
structures of nm.

Proof of Equation (11): We have n distinct balls and
we want to pick two balls at random sequentially with
replacement. The right-hand side of Equation (11) is
the number of ways of picking two balls sequentially
from n distinct balls based upon our rules. On the other
hand, the possible number of ways of picking two balls
at random among these n distinct balls according to the
rule could include either picking the same ball twice
or picking two different balls. The first component in

the left-hand side of Equation (11), i.e.,
(
n

1

)
, is the

number of ways that the two picked balls are the same
ball. The second component in the left-hand side of

Equation (11), i.e.,
(
n

2

)
×
(
2

1

)
, is the number of ways

that the two picked balls are different, which means that
we can first pick two balls from n distinct balls at one

time and then pick one from the two balls as the first-
picked ball and the other as the second-picked ball.

Following the same rule as above, we can see that the
right-hand side of Equation (12) is the number of ways
of picking three balls sequentially from n distinct balls
at random with replacement. On the other hand, the
possible number of ways of picking three balls among
n distinct balls according to the rule could include the
following three categories: (a) picking the same ball for
three times; (b) picking two different balls with one ball
picked twice (two balls are the same among the three
picked balls); (c) picking three different balls. The first
component in the left-hand side of Equation (11), i.e.,(
n

1

)
, is the number of ways that the three picked balls

are the same ball. The second component in the left-

hand side of Equation (12), i.e.,
(
n

2

)
× (
(
3

1

)
+
(
3

2

)
) , is

the number of ways that there are exactly two different
types of balls among the three picked balls (two balls
are the same),which means that we first pick two balls
from n distinct balls at one time and then there are two
placement options for the first to-be-picked ball among
the two balls: (a) put it in one of the three slots, i.e.,(
3

1

)
, in which case it appears only once (the other one

takes the remaining slots and it appears twice); (b) it

appears in two of the three slots, i.e.,
(
3

2

)
, in which case

it appears twice (the other one takes the remaining slots
and it appears only once). The third component in the

left-hand side of Equation (12), i.e.,
(
n

3

)
×
(
3

1

)
×
(
2

1

)
,

is the number of ways that the three picked balls are

Table 1 Examples of T (i,N) according to Eq. (5)

i/N 1 2 3 4

0
(
1
1

)
= 1

(
2
2

)
= 1

(
3
3

)
= 1

(
4
4

)
= 1

1
(
2
1

)
= 2

(
3
1

)
× (

(
2
1

)
+

(
2
2

)
)=9

(
4
1

)
× (

(
3
1

)
+

(
3
2

)
+

(
3
3

)
) = 28

2
(
3
2

)
×
(
2
1

)
= 6

(
4
2

)
× (

(
3
1

)
× (

(
2
1

)
+

(
2
2

)
) +

(
3
2

)
×
(
1
1

)
)

= 72

3

(
4
3

)
×
(
3
1

)
×
(
2
1

)
×(

1
1

)
= 24∑

i

T (i,N) (1 + 1)(1−1) = 1 (2 + 1)(2−1) = 1 + 2
= 3

(3 + 1)(3−1) = 1 + 9
+6 = 16

(4 + 1)(4−1) = 1 + 28
+72 + 24 = 125
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different from each other, which means that we first pick
three balls from n distinct balls at one time and then
pick one from the three balls as the first-picked ball and
then pick one more from the remaining two balls as the
second-picked ball and the last one as the third-picked
ball.

Similarly, we can see that the right-hand side of
Equation (13) is the number of ways of picking four
balls successively from n distinct balls at random with
replacement. On the other hand, the possible number
of ways of picking four balls among n distinct balls
according to the rule could include the following four
categories: (a) picking the same ball for four times;
(b) picking two different balls (there are two different
types of balls among the four picked balls); (c) picking
three different balls (two balls are the same among
the four balls); (d) picking four different balls. The
first component in the left-hand side of Equation (13),

i.e.,
(
n

1

)
, is the number of ways that the four picked

balls are the same ball. The second component in the

left-hand side of Equation (13), i.e.,
(
n

2

)
× (
(
4

1

)
+(

4

2

)
+
(
4

3

)
), is the number of ways that there are two

exactly different types of balls among the four picked
balls, which means that we first pick two balls from
n distinct balls at one time and then there are three
possible placement options for the first to-be-picked
ball among the two balls: (a) put it in one of the four

slots, i.e.,
(
4

1

)
, in which case it appears only once (the

other ball takes the remaining slots and it appears for
three times); (b) it appears in two of the four slots,

i.e.,
(
4

2

)
, in which case it appears twice (the other ball

takes the remaining slots and it also appears twice); (c)

it appears in three of the four slots, i.e.,
(
4

3

)
, in which

case it appears for three times in the four slots (the other
one takes the remaining slot and it appears only once).

The third component in the left-hand side of Equation

(13), i.e.,
(
n

3

)
× (
(
4

1

)
× (
(
3

1

)
+
(
3

2

)
) +
(
4

2

)
×
(
2

1

)
), is

the number of ways that there are exactly three different
types of balls among the four picked balls, which means
that we first pick three balls from n distinct balls at
one time and then there are two possible placement
categories for the first to-be-picked ball among the three
balls: (1) it appears only once in the four slots in which

case we first pick one slot for this ball, i.e.,
(
4

1

)
, then the

second to-be-picked ball among the remaining two balls
has two choices: (a) it appears only once among the
remaining three slots (the last ball takes the remaining

slots and it appears twice), i.e.,
(
3

1

)
; (b) it appears twice

among the remaining three slots (the last ball takes the

remaining slot and it appears only once), i.e.,
(
3

2

)
. (2)

it appears twice in the four slots in which case we first

pick two slots for this ball, i.e.,
(
4

2

)
, and then we pick

one slot from the remaining two slots for the second
to-be-picked ball (the last ball takes the remaining one

slot), i.e.,
(
2

1

)
. The fourth component in the left-hand

side of Equation (13), i.e.,
(
n

4

)
×
(
4

1

)
×
(
3

1

)
×
(
2

1

)
, is the

number of ways that the four picked balls are different
from each other, which means that we first pick four
balls from n distinct balls at one time and then pick one
from the four balls as the first-picked ball and then pick
one more from the remaining three balls as the second-
picked ball and then pick one more from the remaining
two balls as the third-picked ball and the last one as the
fourth-picked ball.

Based on the above observations for the
combinatorial structures of n2,n3 and n4, we derive a
generalized form for the combinatorial structure of nm

as follows:

Table 2 Some decomposition examples of nm based on Eq. (17).

nm ∑
m!

n∏
i=1

ai!

22 1+2+1 = 4
23 1+3+3+1 = 8
24 1+4+6+4+1 = 16
32 1+1+1+2+2+2 = 9
33 1+3+3+3+3+3+3+6+1+1 = 27
34 1+1+1+4+4+4+4+4+4+6+6+6+12+12+12 = 81
42 1+1+1+1+2+2+2+2+2+2 = 16
43 1+1+1+1+3+3+3+3+3+3+3+3+3+3+3+3+6+6+6+6 = 64
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(
n

1

)
+

(
n

2

)
× (

(
m

1

)
+

(
m

2

)
+ ...

(
m

m− 1

)
)+(

n

3

)
× {

(
m

1

)
× (

(
m− 1

1

)
+

(
m− 1

2

)
...+(

m− 1

m− 2

)
) +

(
m

2

)
× (

(
m− 2

1

)
+

(
m− 2

2

)
+

...+

(
m− 2

m− 3

)
) + ...+

(
m

m− 3 + 1

)
×
(
2

1

)
}+

...+

(
n

m

)
×
(
m

1

)
×
(
m− 1

1

)
× ...×

(
2

1

)
= nm

(14)

In a more compact form, we have:

m∑
i=1

(
n

i

)
× (

m−1∑
k1=1,i≥2

(
m

k1

)
× ...×

(

m−
s−1∑
j=1

kj−1∑
ks=1,1<s<i−1

m−
s−1∑
j=1

kj

ks

× ...×

(

m−
i−2∑
j=1

kj−1∑
k(i−1)=1

m−
i−2∑
j=1

kj

k(i−1)

)...) = nm

(15)

By analogy, the Equation (14) can also be interpreted
as the number of ways of picking m balls from n

distinct balls successively with the pick-and-put-back
rule (every time picking one from the same n distinct
balls). The left-hand side of Equation (14) indicates the
sum of the number of ways of picking exactly i different
balls in the m picking trials.

While we will use the clumsy Eq. (14) in the
final proof of Cayley’s formula in Section III, we give
another simplified form of the combinatorial structures
of nm by looking at this from a different angle.

Following [9], we first define
(

m

a1, a2, ..., an

)
as the

coefficient of xa11 xa22 ...xann in (x1 + x2 + ... + xn)m

and we have(
m

a1, a2, ..., an

)
=

m!

a1!a2!...an!
=

m!
n∏

i=1

ai!
(16)

Essentially, nm is the sum of the multi-nomial
coefficients of (x1 + x2 + ... + xn)m where x1 =

x2 = ... = xn = 1.
Therefore, we have

nm =
∑ m!

n∏
i=1

ai!
(17)

where the sum is over all (a1, a2, ...an) such that ai is a
non-negative integer for each i and a1 +a2 + ...+an =

m.
The following table illustrates some examples of nm

based on the Eq. (17).

4 The Proof of Cayley’s Theorem

In this section, we prove that Formula (5), which
presents the sum of the number of all possible trees
based on the number of intermediate nodes in the trees,
coincides with Cayley’s free tree theorem.

To better understand the procedure of the proof, we
first give an example of the proof when N = 4.
According to Formula (5), we have

Ttotal(4) = R(0) +R(1) +R(2) +R(3) =(
4

4

)
+

(
4

1

)
×(
(
3

1

)
+

(
3

2

)
+

(
3

3

)
)+(

4

2

)
×(
(
3

1

)
×(
(
2

1

)
+

(
2

2

)
)+

(
3

2

)
×
(
1

1

)
)

+

(
4

3

)
×
(
3

1

)
×
(
2

1

)
×
(
1

1

)
(18)

Now note that
(
k

k

)
=
(
3

0

)
for all 1 ≤ k ≤ 3.

Substituting these in the right-hand side of Equation
(18), we obtain

Ttotal(4)=

(
4

4

)
+

(
4

1

)
×(
(
3

1

)
+

(
3

2

)
+

(
3

0

)
)+(

4

2

)
×(
(
3

1

)
×(
(
2

1

)
+

(
3

0

)
)+

(
3

2

)
×
(
3

0

)
)

+

(
4

3

)
×
(
3

1

)
×
(
2

1

)
×
(
3

0

)
(19)

Also note that (
4

4

)
=
(
3

3

)
.

Substituting this in the right-hand side of Equation
(19), we have

Ttotal(4) =

(
3

3

)
+

(
4

1

)
× (

(
3

1

)
+

(
3

2

)
+

(
3

0

)
)

+

(
4

2

)
× (

(
3

1

)
× (

(
2

1

)
+

(
3

0

)
) +

(
3

2

)
×
(
3

0

)
)

+

(
4

3

)
×
(
3

1

)
×
(
2

1

)
×
(
3

0

)
(20)

Ttotal(4) =

(
3

0

)
×

(

(
4

1

)
+

(
4

2

)
× (

(
3

1

)
+

(
3

2

)
) +

(
4

3

)
×
(
3

1

)
×
(
2

1

)
)

+

(
3

1

)
× (

(
4

1

)
+

(
4

2

)
×
(
2

1

)
)

+

(
3

2

)
×
(
4

1

)
+

(
3

3

)
(21)

Now we reorganize the right-hand side of
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Equation (20) according to the common factors of(
3

0

)
,
(
3

1

)
,
(
3

2

)
,
(
3

3

)
with descending priorities and we

have Formula (21) as listed above.
According to the Formula (14) or the specific forms

of Formula (11) and Formula (12), we have(
4

1

)
+
(
4

2

)
×
(
2

1

)
= 42 and(

4

1

)
+
(
4

2

)
× (
(
3

1

)
+
(
3

2

)
) +

(
4

3

)
×
(
3

1

)
×
(
2

1

)
= 43

Substituting these in the right-hand side of Equation
(21), we obtain

Ttotal(4)=

(
3

0

)
×43+

(
3

1

)
×42+

(
3

2

)
×4+

(
3

3

)
(22)

By the Binomial Theorem, from Equation (22), we
have

Ttotal(4) = (4 + 1)3 (23)

Now we give the proof for the general case of Equation
(5).

Proof: From Equation (5), we have

TTotal(N) = R(0) +R(1) + ...+R(i) + ...+R(N − 1)

=

(
N

N

)
+

(
N

1

)
×

N−1∑
k=1

(
N − 1

k

)
+ ...

(
N

i

)
×

N−i∑
k1=1

(

(
N − 1

k1

)
× ...×

+

N−1−
m−1∑
j=1

kj−(i−m)∑
km=1

(

N − 1−
m−1∑
j=1

kj

km

× ...×

N−1−
i−1∑
j=1

kj∑
ki=1

N − 1−
i−1∑
j=1

kj

ki

))...) + ...

+

(
N

N − 1

)
×
(
N − 1

1

)
×
(
N − 2

1

)
× ...×

(
2

1

)
×
(
1

1

) (24)

Now note that(
k

k

)
=
(
N − 1

0

)
for all 1 ≤ k ≤ (N − 1);

Substituting this in the right-hand side of Equation
(24), we obtain

TTotal(N)=

(
N

N

)
+

(
N

1

)
×(

N−2∑
k=1

(
N − 1

k

)
+

(
N − 1

0

)
)+

...+

(
N

i

)
×

N−i∑
k1=1

(

(
N − 1

k1

)
× ...×

N−1−
m−1∑
j=1

kj−(i−m)∑
km=1

(

N − 1−
m−1∑
j=1

kj

km

× ...×

N−1−
i−1∑
j=1

kj−1∑
ki=1

(

N − 1−
i−1∑
j=1

kj

ki

+

(
N − 1

0

)
))...)+...+

(
N

N − 1

)
×
(
N − 1

1

)
×
(
N − 2

1

)
×...×

(
2

1

)
×
(
N − 1

0

)
(25)

Also note that(
N

N

)
=
(
N − 1

N − 1

)
;

Substituting this in the right-hand side of Equation
(25), we have

TTotal(N) =

(
N − 1

N − 1

)
+

(
N

1

)
× (

N−2∑
k=1

(
N − 1

k

)
+

(
N − 1

0

)
)

+ ...+

(
N

i

)
×

N−i∑
k1=1

(

(
N − 1

k1

)
× ...×

N−1−
m−1∑
j=1

kj−(i−m)∑
km=1

(

N − 1−
m−1∑
j=1

kj

km

× ...×

N−1−
i−1∑
j=1

kj−1∑
ki=1

(

N − 1−
i−1∑
j=1

kj

ki

+

(
N − 1

0

)
))...) + ...+

(
N

N − 1

)
×
(
N − 1

1

)
×
(
N − 2

1

)
× ...×

(
2

1

)
×
(
N − 1

0

)
(26)

Now we reorganize the right-hand side of Equation
(26) according to the common factors of(

N − 1

0

)
,

(
N − 1

1

)
,

(
N − 1

2

)
, ...,

(
N − 1

N − 2

)
,

(
N − 1

N − 1

)
with descending priorities and we have
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TTotal(N) =

(
N − 1

0

)
×

N−1∑
i=1

(
N

i

)
×

(
N−1−1∑

k1=1,i≥2

(
N − 1

k1

)
× ...× (

N−1−
i−1∑
j=1

kj−1∑
k(i−1)

N − 1−
i−2∑
j=1

kj

k(i−1)

)...)

(
N − 1

1

)
×

N−2∑
i=1

(
N

i

)
×

(
N−2−1∑

k1=1,i≥2

(
N − 2

k1

)
× ...× (

N−2−
i−1∑
j=1

kj−1∑
k(i−1)=1

N − 2−
i−2∑
j=1

kj

k(i−1)


+ ...+

(
N − 1

N − 1

)
(27)

By Equation (15), we have

m∑
i=1

(
N

i

)
× (

m−1∑
k1=1,i≥2

(
m

k1

)
× ...×(

m−
s−1∑
j=1

kj−1∑
ks=1,1<s<i−1

m−
s−1∑
j=1

kj

ks

× ..

.× (

m−
i−2∑
j=1

kj−1∑
k(i−1)=1

m−
i−2∑
j=1

kj

k(i−1)

)...) = Nm

forall1 ≤ m ≤ N − 1; (28)

Substituting this in the right-hand side of Equation (27),
we obtain

TTotal(N) =

(
N − 1

0

)
×N (N−1) +

(
N − 1

1

)
×N (N−2)

+...+

(
N − 1

k

)
×N (N−1−k) + ...+

(
N − 1

N − 1

) (29)

Now note the following Binomial Theorem:

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y + ...

+

(
n

k

)
xn−kyk + ...+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

(30)

By the above Binomial Theorem, from equation (29),
we have

Ttotal(N) = (N + 1)(N−1) (31)

So far, we have proved the correctness of Formula
(5) against Cayley’s theorem and essentially we have
provided a new proof of Cayley’s formula for counting
labeled trees by showing that the sum of the number
of all possible trees based on different number of
intermediate nodes in the trees is equal to the number
by Cayley’s theorem.

5 NP-hardness of Wireless Broadcast
Problems

In the following, we present the proof of the NP-
hardness of a group of wireless broadcast problems
with respect to certain optimization objectives. For
example, given a source node S and destination nodes
D1, D2, ..., DN , we want to establish a broadcast tree,

rooted at S and reaching all of the destinations, to
achieve the minimum required energy.

Regarding the transmission energy, we have the
following theorems.

Theorem 5.1: The power required for a transmitting
node, say T , to directly reach a set of destination nodes,
say D1, D2, ..., Dm, is determined by the maximum
required power to reach any of them individually. As
mentioned above, we assume omni-directional antennas
are used and the required power for a distance of d

between the transmitting node and the receiving node is
proportional to dλ . For the sake of brevity, throughout
this paper we will use dλ to stand for the required power
for a transmitting distance of d. Let d1, d2, ..., dm stand
for the distances from the transmitting node T to the
destinations D1, D2, ..., Dm respectively. The required
power is determined by:

preq = max(dλ1 , d
λ
2 , ..., d

λ
m) (32)

Theorem 5.2: The power required for a broadcast
tree is the sum of the energy required for each of the
transmitting node in the tree. Let S, T1, T2, ..., T r stand
for the transmitting nodes for the given broadcast tree.
Notably, S is the source node and T1, T2, ..., Tr are the
relaying nodes. The required power for the broadcast
tree with the transmitting nodes of S, T1, T2, ..., T r is
given by:

ptree = pS +
r∑
i=1

pTr
(33)

In Figure 1, we show an extreme case of the broadcast
tree, where only one destination node is non-relaying
node and all of the other (N − 1) intended destination
nodes are essentially relaying nodes in the tree.

Theorem 5.3: The minimum-energy broadcast
(MEB) tree problem is NP-hard even if the broadcast
trees are restricted to have exact (N−1) relaying nodes,
assuming we have one source node and N intended
destination nodes (Notably, the number of relaying
nodes for the broadcast trees can range from zero to
(N − 1)).

Proof: First, we reduce the general minimum-
energy broadcast tree problem to the MEB optimization
problem just for (N − 1) relaying nodes cases (see
Figure 1 for an example) and then we transform
the restricted MEB optimization problem to the well-
known NP-complete problem: Traveling Salesman
Extension (TSE) [7]. The TSE problem assumes that
the inputs are: a finite set C = {c1, c2, ...cm} of cities,
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Fig. 1 An extreme case with only one non-relaying destination node

a distance d(ci, cj) ∈ Z+ for each pair of cities ci, cj ∈
C , a bound B ∈ Z+ , and a particular tour Θ =<

cΠ(1), cΠ(2), ..., cΠ(k) > of k distinct cities from C, 1 ≤
k ≤ m. The problem is if Θ can be extended to a full
tour < cΠ(1), cΠ(2), ..., cΠ(k), cΠ(k+1), ..., cΠ(m) > [7].
We rephrase the restricted MEB optimization problem
for (N − 1) relaying nodes case (suppose we have
one source node S and N destination nodes) as a TSE
problem by the following transformations: each node in
MEB optimization problem can be seen as a “city”, the
energy cost between any two nodes (if one transmits to
another), say dλi,j for node i and node j , can be viewed
as the distance between each pair of “cities”, a particular
tour Θ =< cΠ(1) > and cΠ(1) = S. Our goal is to find
a minimal energy tour from source “city” S to cover all
the other N “cities” with exact (N−1) relaying “cities”
(see Figure 1 for the illustration). Thus, the problem can
be transformed as if we can extend Θ =< cΠ(1) > to
a full tour< cΠ(1), cΠ(2), ..., cΠ(N+1) > such that the
total “length”, i.e., the total energy cost, is B or less.
To here, since the TSE problem is NP-complete, as a
consequence, the restricted MEB optimization problem
is at least as hard as TSE problem. Further, since the
restricted MEB problem is a sub-problem of the general
MEB problem, the TSE problem can also be viewed as
a sub-problem of the general MEB problem. Obviously,
the general MEB problem is NP-hard.

Essentially, the proof of the NP-hardness of the MEB
problem can be extended to other wireless broadcast
problems with respect to the optimization of other
objectives.

6 Conclusion

In the fields of information theory and computing
science, trees are arguably one of the most important
data structures to depict and represent choice-making
strategies such as the one used in Google’s AlphaGo

system that defeated human champions in recent
human-machine grand challenge. Another example
is that different number of intermediate nodes in
wireless broadcast trees may have great impact on
energy consumption of each node that are typically
equipped with limited power supplies in a wireless
sensor network, which may eventually determine how
long the given wireless sensor network can last. Thus,
it is of great importance to have a deep understanding
of the mathematical nature of wireless broadcast trees.
In this paper we present a new theorem for counting
labeled trees based on the number of intermediate
nodes, i.e., the non-leaf nodes except the root node, in
the tree and we prove its correctness against Cayley’s
famous theorem for counting labeled trees. Essentially
we provide a new proof of Cayley’s formula for
counting labeled trees, during the procedure of which
we introduce an interesting combinatorial structure of
nm series.

To the best of our knowledge, it is the first time
that a proof purely based upon combinatorial structures
without constructing a bijection between two kinds of
trees has been presented and it is the first time that
a new tree enumeration theorem based on the number
of intermediate nodes, which are also called relaying
nodes in a wireless broadcast tree, is presented and it
is also the first time that an interesting combinatorial
structure of nm series has been explored and proved.
Towards the end of the paper, we give a formal proof of
the NP-hardness of wireless broadcast problems with
respect to the optimization of certain objectives.
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